首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Opioid peptides, opioid receptors and mechanism of down regulation   总被引:1,自引:0,他引:1  
Biogenesis of various endogenous opioid peptides, anatomical distribution and the characteristics of multiple receptors with which they interact provides an opportunity for understanding the role of opioid systems and mechanism of opioid tolerance. Cellular and anatomical distribution of opioid receptor and their function is important for identification of neuronal systems and local network involved in initiation of drug action and subsequent development of adaptations resulting from repeated drug use. The details concerning discovery and progress in endogenous opioid peptide research and their distribution in brain have been described in this review. This review also describes opioid receptors, their distribution and mechanism of down regulation, which may be one of the causes for tolerance to opioids. Agonist induced down regulation and recent evidence for involvement of ubiquitin/proteasome system in this process has been discussed.  相似文献   

2.
Transition metal ions, e.g. Mn2+, Ni2+ and Co2+ enhance in vitro agonist binding to muscarinic receptors in mouse cortex or hippocampus. This effect arises mainly from the conversion of low to high affinity binding sites. Binding properties of antagonists in these brain areas, as well as those of both agonists and antagonists of medulla-pons muscarinic receptors, are insensitive to these ions. The induced interconversion can be reversed by either of the following procedures: (i) removal of the ions; (ii) thermal exposure; (iii) addition of micromolar concentrations of guanine nucleotides.  相似文献   

3.
Fentanyl (FEN) and diprenorphine's (DIPR) potentials for analgesia and reinforcement were assayed using rats. Analgesia was measured by the classic tail-flick test. The test germane to opioid reinforcement involved measuring pressing rates for direct electrical stimulation of the lateral hypothalamus and ventral tegmental area. FEN, as does morphine and heroin, produced strong analgesia and enhanced pressing rates for brain stimulation. DIPR produced no analgesia and antagonized FEN's analgesia. DIPR, at doses antagonizing FEN's analgesia, enhanced pressing for brain stimulation. DIPR's enhancement of pressing was antagonized by naloxone (100 micrograms/kg). When FEN and DIPR were given concurrently, pressing for brain stimulation was not reduced and was greater than after FEN alone was given. These data support a conclusion that different types of receptors are associated with opioid analgesia and reinforcement.  相似文献   

4.
T cell antigen receptor (TCR) engagement by stimulatory antibodies or its major histocompatibility complex-antigen ligand results in its down-modulation from the cell surface, a phenomenon that is thought to play a role in T cell desensitization. However, TCR engagement results in the down-modulation not only of the engaged receptors but also of non-engaged bystander TCRs. We have investigated the mechanisms that mediate the down-modulation of engaged and bystander receptors and show that co-modulation of the bystander TCRs requires protein-tyrosine kinase activity and is mediated by clathrin-coated pits. In contrast, the down-modulation of engaged TCRs is independent of protein-tyrosine kinases and clathrin pits, suggesting that this process is mediated by an alternate mechanism. Indeed, down-modulation of engaged TCRs appears to depend upon lipid rafts, because cholesterol depletion with methyl-beta-cyclodextrin completely blocks this process. Thus, two independent pathways of internalization are involved in TCR down-modulation and act differentially on directly engaged and bystander receptors. Finally, we propose that although both mechanisms coexist, the predominance of one or the other mechanisms will depend on the dose of ligand.  相似文献   

5.
In contrast to antagonists, agonists tend to induce considerable conformational changes in their receptors, resulting in opening of ion channels, either directly or via secondary messengers. These conformational transformations require great energy expenses. However, the experimentally determined free energies of complexation between agonists and receptors are often relatively smaller than those for the corresponding antagonists. To rationalize this so-called 'agonist paradox', which has not been clarified in the literature, we have developed an alternative model. Our model may help to discriminate between agonists and antagonists of the acetylcholine (ACh) and mu-opioid receptors. For this purpose, a series of ligands (1-18) have been analyzed both in structural terms and with respect to complexation geometry within the anionic binding sites of these two receptor types.  相似文献   

6.
Significant advances have been made in understanding the structure, function, and regulation of opioid receptors and endogenous opioid peptides since their discovery approximately 25 years ago. This review summarizes recent studies aimed at identifying key amino acids that confer ligand selectivity to the opioid receptors and that are critical constituents of the ligand binding sites. A molecular model of the delta receptor based on the crystal structure of rhodopsin is presented. Agonist-induced down regulation of opioid receptors is discussed, highlighting recent evidence for the involvement of the ubiquitin/proteasome system in this process.  相似文献   

