首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cytochemical demonstration of marker enzymes for subcellular organelles permits light microscopic analysis of their structure and function in normal and diseased tissues. Currently available staining procedures for the peroxidatic activity of catalase in peroxisomes of plant and animal cells yield weak and inconsistent light microscopic staining when applied to human tissues. We have developed a simple and sensitive high temperature procedure that clearly and reproducibly stains these abundant, but poorly understood, organelles in biopsy specimens of human liver and kidney. This method utilizes formaldehyde fixation, a modified diaminobenzidine (DAB) medium, incubation at 45 degrees C and postosmication for both light and electron microscopy.  相似文献   

2.
Light and electron microscopic localization of L-alpha-hydroxyacid oxidase (L-HOX) in rat kidney was studied by means of immunocytochemical techniques. Isozymes A and B of L-HOX were purified from rat liver and kidney, respectively. The apparent molecular weights of the subunits of the isozymes A and B were 35,800 and 33,500 daltons, respectively, by a slab gel electrophoresis. Antibodies to the isozymes were raised in rabbits. Anti(isozyme A) is not cross-reactive with the isozyme B and vice versa anti(isozyme B) not with the isozyme A. Using anti-isozyme B, semithin sections of Epon-embedded material and ultrathin sections of Lowicryl K4M-embedded material were stained by immunoenzyme and protein A-gold techniques, respectively. By light microscopy, fine discrete granular staining was noted in proximal tubules, but not in distal tubules including thick and thin limbs of Henle and collecting tubules. By electron microscopy, gold particles representing the antigen sites for L-HOX B were confined exclusively to peroxisomes, in which most of the gold particles were localized in electron dense peripheral matrix, but little in central matrix with low electron density. The results indicate that L-HOX B does not homogeneously distribute in peroxisomes of rat kidney but might be associated with some substructure within peroxisome matrix.  相似文献   

3.
S Yokota  H Tsuji  K Kato 《Histochemistry》1986,85(3):223-230
Light and electron microscopic localization of cathepsin H in rat kidney was studied using post-embedding immunocytochemical techniques. For light microscopy, Epon sections of the kidney were stained by immunoenzyme method after removal of Epon and for electron microscopy, ultrathin sections of the Lowicryl K4M-embedded material were labeled by protein A-gold (pAg) technique. By light microscopy, fine granular staining was found in throughout the nephron, but the staining intensity considerably varied. The strongest staining was noted in the S1 segment of the proximal tubules followed by the S2 and S3 segments and the medullary collecting tubules. The glomeruli, the distal tubules, and the cortical collecting tubules were weakly stained. By electron microscopy, a gold label was found exclusively in lysosomes, which showed various sizes and labeling intensity. The results were quite consistent with the light microscopic results. The labeling intensity tended to increase as the matrix of lysosomes was condensed. Quantitative analysis of the labeling density of lysosomes demonstrated that the highest labeling density is found in the S1 segment of the proximal tubules and the labeling density of other renal segments is significantly low levels. The results indicate that a main site for cathepsin H in rat kidney is the S1 segment of the proximal tubules.  相似文献   

4.
Immunocytochemical localization of cathepsin H in rat kidney   总被引:1,自引:1,他引:0  
Summary Light and electron microscopic localization of cathepsin H in rat kidney was studied using post-embedding immunocytochemical techniques. For ligh microscopy, Epon sections of the kidney were stained by immunoenzyme method after removal of Epon and for electron microscopy, ultrathin sections of the Lowicryl K4M-embedded material were labeled by protein A-gold (pAg) technique. By light microscopy, fine granular staining was found in throughout the nephron, but the staining intensity considerably varied. The strongest staining was noted in the S1 segment of the proximal tubules followed by the S2 and S3 segments and the medullary collecting tubules. The glomeruli, the distal tubules, and the cortical collecting tubules were weakly stained. By electron microscopy, a gold label was found exclusively in lysosomes, which showed various sizes and labeling intensity. The results were quite consistent with the light microscopic results. The labeling intensity tended to increase as the matrix of lysosomes was condensed. Quantitative analysis of the labeling density of lysosomes demonstrated that the highest labeling density is found in the S1 segment of the proximal tubules and the labeling density of other renal segments is significantly low levels. The results indicate that a main site for cathepsin H in rat kidney is the S1 segment of the proximal tubules.  相似文献   

