首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat use and ecological specialization within lake Daphnia populations   总被引:2,自引:0,他引:2  
Many species of planktonic cladocerans display substantial variation in habitat use (mean depth and diel vertical migration), both among and within populations. We examined whether clonal segregation and specialization contributes to such behavioral variation within several lake populations of the cladoceran, Daphnia pulicaria. Electrophoretic and quantitative genetic analysis of clonal lines isolated from different depths at night revealed that clonal habitat specialization was common. Clones that utilized shallow water at night were genetically smaller at maturity and lower fecundity under standard laboratory conditions than the deep-water clones. The magnitude of this clonal habitat specialization varied among lakes: populations displaying broad use of depth habitats contained greater genetic variance than populations with more constrained habitat use. These results are consistent with known differences in selective factors in different depth habitats and suggest that substantial clonal specialization can occur within single populations. Since previous work has discovered a heritable basis to habitat selection in several Daphnia species, including D. pulicaria in our study lakes, it is likely that clonal/depth specialization is an important factor affecting the trophic ecology of Daphnia. Received: 18 April 1996 / Accepted: 25 September 1996  相似文献   

2.
Few studies of invertebrates have considered combinations of morphological and life history traits in the context of the evolution of reproductive strategies. Cricket species that exploit habitats harsh with respect to egg survival have evolved a long ovipositor, presumably because laying deep in the soil reduces egg mortality. Yet hatchling mortality increases with laying depth, and the ability of hatchlings to climb through the soil increases with egg size. Thus a conflict may exist between survival of the egg and that of the hatchling, inducing a positive covariation between egg size and ovipositor length across species evolving under contrasting selective habitats. We used the phylogenetic autocorrelation method and a path analysis to assess whether egg size coevolved with ovipositor length across 40 species of crickets, and whether egg size was affected by body size or ecological factors that influence egg mortality. Body size and ovipositor length were affected by taxonomic association, whereas common ancestry had no significant effect on egg size, diapausing strategy, and oviposition preference for soil types. The path model indicated that 29.11% of the variance in egg size was explained by independent evolution. As expected, ovipositor length was positively correlated with egg size, and species diapausing in the egg stage produced larger eggs than crickets diapausing in the nymphal stage or with no diapause. Ovipositor length and diapausing strategy were the first and second most important traits, respectively, in term of the proportion of variance in egg size explained by specific values. These results support the hypothesis that the ability of hatchlings to climb through the soil, and variation in diapause strategies, are general selective factors affecting the evolution of egg size in crickets. Phylogeny explained 51.01% of the variance in egg size. Egg size in a current cricket species, however, was not directly determined by egg size in its ancestor. Instead, it was strongly related to the phylogenetic values of body size and ovipositor length. Such indirect phylogenetic effects of body size and ovipositor length may have arisen because clades originating from ancestors with different ovipositor lengths experienced different selective pressures on egg size. Recelived: 13 October 1995 / Accepted: 30 September 1996  相似文献   

3.
We investigated how infection by the mermithid nematode Gasteromermis sp. affected predation on its nymphal mayfly host, Baetisbicaudatus, by two invertebrate predators – the stonefly nymphs of Kogotusmodestus and the caddisfly larvae of Rhyacophilahyalinata. Predation trials and behavioral observations were conducted in stream-side, flow-through experimental chambers. When parasitized and unparasitized prey were offered in equal numbers, K. modestus consumed significantly more parasitized than unparasitized nymphs. R. hyalinata consumed equal numbers of both prey types. Behavioral observations of foraging K.␣modestus on parasitized and unparasitized prey suggested that the increased consumption of parasitized nymphs was due to differences in the behavior of infected mayflies in response to the predator. Specifically, parasitized nymphs drifted less often to escape an approaching predator (non-contact encounters) compared to unparasitized nymphs, which increased the number of contact encounters and attacks that occurred between K.␣modestus and parasitized prey. Because all hosts are castrated, these behavioral alterations affect only the fitness of the parasite, which is killed along with its host by invertebrate predation. We present a number of hypotheses to explain why the parasite causes increased predation on its host. These include the large size of the parasite affecting the sensory abilities of the host, the larger energetic costs of escape behavior for parasitized individuals, and natural selection from fish predation against drifting behavior by parasitized individuals. Received: 27 May 1996 / Accepted: 30 September 1996  相似文献   