7.
8.
Some novel iboga-analogues consisting of benzofuran moiety and dehydroisoquinuclidine ring connected by –CH2–, (CH2)2 and (CH2)3 linkers have been synthesized with the view to develop potential antinociceptive drugs. The compounds 14 and 21 showed binding at the μ-opioid receptor (MOR), while the compound 11a exhibited dual affinities at both MOR and κ-opioid receptor (KOR). MAP kinase activation indicated all three compounds have opioid agonistic properties. The presence of a double bond and endo-methylcarboxylate group in the dehydroisoquinuclidine ring and the benzofuran and methylene spacer appeared to be essential for opioid receptor binding. Further studies demonstrated 11a caused significant antinociception in mice in the hot-plate test which was comparable to that produced by morphine. The compound 11a was also found to be nontremorigenic unlike various iboga congeners. This study identifies a new pharmacophore which may lead to the development of suitable substitute of morphine in the treatment of pain.  相似文献   

9.
The temperature dependence of agonist binding and channel gating were measured for wild-type adult neuromuscular acetylcholine receptors activated by acetylcholine, carbamylcholine, or choline. With acetylcholine, temperature changed the gating rate constants (Q10 ≈ 3.2) but had almost no effect on the equilibrium constant. The enthalpy change associated with gating was agonist-dependent, but for all three ligands it was approximately equal to the corresponding free-energy change. The equilibrium dissociation constant of the resting conformation (Kd), the slope of the rate-equilibrium free-energy relationship (Φ), and the acetylcholine association and dissociation rate constants were approximately temperature-independent. In the mutant αG153S, the choline association and dissociation rate constants were temperature-dependent (Q10 ≈ 7.4) but Kd was not. By combining two independent mutations, we were able to compensate for the catalytic effect of temperature on the decay time constant of a synaptic current. At mouse body temperature, the channel-opening and -closing rate constants are ∼400 and 16 ms−1. We hypothesize that the agonist dependence of the gating enthalpy change is associated with differences in ligand binding, specifically to the open-channel conformation of the protein.  相似文献   

10.
The differential ability of various mu-opioid receptor (MOP) agonists to induce rapid receptor desensitization and endocytosis of MOP could arise simply from differences in their efficacy to activate G proteins or, alternatively, be due to differential capacity for activation of other signaling processes. We used AtT20 cells stably expressing a low density of FLAG-tagged MOP to compare the efficacies of a range of agonists to 1) activate G proteins using inhibition of calcium channel currents (ICa) as a reporter before and after inactivation of a fraction of receptors by beta-chlornaltrexamine, 2) produce rapid, homologous desensitization of ICa inhibition, and 3) internalize receptors. Relative efficacies determined for G protein coupling were [Tyr-D-Ala-Gly-MePhe-Glyol]enkephalin (DAMGO) (1) > or = methadone (0.98) > morphine (0.58) > pentazocine (0.15). The same rank order of efficacies for rapid desensitization of MOP was observed, but greater concentrations of agonist were required than for G protein activation. By contrast, relative efficacies for promoting endocytosis of MOP were DAMGO (1) > methadone (0.59) > morphine (0.07) > or = pentazocine (0.03). These results indicate that the efficacy of opioids to produce activation of G proteins and rapid desensitization is distinct from their capacity to internalize mu-opioid receptors but that, contrary to some previous reports, morphine can produce rapid, homologous desensitization of MOP.  相似文献   

11.
A 5-day exposure to morphine exerts a profound cardioprotective phenotype in murine hearts. In the present study, we examined mechanisms by which morphine generates this effect, exploring the roles of G(i) and G(s) proteins, PKA, PKC, and beta-adrenergic receptors (beta-AR) in acute and chronic opioid preconditioning. Langendorff-perfused hearts from placebo, acute morphine (AM; 10 micromol/l)-, or chronic morphine (CM)-treated mice (75-mg pellet, 5 days) underwent 25-min ischemia and 45-min reperfusion. After reperfusion, placebo-treated hearts exhibited marked contractile and diastolic dysfunction [rate-pressure product (RPP), 40 +/- 4% baseline; end-diastolic pressure (EDP), 33 +/- 3 mmHg], whereas AM hearts showed significant improvement in recovery of RPP and EDP (60 +/- 3% and 23 +/- 4 mmHg, respectively; P < 0.05 vs. placebo). Furthermore, CM hearts demonstrated a complete return of diastolic function and significantly greater recovery of contractile function (83 +/- 3%, P < 0.05 vs. both placebo and AM). Pretreatment with G(i) protein inhibitor pertussis toxin abolished AM protection while partially attenuating CM recovery (P < 0.05 vs. placebo). Treatment with G(s) inhibitor NF-449 did not affect AM preconditioning yet completely abrogated CM preconditioning. Similarly, PKA inhibition significantly attenuated the ischemia-tolerant state afforded by CM, whereas it was ineffective in AM hearts. PKC inhibition with chelerythrine was ineffective in CM hearts while completely abrogating AM preconditioning. Moreover, whereas beta(1)-AR blockade with CGP-20712A failed to alter recovery in CM hearts, the beta(2)-AR antagonist ICI-118,551 significantly attenuated postischemic recovery. These data describe novel findings whereby CM preconditioning is mediated by a PKC-independent pathway involving PKA, beta(2)-AR, and G(s) proteins, whereas AM preconditioning is mediated via G(i) proteins and PKC.  相似文献   

