首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The endocytic pathway depends on the actin cytoskeleton. Actin contributes to internalization at the plasma membrane and to subsequent trafficking steps like propulsion through the cytoplasm, fusion of phagosomes with early endosomes, and transport from early to late endosomes. In vitro studies with mammalian endosomes and yeast vacuoles implicate actin in membrane fusion. Here, we investigate the function of the actin coat that surrounds late endosomes in Dictyostelium. Latrunculin treatment leads to aggregation of these endosomes into grape-like clusters and completely blocks progression of endocytic marker. In addition, the cells round up and stop moving. Because this drug treatment perturbs all actin assemblies in the cell simultaneously, we used a novel targeting approach to specifically study the function of the cytoskeleton in one subcellular location. To this end, we constructed a hybrid protein targeting cofilin, an actin depolymerizing protein, to late endosomes. As a consequence, the endosomal compartments lost their actin coats and aggregated, but these cells remained morphologically normal, and the kinetics of endocytic marker trafficking were unaltered. Therefore, the actin coat prevents the clustering of endosomes, which could be one safeguard mechanism precluding their docking and fusion.  相似文献   

2.
Mycobacterium tuberculosis is a facultative intracellular pathogen that parasitizes macrophages by modulating properties of the Mycobacterium-containing phagosome. Mycobacterial phagosomes do not fuse with late endosomal/lysosomal organelles but retain access to early endosomal contents by an unknown mechanism. We have previously reported that mycobacterial phosphatidylinositol analog lipoarabinomannan (LAM) blocks a trans-Golgi network-to-phagosome phosphatidylinositol 3-kinase-dependent pathway. In this work, we extend our investigations of the effects of mycobacterial phosphoinositides on host membrane trafficking. We present data demonstrating that phosphatidylinositol mannoside (PIM) specifically stimulated homotypic fusion of early endosomes in an ATP-, cytosol-, and N-ethylmaleimide sensitive factor-dependent manner. The fusion showed absolute requirement for small Rab GTPases, and the stimulatory effect of PIM increased upon partial depletion of membrane Rabs with RabGDI. We found that stimulation of early endosomal fusion by PIM was higher when phosphatidylinositol 3-kinase was inhibited by wortmannin. PIM also stimulated in vitro fusion between model phagosomes and early endosomes. Finally, PIM displayed in vivo effects in macrophages by increasing accumulation of plasma membrane-endosomal syntaxin 4 and transferrin receptor on PIM-coated latex bead phagosomes. In addition, inhibition of phagosomal acidification was detected with PIM-coated beads. The effects of PIM, along with the previously reported action of LAM, suggest that M. tuberculosis has evolved a two-prong strategy to modify its intracellular niche: its products block acquisition of late endosomal/lysosomal constituents, while facilitating fusion with early endosomal compartments.  相似文献   

3.
Phagosomes containing live virulent mycobacteria undergo fusion with early endosomes, but they are unable to mature normally. Accordingly, they do not fuse with lysosomes. Although M. avium-containing phagosomes retain fusion and intermingling characteristics of early endosomes indefinitely, fusions with early endosomes are increasingly restricted as bacteria multiply. In addition, when endocytic tracers, such as horseradish peroxidase (HRP), are added to M. avium-infected macrophages at 1 or up to 15 days after infection, an atypical time course of acquisition of the tracer by the phagosomes is observed, i.e., a 10 to 20 min lag, instead of immediate acquisition as is typical for early endosomes (and phagosomes with early endosome characteristics). These events coincide with a marked disorganization of the actin filament network in M. avium-infected macrophages. In the present study, we have therefore addressed the following question: Do actin filaments play a role in fusion and intermingling of contents between early endosomes and immature phagosomes that undergo homotypic fusion with early endosomes? We examined the time course of acquisition of subsequently internalized endocytic marker (HRP) by early endosome-like preexisting phagosomes, i.e. 2 hour-old phagosomes with either hydrophobic latex particles, virulent or avirulent M. avium, after depolymerization of the actin filament network with cytochalasin D or after repolymerization of the actin filament network with jasplakinolide, in cases where the network had been depolymerized (macrophages infected with M. avium, at 1 or up to 7 days after infection). By direct morphological observation at the electron microscope level and by a kinetic approach, we show here that depolymerization of the actin filament network with cytochalasin D delays acquisition of HRP whereas repolymerization restores immediate acquisition of the marker. We conclude that the actin filament network is involved in fusion and intermingling of endocytic contents between early endosomes and early endosome-like phagosomes, and that disruption of this network by M. avium is the cause for the atypical acquisition of content marker by phagosomes containing these pathogenic mycobacteria.  相似文献   