5.
Summary Light and electron microscopic localization of l-alpha-hydroxyacid oxidase (l-HOX) in rat kidney was studied by means of immunocytochemical · techniques. Isozymes A and B of l-HOX were purified from rat liver and kidney, respectively. The apparent molecular weights of the subunits of the isozymes A and B were 35,800 and 33,500 daltons, respectively, by a slab gel electrophoresis. Antibodies to the isozymes were raised in rabbits. Anti(isozyme A) is not cross-reactive with the isozyme B and vice versa anti(isozyme B) not with the isozyme A. Using anti-isozyme B, semithin sections of Epon-embedded material and ultrathin sections of Lowicryl K4M-embedded material were stained by immunoenzyme and protein A-gold techniques, respectively. By light microscopy, fine discrete granular staining was noted in proximal tubules, but not in distal tubules including thick and thin limbs of Henle and collecting tubules. By electron microscopy, gold particles representing the antigen sites for l-HOX B were confined exclusively to peroxisomes, in which most of the gold particles were localized in electron dense peripheral matrix, but little in central matrix with low electron density. The results indicate that l-HOX B does not homogeneously distribute in peroxisomes of rat kidney but might be associated with some substructure within peroxisome matrix.  相似文献   

6.
S Yokota  H Tsuji  K Kato 《Histochemistry》1985,82(2):141-148
Light and electron microscopic localization of cathepsin D in rat liver was investigated by post-embedding immunoenzyme and protein A-gold techniques. By light microscopy, cytoplasmic granules of parenchymal cells and Kupffer cells were stained for cathepsin D. Weak staining was also noted in sinusoidal endothelial cells. In the parenchymal cells many of positive granules located around bile canaliculi. In the Kupffer cells and the endothelial cells, diffuse staining was noted in the cytoplasm in addition to granular staining. By electron microscopy, gold particles representing the antigenic sites for cathepsin D were seen in typical secondary lysosomes and some multivesicular bodies of the parenchymal cells and Kupffer cells. The lysosomes of the endothelial cells and fat-storing cells were weakly labeled. Quantitative analysis of the labeling density in the lysosomes of these three types of cells demonstrated that the lysosomes of parenchymal cells and Kupffer cells are main containers of cathepsin D in rat liver. The results suggest that cathepsin D functions in the intracellular digestive system of parenchymal cells and Kupffer cells but not so much in that of the endothelial cells.  相似文献   

7.
Summary Light and electron microscopic localization of cathepsin D in rat liver was investigated by post-embedding immunoenzyme and protein A-gold techniques. By light microscopy, cytoplasmic granules of parenchymal cells and Kupffer cells were stained for cathepsin D. Weak staining was also noted in sinusoidal endothelial cells. In the parenchymal cells many of positive granules located around bile canaliculi. In the Kupffer cells and the endothelial cells, diffuse staining was noted in the cytoplasm in addition to granular staining. By electron microscopy, gold particles representing the antigenic sites for cathepsin D were seen in typical secondary lysosomes and some multivesicular bodies of the parenchymal cells and Kupffer cells. The lysosomes of the endothelial cells and fat-storing cells were weakly labeled. Quantitative analysis of the labeling density in the lysosomes of these three types of cells demonstrated that the lysosomes of parenchymal cells and Kupffer cells are main containers of cathepsin D in rat liver. The results suggest that cathepsin D functions in the intracellular digestive system of parenchymal cells and Kupffer cells but not so much in that of the endothelial cells.  相似文献   

8.
Immunocytochemical localization of cathepsins B and H in rat liver   总被引:1,自引:0,他引:1  
Summary Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultrathin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region.  相似文献   

9.
S Yokota  K Kato 《Histochemistry》1987,88(1):97-103
Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultra-thin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region.  相似文献   

10.
The localization of D-amino acid oxidase (D-AAOX) in rat liver and kidney has been investigated using the cerium technique for electron microscopy and a recent modification of it for light microscopy. In the liver a mosaic pattern with strongly and weakly stained cells together with some completely negative hepatocytes is observed. The staining is stronger and more uniform in periportal than in perivenous regions of the liver lobule. In the kidney the reaction is confined to the proximal tubules of the renal cortex with the rest of the nephron being negative. At the ultrastructural level in both liver and kidney a marked heterogeneity is observed in the intensity of reaction in peroxisomes of some neighbouring cells. Moreover, in some cells heavily and weakly stained peroxisomes are seen side by side. When Pipes buffer is used in the incubation medium the D-AAOX reaction in kidney peroxiosomes is aggregated in the central region of the matrix with weaker staining of the periphery. A similar result is obtained when the enzyme is localized by immunocytochemistry confirming a recent report by Usuda et al. (1986). The heterogeneous staining of peroxisomes for D-AAOX suggests that subpopulations of this organelle with specialized functions may exist not only in different tissues and cells but even within the same cell.  相似文献   