12.
A novel family of 1,3,5-trisubstituted 1,2,4-triazoles was discovered as potent and selective ligands for the δ opioid receptor by rational design. Compound 5b exhibited low-nanomolar in vitro binding affinity (IC50 = 5.8 nM), excellent selectivity for the δ opioid receptor over the alternative μ and κ opioid receptors, full agonist efficacy in receptor down-regulation and MAP kinase activation assays, and low-efficacy partial agonist activity in stimulation of GTPγS binding. The apparent discrepancy observed in these functional assays may stem from different signaling pathways involved in each case, as found previously for other G-protein coupled receptors. More biological studies are underway to better understand the differential stimulation of signaling pathways by these novel compounds.  相似文献   

13.
Density-induced down regulation of epidermal growth factor receptors   总被引:4,自引:0,他引:4  
Summary Previous studies have shown that cell density can regulate the binding of several growth factors. To determine whether cell density exerts a uniform effect on the expression of epidermal growth factor (EGF) receptors, seven cell lines were examined in detail. For each cell line, EGF binding was found to decrease as cell density increases. Scatchard analysis of the binding data reveals that decreases in EGF binding are due to reductions in the number of cell surface EGF receptors. The only apparent exception is the effect of cell density on the binding of EGF to A-431 cells. For these cells, increases in cell density lead to two effects: decreases in the number of high affinity EGF receptors and increases in the total number of EGF receptors. In addition to the effects of cell density on EGF receptors, it was determined that increases in cell density can coordinately down-regulate receptors for as many as four different growth factors. Overall, the findings described in this report for EGF and those previously described for transforming growth factor type-β (TGF-β) and fibroblast growth factor (FGF) demonstrate the existence of a common mechanism for down-regulating growth factor receptors. This work was supported by grants from the Nebraska Department of Health (89-51), the National Cancer Institute (Laboratory Research Center Support Grant, CA36727), and the American Cancer Society (Core Grant ACS SIG-16). EDITOR'S STATEMENT The paper by Rizzino et al. demonstrates that receptor number decreases as a function of cell density. This may represent a mechanism by which cell proliferation is reduced as cell density increases.  相似文献   

14.
Liu-Chen LY 《Life sciences》2004,75(5):511-536
Chronic or repeated administration of κ opioid agonists leads to tolerance to the subsequent drug administration. The mechanisms underlying tolerance are complex and changes at the receptor level contribute in part to the development of tolerance. This review focuses on agonist-induced phosphorylation, desensitization, internalization and down-regulation of the κ opioid receptor. In vivo studies on the rat and guinea pig brains are reviewed, followed by in vitro investigations on cells and tissues endogenously expressing the κ opioid receptor. The bulk of the article describes the studies performed after cloning of the opioid receptors on regulation and trafficking of the κ opioid receptors (KORs) expressed in various cell systems. Topics reviewed and discussed include biochemical mechanisms of desensitization, internalization and down-regulation, differences in the regulation of the rat and the human κ opioid receptors (rKOR and hKOR, respectively) and the structural basis for the species variations, differential abilities of agonists in inducing regulation of the hKOR, the relationship (or the lack thereof) of KOR internalization to activation of p42/p44 mitogen-activated kinase and to adenylyl cyclase superactivation, the role of the PDZ domain-containing protein NHERF-1/EBP50 in the trafficking of the hKOR and the relationship between receptor phosphorylation and tolerance development in mice. There are still questions remained to be answered. Among the issues to be resolved are the signals that direct the sorting of internalized hKORs to the recycling and degradation pathways, the recycling pathway(s) of the internalized hKOR, the molecular bases of differential regulation of the KORs by agonists and the occurrence of agonist-induced KOR internalization occur in vivo and, if so, its role in tolerance and dependence.  相似文献   