4.
Robert Poulin  Klaus Rohde 《Oecologia》1997,110(2):278-283
Parasite communities are the product of acquisitions and losses of parasite species during the evolutionary history of their host. When comparing the parasite communities of different host species to assess the role of ecological variables as determinants of parasite species richness, a correction must be made for the possible phylogenetic inheritance of parasites from ancestral hosts independent of host ecology. We performed a comparative analysis of the metazoan ectoparasite communities on the heads and gills of 111 species of marine fish. The influences of host body size, host schooling behaviour and water temperature were tested after controlling for both sampling and phylogenetic effects. Overall, water temperature correlated positively with both parasite species richness and abundance, whereas fish size only correlated with parasite abundance. The correlation across all fish species between water temperature and parasite species richness was dependent on an outlier point. The results, however, generally held when fish from different biogeographical areas (Pacific and Atlantic) were analysed separately. In all analyses, parasite species richness always correlated strongly with parasite abundance. There was no evidence that schooling fish taxa harboured richer or more abundant ectoparasite communities than their non-schooling sister taxa, possibly because of the small number of contrasts available for that test. Overall, whereas both water temperature and host size affect the number of parasite individuals that can be harboured by a fish, only temperature appears important as a determinant of ectoparasite community richness. Received: 30 May 1996 / Accepted: 23 October 1996  相似文献   

5.
Several groups of vertebrate taxa, including shorebirds, are unusual in that they produce a fixed number of offspring. The aim of this study was to examine whether the incubation capacity of western sandpipers (Calidris mauri) and semipalmated sandpipers (C. pusilla) limits their maximum clutch size to four eggs. Experimental enlargement of clutch size had no effect on rates of nest abandonment, nest attendance or loss of body mass by incubating sandpipers. The duration of incubation was significantly longer for enlarged five-egg nests, and there were trends towards increased partial clutch loss and asynchrony at hatch, but overall hatching success was unaffected by experimental egg number. I conclude that small, calidrine sandpipers with biparental care are able to compensate for an additional egg in an enlarged nestbowl, despite the constraints of conically shaped eggs and two brood patches. Possibly, shorebirds do not lay more than a fixed clutch size of four eggs because selection on factors acting during egg production or brood-rearing is more important in regulating offspring number. Received: 20 June 1996 / Accepted: 30 September 1996  相似文献   

6.
Understanding how diversity interacts with energy supply is of broad ecological interest. Most studies to date have investigated patterns within trophic levels, reflecting a lack of food webs which include information on energy flow. We added parasites to a published marine energy‐flow food web, to explore whether parasite diversity is correlated with energy flow to host taxa. Parasite diversity was high with 36 parasite taxa affecting 40 of the 51 animal taxa. Adding parasites increased the number of trophic links per species, trophic link strength, connectance, and food chain lengths. There was evidence of an asymptotic relationship between energy flowing through a food chain and parasite diversity, although there were clear outliers. High parasite diversity was associated with host taxa which were highly connected within the food web. This suggests that energy flow through a taxon may favour parasite diversity, up to a maximal value. The evolutionary and energetic basis for that limitation is of key interest in understanding the basis for parasite diversity in natural food webs and thus their role in food web dynamics.  相似文献   