4.
The role of actin, class I myosins and dynamin in endocytic uptake processes is well characterized, but their role during endo-phagosomal membrane trafficking and maturation is less clear. In Dictyostelium, knockout of myosin IB (myoB) leads to a defect in membrane protein recycling from endosomes back to the plasma membrane. Here, we show that actin plays a central role in the morphology and function of the endocytic pathway. Indeed, latrunculin B (LatB) induces endosome tubulation, a phenotype also observed in dynamin A (dymA)-null cells. Knockout of dymA impairs phagosome acidification, whereas knockout of myoB delays reneutralization, a phenotype mimicked by a low dose of LatB. As a read out for actin-dependent processes during maturation, we monitored the capacity of purified phagosomes to bind F-actin in vitro, and correlated this with the presence of actin-binding and membrane-trafficking proteins. Phagosomes isolated from myoB-null cells showed an increased binding to F-actin, especially late phagosomes. In contrast, early phagosomes from dymA-null cells showed reduced binding to F-actin while late phagosomes were unaffected. We provide evidence that Abp1 is the main F-actin-binding protein in this assay and is central for the interplay between DymA and MyoB during phagosome maturation.  相似文献   

5.
MLN64 is a late endosomal cholesterol-binding membrane protein of an unknown function. Here, we show that MLN64 depletion results in the dispersion of late endocytic organelles to the cell periphery similarly as upon pharmacological actin disruption. The dispersed organelles in MLN64 knockdown cells exhibited decreased association with actin and the Arp2/3 complex subunit p34-Arc. MLN64 depletion was accompanied by impaired fusion of late endocytic organelles and delayed cargo degradation. MLN64 overexpression increased the number of actin and p34-Arc-positive patches on late endosomes, enhanced the fusion of late endocytic organelles in an actin-dependent manner, and stimulated the deposition of sterol in late endosomes harboring the protein. Overexpression of wild-type MLN64 was capable of rescuing the endosome dispersion in MLN64-depleted cells, whereas mutants of MLN64 defective in cholesterol binding were not, suggesting a functional connection between MLN64-mediated sterol transfer and actin-dependent late endosome dynamics. We propose that local sterol enrichment by MLN64 in the late endosomal membranes facilitates their association with actin, thereby governing actin-dependent fusion and degradative activity of late endocytic organelles.  相似文献   

6.
Fusion of phagosomes with late endocytic organelles is essential for cellular digestion of microbial pathogens, senescent cells, apoptotic bodies, and retinal outer segment fragments. To further elucidate the biochemistry of the targeting process, we developed a scintillation proximity assay to study the stepwise association of lysosomes and phagosomes in vitro. Incubation of tritium-labeled lysosomes with phagosomes containing scintillant latex beads led to light emission in a reaction requiring cytosol, ATP, and low Ca(2+) concentrations. The nascent complex was sensitive to disruption by alkaline carbonate, indicating that the organelles had "docked" but not fused. Through inhibitor studies and fluorescence microscopy we show that docking is preceded by a tethering step that requires actin polymerization and calmodulin. In the docked state ongoing actin polymerization and calmodulin are no longer necessary. The tethering/docking activity was purified to near homogeneity from rat liver cytosol. Major proteins in the active fractions included actin, calmodulin and IQGAP2. IQGAPs are known to bind calmodulin and cross-link F-actin, suggesting a key coordinating role during lysosome/phagosome attachment. The current results support the conclusion that lysosome/phagosome interactions proceed through distinct stages and provide a useful new approach for further experimental dissection.  相似文献   