15.
Nociceptin activation of ORL1 (opioid receptor-like 1 receptor) has been shown to antagonize mu receptor-mediated analgesia at the supraspinal level. ORL1 and mu-opioid receptor (muR) are co-expressed in several subpopulations of CNS neurons involved in regulating pain transmission. The amino acid sequence of ORL1 also shares a high degree of homology with that of mu receptor. Thus, it is hypothesized that ORL1 and muR interact to form the heterodimer and that ORL1/muR heterodimerization may be one molecular basis for ORL1-mediated antiopioid effects in the brain. To test this hypothesis, myc-tagged ORL1 and HA-tagged muR are co-expressed in human embryonic kidney (HEK) 293 cells. Co-immunoprecipitation experiments demonstrate that ORL1 dimerizes with muR and that intracellular C-terminal tails of ORL1 and muR are required for the formation of ORL1/muR heterodimer. Second messenger assays further indicate that formation of ORL1/muR heterodimer selectively induces cross-desensitization of muR and impairs the potency by which [D-Ala(2),N-methyl-Phe(4),Gly-ol(5)]enkephalin (DAMGO) inhibits adenylate cyclase and stimulates p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation. These results provide the evidence that ORL1/muR heterodimerization and the resulting impairment of mu receptor-activated signaling pathways may contribute to ORL1-mediated antiopioid effects in the brain.  相似文献   

16.
Polyclonal antibodies were raised against a purified opioid receptor from bovine brain (Cho, et. al., 1986), and shown to inhibit 3H-diprenorphine binding to this receptor in a dose-dependent fashion. These antibodies were then used to characterize opioid-binding material present in rat brain and in NG108-15 neuroblastoma-glioma hybrid cells. Western blot analysis revealed that the antibodies reacted with a single species of 58,000 molecular weight in rat brain membranes; this closely corresponds in size to the bovine opioid receptor used to raise the antibodies. In contrast, the polyclonal antibodies reacted with a 45,000 molecular weight species in NG108-15 neuroblastoma-glioma hybrid cells; moreover, this band was specifically reduced in NG108-15 cells in which opioid receptors had been down-regulated by incubation with D-ala2-D-leu5-enkephalin for 24 hours. Thus at least two distinct opioid receptor molecules have been identified, which have antigenic similarities.  相似文献   

17.
18.
19.
It is known that under some conditions the administration of opioid agonists will stimulate food intake. However, the lack of receptor selectivity of some of the agonists which produce this effect leaves open the question of which receptor types are actually involved. In the experiments presented here, rats were given intracerebroventricular injections of Dynorphin 1-17 (DYN), [D-ala2MePhe4,-Gly-ol5]enkephalin (DAGO), and [D-ser2, leu5]enkephalin-thr6 (DSLET); these peptides are thought to be selective agonists at kappa, mu and delta opioid receptors, respectively. All three peptides stimulated food intake in non-deprived rats at doses in the 3-10 nmol range; water intake was also increased in some cases. Generally, DYN stimulated feeding at a lower dose than DAGO or DSLET and the magnitude of the effect tended to be greater. On the other hand, DAGO more consistently increased water intake. In some cases, DYN also caused episodes of "barrel-rolling" and postural abnormalities, whereas DAGO had sedative and/or cataleptic effects. These results are interpreted as an involvement of more than one opioid receptor types in the regulation of appetite, possibly with separate opioid systems contributing to food and water intake.  相似文献   

20.
S L Sun  J S Han 《生理学报》1989,41(4):416-420
Previous studies have shown that rats subjected to low or high frequency electroacupuncture (EA) stimulation release enkephalins or dynorphins respectively to produce analgesia. This conclusion was tested in the present study by using cross tolerance technique for further analysing their receptor mechanisms. The main results were as follows: (1) In rats subjected to 2 Hz EA for 6 h, there was a gradual decrease in the analgesic effect, leading to a state of tolerance to 2 Hz EA analgesia. These rats, however, still responded to 100 Hz EA. Likewise, rats made tolerant to 100 Hz EA were still effective to 2 Hz EA stimulation, showing not significant cross tolerance between 2 Hz and 100 Hz EA analgesia. (2) Rats made-tolerant to 100 Hz EA analgesia showed a diminished response to intrathecal dynorphin A (1-13), a kappa agonist, whereas the analgesic effect of the delta agonist [D-Pen2, D-pen5] enkephalin (DPDPE) remained intact. (3) Rats made tolerant to 2 Hz EA analgesia showed a cross tolerance to DPDPE, but not to dynorphin A (1-13). Results obtained from aforementioned cross tolerance studies suggest that 2 Hz and 100 Hz EA analgesia are mediated by delta and kappa opioid receptors, respectively, at the spinal cord of the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号