7.
When neighbors compete for resources, the characteristics of a neighborhood may affect fitness. We examined the relationship between reproductive success and the density and size/age characteristics of neighbors in a population of the seed-eating ant, Pogonomyrmex barbatus, in which the ages of all colonies were known. Reproductive success was estimated by trapping and counting the number of alate, reproductive ants emerging from the nest for the annual mating flight. Alate production was negatively related to neighborhood density. Decreased production of alates by more crowded colonies may be due to competition for food with surrounding colonies. Neighbor size/age was unrelated to alate production. If alate production is correlated with lifetime reproductive success, these results suggest that selection favors colonies that monopolize more space, whatever the size of neighboring colonies. Received: 12 February 1996 / Accepted: 6 September 1996  相似文献   

8.
Michael A. Huston 《Oecologia》1997,110(4):449-460
Interactions between biotic and abiotic processes complicate the design and interpretation of ecological experiments. Separating causality from simple correlation requires distinguishing among experimental treatments, experimental responses, and the many processes and properties that are correlated with either the treatments or the responses, or both. When an experimental manipulation has multiple components, but only one of them is identified as the experimental treatment, erroneous conclusions about cause and effect relationships are likely because the actual cause of any observed response may be ignored in the interpretation of the experimental results. This unrecognized cause of an observed response can be considered a “hidden treatment.” Three types of hidden treatments are potential problems in biodiversity experiments: (1) abiotic conditions, such as resource levels, or biotic conditions, such as predation, which are intentionally or unintentionally altered in order to create differences in species numbers for “diversity” treatments; (2) non-random selection of species with particular attributes that produce treatment differences that exceed those due to “diversity” alone; and (3) the increased statistical probability of including a species with a dominant negative or positive effect (e.g., dense shade, or nitrogen fixation) in randomly selected groups of species of increasing number or “diversity.” In each of these cases, treatment responses that are actually the result of the “hidden treatment” may be inadvertently attributed to variation in species diversity. Case studies re-evaluating three different types of biodiversity experiments demonstrate that the increases found in such ecosystem properties as productivity, nutrient use efficiency, and stability (all of which were attributed to higher levels of species diversity) were actually caused by “hidden treatments” that altered plant biomass and productivity. Received: 16 December 1996 / Accepted: 2 March 1997  相似文献   

9.
It has been hypothesised that larger habitats should support more complex food webs. We consider three mechanisms which could lead to this pattern. These are increased immigration rates, increased total productivity and spatial effects on the persistence of unstable interactions. Experiments designed to discriminate between these mechanisms were carried out in laboratory aquatic microcosm communities of protista and bacteria, by independently manipulating habitat size, total productivity and immigration rate. Larger habitats supported more complex food webs, with more species, more links per species and longer maximum and mean food chains, even in the absence of differences in total energy input. Increased immigration rate resulted in more complex food webs, but habitats with higher energy input per unit area supported less complex food webs. We conclude that spatial effects on the persistence of unstable interactions, and variation in immigration rates, are plausible mechanisms by which habitat size could affect food web structure. Variation in total productivity with habitat area seems a less likely explanation for variation in food web structure.  相似文献   

10.
The ability of an insect to disperse to new habitat patches is difficult to quantify, but key to the establishment and persistence of populations. In this study, we examined dispersal of the phytophagous chrysomelid beetle, Galerucella calmariensis, which is currently being introduced into North America for the biological control of purple loosestrife (Lythrum salicaria), an aggressive wetland weed. We used a mark, release, and recapture approach to determine how rates of colonization of host patches by this beetle are influenced by the distance of the patch from the source of dispersers, and by the presence of conspecifics at the patch. We released color-coded beetles at six distances from a long, linear patch of purple loosestrife that was divided into segments with and without conspecifics. We observed initial flight directions as beetles left the release points and collected all beetles that settled at the target patch. We found a bias in initial flight toward the target for distances up to 50 m. Over the 7 days of the experiment, beetles arrived at the target from all release points, including the farthest release point, 847 m away. G. calmariensis was strongly attracted to conspecifics when settling after dispersal; 86% of the 582 recovered beetles came from the segments inhabited by conspecifics. The probability of an individual arriving at the patch declined steeply with release distance. This relationship fits a model in which beetles move in a random direction and stop if they intercept the target patch, and where beetles are lost at a constant rate with distance travelled. The dispersal and patch-colonizing behavior of G. calmariensis is likely to have important consequences for the biological control program against purple loosestrife. Received: 23 January 1996 / Accepted:30 September 1996  相似文献   

