首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BACKGROUND: An expanded CAG trinucleotide repeat is the genetic trigger of neuronal degeneration in Huntington's disease (HD), but its mode of action has yet to be discovered. The sequence of the HD gene places the CAG repeat near the 5' end in a region where it may be translated as a variable polyglutamine segment in the protein product, huntingtin. MATERIALS AND METHODS: Antisera directed at amino acid stretches predicted by the DNA sequence upstream and downstream of the CAG repeat were used in Western blot and immunohistochemical analyses to examine huntingtin expression from the normal and the HD allele in lymphoblastoid cells and postmortem brain tissue. RESULTS: CAG repeat segments of both normal and expanded HD alleles are indeed translated, as part of a discrete approximately 350-kD protein that is found primarily in the cytosol. The difference in the length of the N-terminal polyglutamine segment is sufficient to distinguish normal and HD huntingtin in a Western blot assay. CONCLUSIONS: The HD mutation does not eliminate expression of the HD gene but instead produces an altered protein with an expanded polyglutamine stretch near the N terminus. Thus, HD pathogenesis is probably triggered by an effect at the level of huntingtin protein.  相似文献   

3.
Cell death in polyglutamine diseases   总被引:11,自引:0,他引:11  
An increasing number of inherited neurodegenerative diseases are known to be caused by trinucleotide repeat expansions in the respective genes. At least nine disorders result from a CAG trinucleotide repeat expansion which is translated into a polyglutamine stretch in the respective proteins: Huntington's disease (HD), dentatorubral pallidolysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and several of the spinocerebellar ataxias (SCA1, 2, 3, 6, 7 and 12). Although the molecular steps leading to the specific neuropathology of each disease are unknown and are still under intensive investigation, there is increasing evidence that some CAG repeat disorders involve the induction of apoptotic mechanisms. This review summarizes the clinical and genetic features of each CAG repeat disorder and focuses on the common mechanistic steps involved in the disease progression of these so-called polyglutamine diseases. Among the common molecular features the formation of intranuclear inclusions, the recruitment of interacting polyglutamine-containing proteins, the involvement of the proteasome and molecular chaperones, and the activation of caspases are discussed with regard to their potential implication for the induction of cell death.  相似文献   

4.
Repeat-expansion mutations cause 13 autosomal dominant neurodegenerative disorders falling into three groups. Huntington's disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and spinocerebellar ataxias (SCAs) types 1, 2, 3, 7 and 17 are each caused by a CAG repeat expansion that encodes polyglutamine. Convergent lines of evidence demonstrate that neurodegeneration in these diseases is a consequence of the neurotoxic effects of abnormally long stretches of glutamines. How polyglutamine induces neurodegeneration, and why neurodegeneration occurs in only select neuronal populations, remains a matter of intense investigation. SCA6 is caused by a CAG repeat expansion in CACNA1A, a gene that encodes a subunit of the P/Q-type calcium channel. The threshold length at which the repeat causes disease is much shorter than in the other polyglutamine diseases, and neurodegeneration may arise from expansion-induced change of function in the calcium channel. Huntington's disease-like 2 (HDL2) and SCAs 8, 10 and 12 are rare disorders in which the repeats (CAG, CTG or ATTCT) are not in protein-coding regions. Investigation into these diseases is still at an early stage, but it is now reasonable to hypothesise that the net effect of each expansion is to alter gene expression. The different pathogenic mechanisms in these three groups of diseases have important implications for the development of rational therapeutics.  相似文献   

5.
Huntington's disease (HD) is caused by a CAG expansion in the huntingtin gene. Expansion of the polyglutamine tract in the huntingtin protein results in massive cell death in the striatum of HD patients. We report that human induced pluripotent stem cells (iPSCs) derived from HD patient fibroblasts can be corrected by the replacement of the expanded CAG repeat with a normal repeat using homologous recombination, and that the correction persists in iPSC differentiation into DARPP-32-positive neurons in vitro and in vivo. Further, correction of the HD-iPSCs normalized pathogenic HD signaling pathways (cadherin, TGF-β, BDNF, and caspase activation) and reversed disease phenotypes such as susceptibility to cell death and altered mitochondrial bioenergetics in neural stem cells. The ability to make patient-specific, genetically corrected iPSCs from HD patients will provide relevant disease models in identical genetic backgrounds and is a critical step for the eventual use of these cells in cell replacement therapy.  相似文献   

6.
7.
Huntington's disease (HD) is caused by CAG repeat expansion in exon 1 of a large gene, IT15, possessing 67 exons. Transgenic mice expressing a truncated N-terminal peptide of huntingtin with an expanded polyglutamine tract translated only from exon 1 develop symptoms similar to Huntington's disease. In the present study, a bacterial system (Escherichia coli) was used to express truncated peptides of huntingtin translated from exon 1 of the HD gene. Bacterial death was observed after the induction of peptides with expanded polyglutamine tracts, and both sodium dodecyl sulfate (SDS)-soluble peptides and insoluble aggregated material were detected by immunoblotting in the homogenates of such E. coli. E. coli death was partially reduced by the addition of dimethylsulfoxide (DMSO) or glycerol to the medium, with a consequent decrease in aggregated material and an increase in SDS-soluble peptide in the homogenate. These results suggest that DMSO and glycerol may decrease the toxicity of huntingtin with expanded polyglutamine tracts by acting as chemical chaperones.  相似文献   