7.
We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.  相似文献   

8.
Phagosome maturation is defined as the process by which phagosomes fuse sequentially with endosomes and lysosomes to acquire an acidic pH and hydrolases that degrade ingested particles. While the essential role of actin cytoskeleton remodeling during particle internalization is well established, its role during the later stages of phagosome maturation remains largely unknown. We have previously shown that purified mature phagosomes assemble F-actin at their membrane, and that the ezrin-radixin-moesin (ERM) proteins ezrin and moesin participate in this process. Moreover, we provided evidence that actin assembly on purified phagosomes stimulates their fusion with late endocytic compartments in vitro. In this study, we further investigated the role of ezrin in phagosome maturation. We engineered a structurally open form of ezrin and demonstrated that ezrin binds directly to the actin assembly promoting factor N-WASP (Neural Wiskott-Aldrich Syndrome Protein) by its FERM domain. Using a cell-free system, we found that ezrin stimulates F-actin assembly on purified phagosomes by recruiting the N-WASP-Arp2/3 machinery. Accordingly, we showed that the down-regulation of ezrin activity in macrophages by a dominant-negative approach caused reduced F-actin accumulation on maturing phagosomes. Furthermore, using fluorescence and electron microscopy, we found that ezrin is required for the efficient fusion between phagosomes and lysosomes. Live-cell imaging analysis supported the notion that ezrin is necessary for the fusogenic process itself, promoting the transfer of the lysosome content into the phagosomal lumen.  相似文献   

9.
Nascent phagosomes must undergo a series of fusion and fission reactions to acquire the microbicidal properties required for the innate immune response. Here we demonstrate that this maturation process involves the GTPase Rab7. Rab7 recruitment to phagosomes was found to precede and to be essential for their fusion with late endosomes and/or lysosomes. Active Rab7 on the phagosomal membrane associates with the effector protein RILP (Rab7-interacting lysosomal protein), which in turn bridges phagosomes with dynein-dynactin, a microtubule-associated motor complex. The motors not only displace phagosomes in the centripetal direction but, strikingly, promote the extension of phagosomal tubules toward late endocytic compartments. Fusion of tubules with these organelles was documented by fluorescence and electron microscopy. Tubule extension and fusion with late endosomes and/or lysosomes were prevented by expression of a truncated form of RILP lacking the dynein-dynactin-recruiting domain. We conclude that full maturation of phagosomes requires the retrograde emission of tubular extensions, which are generated by activation of Rab7, recruitment of RILP, and consequent association of phagosomes with microtubule-associated motors.  相似文献   

10.
Charette SJ  Cosson P 《FEBS letters》2006,580(20):4923-4928
Exocytosis of late endocytic compartments in Dictyostelium has mostly been studied by live microscopy. Here we show that this exocytosis is accompanied by a complete fusion of late endosomes with the plasma membrane resulting in the transient formation of membrane microdomains that can be visualized by immunofluorescence in fixed cells. This permitted to demonstrate that fusion of late endocytic compartments with the cell surface does not occur in regions of the plasma membrane engaged in the formation of pseudopods, macropinosomes or phagosomes. Our results propose that exocytosis of late endosomes and actin-driven membrane remodeling are mutually exclusive processes.  相似文献   

11.
We have examined the modifications occurring during the transformation of phagosomes into phagolysosomes in J-774 macrophages. The use of low density latex beads as markers of phagosomes (latex bead compartments, LBC) allowed the isolation of these organelles by flotation on a simple sucrose gradient. Two-dimensional gel electrophoresis, immunocytochemistry, and biochemical assays have been used to characterize the composition of LBC at different time points after their formation, as well as their interactions with the organelles of the endocytic pathway. Our results show that LBC acquire and lose various markers during their transformation into phagolysosomes. Among these are members of the rab family of small GTPases as well as proteins of the lamp family. The transfer of the LBC of lamp 2, a membrane protein associated with late endocytic structures, was shown to be microtubule dependent. Video-microscopy showed that newly formed phagosomes were involved in rapid multiple contacts with late components of the endocytic pathway. Collectively, these observations suggest that phagolysosome formation is a highly dynamic process that involves the gradual and regulated acquisition of markers from endocytic organelles.  相似文献   