11.
T. J. Kwak  Joy B. Zedler 《Oecologia》1997,110(2):262-277
Carbon, nitrogen, and sulfur stable isotopes were used to characterize the food webs (i.e., sources of carbon and trophic status of consumers) in Tijuana Estuary and San Dieguito Lagoon. Producer groups were most clearly differentiated by carbon, then by sulfur, and least clearly by nitrogen isotope measurements. Consumer 15N isotopic enrichment suggested that there are four trophic levels in the Tijuana Estuary food web and three in San Dieguito Lagoon. A significant difference in multiple isotope ratio distributions of fishes between wetlands suggested that the food web of San Dieguito Lagoon is less complex than that of Tijuana Estuary. Associations among sources and consumers indicated that inputs from intertidal macroalgae, marsh microalgae, and Spartina foliosa provide the organic matter that supports invertebrates, fishes, and the light-footed clapper rail (Rallus longirostris levipes). These three producers occupy tidal channels, low salt marsh, and mid salt marsh habitats. The only consumer sampled that appears dependent upon primary productivity from high salt marsh habitat is the sora (Porzana carolina). Two- and three-source mixing models identified Spartina as the major organic matter source for fishes, and macroalgae for invertebrates and the light-footed clapper rail in Tijuana Estuary. In San Dieguito Lagoon, a system lacking Spartina, inputs of macroalgae and microalgae support fishes. Salicornia virginica, S. subterminalis, Monanthochloe littoralis, sewage- derived organic matter, and suspended particulate organic matter were deductively excluded as dominant, direct influences on the food web. The demonstration of a salt marsh–channel linkage in these systems affirms that these habitats should be managed as a single ecosystem and that the restoration of intertidal marshes for endangered birds and other biota is compatible with enhancement of coastal fish populations; heretofore, these have been considered to be competing objectives. Received: 24 April 1996 / Accepted: 24 October 1996  相似文献   

12.
 Seagrass meadows are often important habitats for newly recruited juvenile fishes. Although substantial effort has gone into documenting patterns of association of fishes with attributes of seagrass beds, experimental investigations of why fish use seagrass habitats are rare. We performed two short-term manipulative field experiments to test (1) the effects of food supply on growth and densities of fish, and (2) effects of predation on the density and size distribution of fish recruits, and how this varies among habitat types. Experiments were conducted in Galveston Bay, Texas, and we focused on the common estuarine fish, pinfish Lagodon rhomboides. In the first experiment, replicate artifical seagrass and sand plots were either supplemented with food or left as controls. Recruitment of pinfish was significantly greater to seagrass than sand habitats; however, we detected no effect of food supplementation on the abundance of recruits in either habitat. Pinfish recruits in artifical seagrass grew at a significantly faster rate than those in sand habitats, and fish supplemented with food exhibited a greater growth rate than controls in both sand and artifical grass habitats. In our second experiment, we provided artificial seagrass and sand habitats with and without predator access. Predator access was manipulated with cages, and two-sided cages served as controls. Recruitment was significantly greater to the cage versus cage-control treatment, and this effect did not vary between habitats. In addition, the standard length of pinfish recruits was significantly larger in the predator access than in the predator exclusion treatment, suggesting size-selective predation on smaller settlers or density-dependent growth. Our results indicate that the impact of predation on pinfish recruits is equivalent in both sand and vegetated habitats, and thus differential predation does not explain the higher recruitment of pinfish to vegetated than to nonvegetated habitats. Since predators may disproportionately affect smaller fish, and a limited food resource appears to be more effectively utilized by fish in vegetated than in unvegetated habitats, we hypothesize that pinfish recruits may select vegetated habitats because high growth rates allow them to achieve a size that is relatively safe from predation more quickly. Received: 10 October 1996 / Accepted: 5 April 1997  相似文献   