8.
Lessons from animal models of Huntington's disease   总被引:17,自引:0,他引:17  
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HD gene. The expanded repeats are translated into an abnormally long polyglutamine tract close to the N-terminus of the HD gene product, huntingtin. Studies in mouse models and human suggest that the mutation is associated with a deleterious gain of function. There is now a wide range of mouse models for HD, providing important insights into processes associated with disease pathogenesis. These models have been complemented by studies in Drosophila and Caenorhabditis elegans that have allowed the identification of possible modifier loci through suppressor screens.  相似文献   

9.
Huntington's disease (HD) is an autosomal dominant disorder in which there is progressive neurodegeneration producing motor, cognitive and psychiatric symptoms. HD is caused by a trinucleotide (CAG) repeat mutation, encoding an expanded polyglutamine tract in the huntingtin protein. At least eight other neurodegenerative diseases are caused by CAG/glutamine repeat expansions in different genes. Recent evidence suggests that environmental factors can modify the onset and progression of Huntington's disease and possibly other neurodegenerative disorders. This review outlines possible molecular and cellular mechanisms mediating the polyglutamine-induced toxic 'gain of function' and associated gene-environment interactions in HD. Key aspects of pathogenesis shared with other neurodegenerative diseases may include abnormal protein-protein interactions, selective disruption of gene expression and 'pathological plasticity' of synapses in specific brain regions. Recent discoveries regarding molecular mechanisms of pathogenesis are guiding the development of new therapeutic approaches. Knowledge of gene-environment interactions, for example, could lead to development of 'enviromimetics' which mimic the beneficial effects of specific environmental stimuli. The effects of environmental enrichment on brain and behaviour will also be discussed, together with the general implications for neuroscience research involving animal models.  相似文献   

10.
11.
12.
13.
14.
Huntington's disease (HD) is an inherited progressive neurodegenerative disease caused by the expansion of a polyglutamine repeat sequence within a novel protein. Recent work has shown that abnormal intranuclear inclusions of aggregated mutant protein within neurons is a characteristic feature shared by HD and several other diseases involving glutamine repeat expansion. This suggests that in each of the these disorders the affected nerve cells degenerate as a result of these abnormal inclusions. A transgenic mouse model of HD has been generated by introducing exon 1 of the HD gene containing a highly expanded CAG sequence into the mouse germline. These mice develop widespread neuronal intranuclear inclusions and neurodegeneration specifically within those areas of the brain known to degenerate in HD. We have investigated the sequence of pathological changes that occur after the formation of nuclear inclusions and that precede neuronal cell death in these cells. Although the relation between inclusion formation and neurodegeneration has recently been questioned, a full characterization of the pathways linking protein aggregation and cell death will resolve some of these controversies and will additionally provide new targets for potential therapies.  相似文献   

15.
Huntington's disease (HD) is caused by an expansion of the CAG repeat in the HD gene. The repeat is translated to the polyglutamine tract as huntingtin, the product of HD gene. Several studies showed that the expansion of polyglutamine tract leads to formation of cytoplasminc and/or intranuclear aggregates in vivo or in vitro. To understand the molecular mechanism of the aggregate formation, we studied the transient expression of HD exon 1-GFP fusion proteins in COS-7 cells. The fusion protein carrying 77 glutamine repeats aggregated in a time-dependent manner, while the fusion protein carrying 25 glutamine tract remained to be distributed diffusely in the cytoplasm even 72 hours after transfection. Initially, fluorescent signals were diffusely distributed in the COS-7 cells that were transfected with the construct containing the 77 CAG repeats. Approximately 40 hours later after the transfection, large aggregates grew very rapidly in those cells and the diffuse cytoplasmic fluorescence faded out. This process was completed within 40 minutes from the appearance of small aggregates in the perinuclear regions. The addition of cycloheximide reduced the frequencies of aggregate formation. A possibility was discussed that the aggregate formation was via nucleation. The focal concentration of mutated proteins in neurons may trigger the aggregate formation.  相似文献   

16.
17.
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, The HD Consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG-repeat-expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease-associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal, as assessed using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a human stem cell platform for screening new candidate therapeutics.  相似文献   

18.
19.
Pathological-length polyglutamine (Q(n)) expansions, such as those that occur in the huntingtin protein (htt) in Huntington's disease (HD), are excellent substrates for tissue transglutaminase in vitro, and transglutaminase activity is increased in post-mortem HD brain. However, direct evidence for the participation of tissue transglutaminase (or other transglutaminases) in HD patients in vivo is scarce. We now report that levels of N(epsilon)-(gamma-L-glutamyl)-L-lysine (GGEL)--a 'marker' isodipeptide produced by the transglutaminase reaction--are elevated in the CSF of HD patients (708 +/- 41 pmol/mL, SEM, n = 36) vs. control CSF (228 +/- 36, n = 27); p < 0.0001. These data support the hypothesis that transglutaminase activity is increased in HD brain in vivo.  相似文献   

20.
Li XJ  Li S 《遗传学报》2012,39(6):239-245
Transgenic animal models have revealed much about the pathogenesis of age-dependent neurodegenerative diseases and proved to be a useful tool for uncovering therapeutic targets.Huntington's disease is ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号