12.
Latex beads are the preferred phagocytic substrate in biochemical studies of phagosome composition and maturation. Using living Dictyostelium cells and fluorescent probes, we compared the properties of phagosomes formed to ingest latex beads or digestible prey. Significant differences were found during the initial steps of phagocytosis. During uptake of bacteria or yeast, PHcrac-GFP, a probe that binds to membranes enriched in PI(3,4,5)P(3) and PI(3,4)P(2), always labeled the nascent phagosome and faded shortly after it sealed. However, labeling of bead-containing phagosomes was highly variable. Beads were engulfed by phagosomes either lacking or displaying the PHcrac-GFP label, and that label, if present, often persisted for many minutes, revealing that early trafficking steps for bead-containing phagosomes are quite heterogeneous. Later stages of the endocytic pathway appeared more similar for phagosomes containing prey and latex beads. Both types of phagosomes fused with acidic endosomes while undergoing transport along microtubules, both acquired the V-ATPase and lost it prior to exocytosis, and both bound the late endosome marker vacuolin B, which was transferred to the plasma membrane upon exocytosis. We conclude that caution is needed in extrapolating results from latex bead phagosomes to phagosomes containing physiological substances, especially in early stages of the endocytic pathway.  相似文献   

13.
The past decade has seen the elucidation of many of the events and processes responsible for receptor-mediated endocytosis. However, a fundamental question about the endocytic pathway remains unresolved: do early endosomes mature into late endosomes, or are these two distinct and pre-existing cellular organelles? General opinion tends to favour the former possibility, to the point where one poster session at the recent American Society for Cell Biology meeting was entitled 'Maturation of Endosomes'. This article draws together new data arguing in favour of pre-existing early and late endosomes, between which transport occurs by vesicle budding and fusion.  相似文献   

14.
The molecular mechanisms ensuring directionality of endocytic membrane trafficking between transport vesicles and target organelles still remain poorly characterized. We have been investigating the function of the small GTPase Rab5 in early endocytic transport. In vitro studies have demonstrated a role of Rab5 in two membrane fusion events: the heterotypic fusion between plasma membrane-derived clathrin-coated vesicles (CCVs) and early endosomes and in the homotypic fusion between early endosomes. Several Rab5 effectors are required in homotypic endosome fusion, including EEA1, which mediates endosome membrane docking, as well as Rabaptin-5 x Rabex-5 complex and phosphatidylinositol 3-kinase hVPS34. In this study we have examined the localization and function of Rab5 and its effectors in heterotypic fusion in vitro. We report that the presence of active Rab5 is necessary on both CCVs and early endosomes for a heterotypic fusion event to occur. This process requires EEA1 in addition to the Rabaptin-5 complex. However, whereas Rab5 and Rabaptin-5 are symmetrically distributed between CCVs and early endosomes, EEA1 is recruited selectively onto the membrane of early endosomes. Our results suggest that EEA1 is a tethering molecule that provides directionality to vesicular transport from the plasma membrane to the early endosomes.  相似文献   

15.
Delivery of endocytosed macromolecules to mammalian cell lysosomes occurs by direct fusion of late endosomes with lysosomes, resulting in the formation of hybrid organelles from which lysosomes are reformed. The molecular mechanisms of this fusion are analogous to those of homotypic vacuole fusion in Saccharomyces cerevisiae. We report herein the major roles of the mammalian homolog of yeast Vps18p (mVps18p), a member of the homotypic fusion and vacuole protein sorting complex. When overexpressed, mVps18p caused the clustering of late endosomes/lysosomes and the recruitment of other mammalian homologs of the homotypic fusion and vacuole protein sorting complex, plus Rab7-interacting lysosomal protein. The clusters were surrounded by components of the actin cytoskeleton, including actin, ezrin, and specific unconventional myosins. Overexpression of mVps18p also overcame the effect of wortmannin treatment, which inhibits membrane traffic out of late endocytic organelles and causes their swelling. Reduction of mVps18p by RNA interference caused lysosomes to disperse away from their juxtanuclear location. Thus, mVps18p plays a critical role in endosome/lysosome tethering, fusion, intracellular localization and in the reformation of lysosomes from hybrid organelles.  相似文献   

16.
Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome-lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome-lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome-lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome-lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.  相似文献   