13.
Ten water-filled tree holes in a subtropical rainforest were emptied out thereby imposing a major perturbation on the community of organisms which occupied these habitat units. During the process of food web reassembly following this disturbance, the average number of predator species in the web increased as did the average number of prey species. Predator-prey ratios increased in magnitude with the number of days after the disturbance. Furthermore, the characteristic mean predator-prey ratio of the original community was gradually restored as the food web reassembled. The number of prey species was found to be a better predictor of the number of predator species during community recovery than vice versa. The increasing number of trophic links in the food web over the period of reassembly, due mainly to the increase in the number of predacious species in the web, provides a good overall measure of community recovery. The paper discusses the use of relationships among the food web statistics described within a model of food web reassembly. Such a model can be used to assess the rate of recovery of a community after a disturbance of the food web at the regional level of resolution. Further, the question of whether or not the rate of community recovery can be used to estimate ecosystem recovery with the aid of food web statistics is examined.  相似文献   

14.
Although all natural systems are heterogeneous, the direct influence of spatial heterogeneity on most ecological variables is unknown. In many systems, spatial heterogeneity is positively correlated with both microhabitat refugia and species richness. Both an increased number of microhabitat refugia and the effects of statistical averaging via increased species richness should lead to an inverse relationship between spatial heterogeneity and variability in community composition. To test this prediction, I measured diversity and temporal variability of invertebrate communities in a northern New Hampshire stream along a natural gradient of spatial heterogeneity formed by variation in stream substrates. On average, there was a 42% decrease in community variability along a gradient of increasing heterogeneity. This pattern was robust to changes in metrics of both heterogeneity and community variability. There was also a significant positive relationship between taxon richness and spatial heterogeneity with predicted taxon richness increasing c. 1.5× along the heterogeneity gradient. By resampling community abundance data, I estimated that statistical averaging accounted for only 4% of the observed decrease in community variability in this study. I concluded that the remaining decrease was very likely explained by a greater number of refugia from predation and/or flooding in high‐heterogeneity habitats. The results of this study suggest that maximizing heterogeneity in ecological restoration programmes may promote temporally stable and diverse communities and may aid in responsible management of aquatic resources.  相似文献   

15.
Spillover in ecological systems, that is the dispersal or foraging of organisms across habitat borders, can affect ecosystem functioning and food web interactions of local communities. While spillover of organisms from perennial habitats into agricultural fields received some attention in the context of ecosystem service provisioning, the spillover into semi-natural habitats has rarely been addressed, although spillover of generalist predators or competition for pollinators can have consequences for nature conservation. We studied predation rates of ground-dwelling predators on 20 calcareous grasslands, with either coniferous forest or a crop field as adjacent habitat. As prey items we exposed 32,000 ladybird eggs on the grasslands. Within two study periods (June to September) predation rates were higher at warm compared to cool days, but did not depend on the study period itself or the distance from the edge where prey items were placed. In each study period we found higher predation rates when coniferous forest was the adjacent habitat, however, only on cool days. On warm days, prey items were consumed to very high extents (often 100%), which did not allow the detection of possible differences between adjacent habitat types. The higher predation rates on grasslands adjacent to forests can be explained by predator spillover from forests to grasslands. We conclude that semi-natural habitats provide not only ecosystem services in adjacent human dominated habitats, but are also exposed to antagonistic spillover effects. Such antagonistic spillover should be considered in conservation strategies for semi-natural habitats.  相似文献   

16.
The hypothalamo-pituitary-adrenal axis is involved throughout the exercise-recovery cycle. Nevertheless, differences in hormone responses during early recovery between sedentary and endurance trained subjects are not well known. The aim of this preliminary study was to monitor plasma cortisol and adrenocorticotropic hormone (ACTH) concentrations both during and after the end of running exercise performed by four endurance trained adults (marathon men) compared to four sedentary subjects. Two parameters, i.e. intensity and duration, were changed on 4 consecutive days. The 1st day (D0) was spent in the laboratory: all blood samples were obtained at rest to determine diurnal variations of each hormone. On the following days (D1–D4) the subjects exercised: D1 and D2 brief (20 min), light (50% maximal heart rate HRmax, D1) or strenuous (80% HRmax, D2), D3 and D4 prolonged (120 min), light (D3) or strenuous (D4). In both groups, neither brief (D1, D2) nor prolonged light exercise (D3) induced any significant variation in plasma ACTH or cortisol concentrations. Plasma ACTH and cortisol concentrations increased only if the exercise was intense and prolonged (D4). The training factor did not modify the intensity or duration thresholds for the activation of the pituitary-adrenocortical response to exercise in the conditions of our experiment. However, during immediate recovery from the four exercise regimens, the plasma ACTH concentrations of the marathon men were constantly above the values of the sedentary subjects, although plasma cortisol concentration remained similar in both groups. As an indirect means of evaluating the relationships between ACTH and cortisol we compared the areas under the cortisol and ACTH curves (AUC) from 0.5 to 3.5h during recovery from D1 to D4 compared to D0 at the same time. Cortisol AUC were similar in the sedentary subjects and marathon men although the ACTH AUC were different in the sedentary subjects and marathon men, suggesting a change in the pituitary-adrenal relationship at some yet indeterminate level. During the immediate recovery from exercise whatever its intensity, the magnitude of the ACTH response was increased in the trained subjects but with a reduced effect upon its target, the adrenal glands. This phenomenon has not been described in the literature. Two non-exclusive phenomena may be involved, i.e. a decreased adrenal sensitivity to ACTH stimulation, and/or a decreased hypothalamo-pituitary axis sensitivity to cortisol negative feedback. Accepted: 6 August 1996  相似文献   

17.
The success and the evolutionary fate of hybridogenetic lineages are explained by both a generalistic heterosis hypothesis and an alternative hypothesis, the habitat segregation hypothesis. Because such hypotheses have rarely been tested at the level of whole habitats, our aim was to compare performances of two taxa within a hybridogenetic complex across diverse natural habitats. We took advantage of the waterfrog hybridogenetic complex (Rana esculenta and R. lessonae) by rearing tadpoles in natural contrasted habitats by means of enclosure experiments. We also monitored the frequency of each taxon in the waterfrog assemblages that naturally breed in the studied ponds. The hybridogenenetic taxon showed no evidence of broader tolerance as growth, development and physiology strongly varied in response to environmental heterogeneity. Our study reveals a differential success of the hybridogenetic taxon and its sexual host among environments. Moreover, hybridogenetic taxa rarely dominated the sexual species in natural assemblages. Consequently, our results show that the generalistic model does not explain the success of hybridogenetic lineages, but rather support the habitat segregation, among other alternative concepts.  相似文献   

18.
Eight fit men [maximum oxygen consumption (O2max) 64.6 (1.9) ml · kg−1 · min−1, aged 28.3 (1.7) years (SE in parentheses) were studied during two treadmill exercise trials to determine the effect of endogenous opioids on insulin and glucagon immunoreactivity during intense exercise (80% O2max). A double-blind experimental design was used with subjects undertaking the two exercise trials in counterbalanced order. Exercise trials were 20 min in duration and were conducted 7 days apart. One exercise trial was undertaken following administration of naloxone (N; 1.2 mg; 3 ml) and the other after receiving a placebo (P; 0.9% NaCl saline; 3 ml). Prior to each experimental trial a flexible catheter was placed into an antecubital vein and baseline blood samples were collected. Immediately after, each subject received either a N or P bolus injection. Blood samples were also collected after 20 min of continuous exercise (running). Glucagon was higher (P < 0.05), while insulin was lower (P < 0.05), during exercise compared with pre-exercise values in both trials. However, glucagon was higher (P < 0.05) in the P than in the N exercise trial [141.4 (8.3) ng · l−1 vs 127.2 (7.6) ng · l−1]. There were no differences in insulin during exercise between the P and N trials [50.2 (4.3) pmol · l−1 vs 43.8 (5) pmol · l−1]. These data suggest that endogenous opioids may augment the glucagon response during intense exercise. Accepted: 15 June 1996  相似文献   