17.
The actin filament (F-actin) cytoskeleton associates dynamically with the plasma membrane and is thus ideally positioned to participate in endocytosis. Indeed, a wealth of genetic and biochemical evidence has confirmed that actin interacts with components of the endocytic machinery, although its precise function in endocytosis remains unclear. Here, we use 4D microscopy to visualize the contribution of actin during compensatory endocytosis in Xenopus laevis eggs. We show that the actin cytoskeleton maintains exocytosing cortical granules as discrete invaginated compartments, such that when actin is disrupted, they collapse into the plasma membrane. Invaginated, exocytosing cortical granule compartments are directly retrieved from the plasma membrane by F-actin coats that assemble on their surface. These dynamic F-actin coats seem to drive closure of the exocytic fusion pores and ultimately compress the cortical granule compartments. Active Cdc42 and N-WASP are recruited to exocytosing cortical granule membranes before F-actin coat assembly and coats assemble by Cdc42-dependent, de novo actin polymerization. Thus, F-actin may power fusion pore resealing and function in two novel endocytic capacities: the maintenance of invaginated compartments and the processing of endosomes.  相似文献   

18.
The lysosome functions are ensured by accurate membrane trafficking in the cell. We found that mouse syntaxin 7 could complement yeast vam3 and pep12 mutants defective in docking/fusion to vacuolar and prevacuolar membranes, respectively. Immunohistochemical studies showed that syntaxin 7 is localized to late endosomes, but not to early endosomes. Induced expression of mutant syntaxin 7 blocked endocytic transport from early to late endosomes but did not block the transport of cathepsin D and lamp-2 from the trans-Golgi network to lysosomes. Thus, syntaxin 7 mediates the endocytic trafficking from early endosomes to late endosomes and lysosomes. These results also suggest that the biosynthetic pathway utilizes a different machinery from that of the endocytic pathway in the docking/fusion to late endosomes.  相似文献   

19.
Different classes of endosomes exhibit a characteristic intracellular steady-state distribution governed by interactions with the cytoskeleton. Late endosomes, organelles of the degradative lysosomal route, seem to require associated actin filaments for proper localization and function. We show here that the F-actin and phospholipid binding protein annexin A8 is associated specifically with late endosomes. Altering intracellular annexin A8 levels drastically affected the morphology and intracellular distribution of late endosomes. Trafficking through the degradative pathway was delayed in the absence of annexin A8, resulting in attenuated ligand-induced degradation of the epidermal growth factor receptor and prolonged epidermal growth factor-induced activation of mitogen-activated protein kinase. Depletion of annexin A8 reduced the association of late endosomal membranes with actin filaments. These results indicate that the defective cargo transport through the late endocytic pathway and the imbalanced signaling of activated receptors observed in the absence of annexin A8 results from the disturbed association of late endosomal membranes with the actin network, resulting in impaired actin-based late endosome motility.  相似文献   

20.
Phagosomal biogenesis is a fundamental biological process of particular significance for the function of phagocytic and antigen-presenting cells. The precise mechanisms governing maturation of phagosomes into phagolysosomes are not completely understood. Here, we applied the property of pathogenic mycobacteria to cause phagosome maturation arrest in infected macrophages as a tool to dissect critical steps in phagosomal biogenesis. We report the requirement for 3-phosphoinositides and acquisition of Rab5 effector early endosome autoantigen (EEA1) as essential molecular events necessary for phagosomal maturation. Unlike the model phagosomes containing latex beads, which transiently recruited EEA1, mycobacterial phagosomes excluded this regulator of vesicular trafficking that controls membrane tethering and fusion processes within the endosomal pathway and is recruited to endosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns[3]P). Inhibitors of phosphatidylinositol 3'(OH)-kinase (PI-3K) activity diminished EEA1 recruitment to newly formed latex bead phagosomes and blocked phagosomal acquisition of late endocytic properties, indicating that generation of PtdIns(3)P plays a role in phagosomal maturation. Microinjection into macrophages of antibodies against EEA1 and the PI-3K hVPS34 reduced acquisition of late endocytic markers by latex bead phagosomes, demonstrating an essential role of these Rab5 effectors in phagosomal biogenesis. The mechanism of EEA1 exclusion from mycobacterial phagosomes was investigated using mycobacterial products. Coating of latex beads with the major mycobacterial cell envelope glycosylated phosphatidylinositol lipoarabinomannan isolated from the virulent Mycobacterium tuberculosis H37Rv, inhibited recruitment of EEA1 to latex bead phagosomes, and diminished their maturation. These findings define the generation of phosphatidylinositol 3-phosphate and EEA1 recruitment as: (a) important regulatory events in phagosomal maturation and (b) critical molecular targets affected by M. tuberculosis. This study also identifies mycobacterial phosphoinositides as products with specialized toxic properties, interfering with discrete trafficking stages in phagosomal maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号