19.
The habitat function of mangroves for terrestrial and marine fauna: A review   总被引:2,自引:10,他引:2  
Mangroves are defined by the presence of trees that mainly occur in the intertidal zone, between land and sea, in the (sub) tropics. The intertidal zone is characterised by highly variable environmental factors, such as temperature, sedimentation and tidal currents. The aerial roots of mangroves partly stabilise this environment and provide a substratum on which many species of plants and animals live. Above the water, the mangrove trees and canopy provide important habitat for a wide range of species. These include birds, insects, mammals and reptiles. Below the water, the mangrove roots are overgrown by epibionts such as tunicates, sponges, algae, and bivalves. The soft substratum in the mangroves forms habitat for various infaunal and epifaunal species, while the space between roots provides shelter and food for motile fauna such as prawns, crabs and fishes. Mangrove litter is transformed into detritus, which partly supports the mangrove food web. Plankton, epiphytic algae and microphytobenthos also form an important basis for the mangrove food web. Due to the high abundance of food and shelter, and low predation pressure, mangroves form an ideal habitat for a variety of animal species, during part or all of their life cycles. As such, mangroves may function as nursery habitats for (commercially important) crab, prawn and fish species, and support offshore fish populations and fisheries. Evidence for linkages between mangroves and offshore habitats by animal migrations is still scarce, but highly needed for management and conservation purposes. Here, we firstly reviewed the habitat function of mangroves by common taxa of terrestrial and marine animals. Secondly, we reviewed the literature with regard to the degree of interlinkage between mangroves and adjacent habitats, a research area which has received increasing attention in the last decade. Finally, we reviewed current insights into the degree to which mangrove litter fuels the mangrove food web, since this has been the subject of long-standing debate.  相似文献   

20.
Climate change will alter the distribution of rainfall, with potential consequences for the hydrological dynamics of aquatic habitats. Hydrological stability can be an important determinant of diversity in temporary aquatic habitats, affecting species persistence and the importance of predation on community dynamics. As such, prey are not only affected by drought‐induced mortality but also the risk of predation [a non‐consumptive effect (NCE)] and actual consumption by predators [a consumptive effect (CE)]. Climate‐induced changes in rainfall may directly, or via altered hydrological stability, affect predator–prey interactions and their cascading effects on the food web, but this has rarely been explored, especially in natural food webs. To address this question, we performed a field experiment using tank bromeliads and their aquatic food web, composed of predatory damselfly larvae, macroinvertebrate prey and bacteria. We manipulated the presence and consumption ability of damselfly larvae under three rainfall scenarios (ambient, few large rainfall events and several small rainfall events), recorded the hydrological dynamics within bromeliads and examined the effects on macroinvertebrate colonization, nutrient cycling and bacterial biomass and turnover. Despite our large perturbations of rainfall, rainfall scenario had no effect on the hydrological dynamics of bromeliads. As a result, macroinvertebrate colonization and nutrient cycling depended on the hydrological stability of bromeliads, with no direct effect of rainfall or predation. In contrast, rainfall scenario determined the direction of the indirect effects of predators on bacteria, driven by both predator CEs and NCEs. These results suggest that rainfall and the hydrological stability of bromeliads had indirect effects on the food web through changes in the CEs and NCEs of predators. We suggest that future studies should consider the importance of the variability in hydrological dynamics among habitats as well as the biological mechanisms underlying the ecological responses to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号