11.
The substrate specificity of alpha-hydroxyacid oxidase in the rat kidney has been investigated cytochemically by the cerium technique and biochemically with a luminometric assay applied to isolated renal peroxisomes. Rat kidneys were fixed by perfusion via the abdominal aorta with a low concentration (0.25%) of glutaraldehyde. Vibratome sections were incubated for 60 min at 37 degrees C in a medium containing 3 mM CeCl3, 100 mM NaN3 and 5 mM of an alpha-hydroxyacid in 0.1 M Pipes or 0.1 M Tris-maleate buffer both adjusted to pH 7.8. Ten aliphatic alpha-hydroxyacids with chain lengths between 2 and 8 carbon atoms and two aromatic substrates were tested. The alpha-hydroxyacid oxidase in the kidney exhibited a markedly different substrate specificity than the corresponding enzyme in the liver. Thus glycolate gave a negative reaction while two aromatic substrates, mandelic acid and phenyllactic acid, stained prominently. With aliphatic substrates a stronger reaction was obtained in Pipes than in the Tris-maleate buffered incubation media. The best reaction in the kidney was obtained with hydroxybutyric acid. These cytochemical findings were confirmed by the luminometric determination of the oxidase activity in isolated purified peroxisome fractions. By electron microscopy the electron dense reaction product of cerium perhydroxide was found in the matrix of peroxisomes in the proximal tubules. The intensity of reaction varied markedly in neighbouring epithelial cells but also in different peroxisomes within the same cell. Thus heavily stained particles were seen next to lightly reacted ones. These observations establish the substrate specificity of alpha-hydroxyacid oxidase in the rat kidney and demonstrate the marked heterogeneity in the staining of renal peroxisomes for this enzyme.  相似文献   

12.
The relationship of enzymatic activity to organelle development and organelle number during differentiation of the metanephric kidney in the mouse was approached from several experimental directions. Biochemical analyses of marker enzymes for peroxisomes (catalase and D-amino acid oxidase), mitochondria (cytochrome oxidase) and lysosomes (acid phosphatase) were performed on kidneys at ages from 17 days prenatal to adult. These data were correlated with a morphometric analysis of populations of peroxisomes and mitochondria in differentiating cells of the proximal tubule. Postnatal development of the metanephric kidney was found to be accompanied by a rapid increase in both the specific activity of catalase and the number of peroxisomes per 100 mu2 in the proximal tubule during the first 4 weeks of postnatal growth. Elaboration of the endoplasmic reticulum (ER) was seen to parallel the increase in number of peroxisomes to which segments of ER were often in close apposition. Extensive interactions between segments of ER and peroxisomes were readily visible in 0.5-mu sections viewed in the high voltage electron microscope. In contrast to peroxisomes, neither mitochondria nor lysosomes followed a similar pattern of net organelle increase, suggesting that a defined population density of mitochondria and lysosomes may exist in the proximal tubule at birth, prior to complete development of the kidney.  相似文献   

13.
Summary The localization ofd-amino acid oxidase (d-AAOX) in rat liver and kidney has been investigated using the cerium technique for electron microscopy and a recent modification of it for light microscopy. In the liver a mosaic pattern with strongly and weakly stained cells together with some completely negative hepatocytes is observed. The staining is stronger and more uniform in periportal than in perivenous regions of the liver lobule. In the kidney the reaction is confined to the proximal tubules of the renal cortex with the rest of the nephron being negative. At the ultrastructural level in both liver and kidney a marked heterogencity is obseved in the intensity of reaction in peroxisomes of some neighbouring cells. Moreover, in some cells heavily and weakly stained peroxisomes are seen side by side. When Pipes buffer is used in the incubation medium thed-AAOX reaction in kidney peroxiosomes is aggregated in the central region of the matrix with weaker staining of the periphery. A similar result is obtained when the enzyme is localized by immunocytochemistry confirming a recent report by Usuda et al. (1986). The heterogeneous staining of peroxisomes ford-AAOX suggests that subpopulation of this organelle with specialized functions may exist not only in different tissues and cells but even within the same cell.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

14.
Peroxisomes are particularly abundant in the proximal tubules of the mammalian kidney. We describe the immunocytochemical localization of catalase and three peroxisomal lipid beta-oxidation enzymes: acyl-CoA oxidase, bifunctional protein (enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase) and 3-ketoacyl-CoA thiolase, in human renal biopsies fixed with glutaraldehyde and embedded in Epon. For light microscopy of semithin sections, satisfactory immunostaining required removal of the resin and controlled proteolytic digestion followed by the indirect immunoperoxidase technique. Brief etching of ultrathin sections with alkoxide followed by the protein A-gold method were used for electron microscopic localization of the enzymes. The immunoreactive peroxisomes were distinctly visualized in proximal tubular epithelial cells with no staining of any other cell organelles. The results establish the presence of catalase and of peroxisomal lipid beta-oxidation system proteins in human kidney. The immunocytochemical procedure described herein provides a simple approach for the investigation of peroxisomal structure and function in human renal biopsies processed for ultrastructural studies.  相似文献   

15.
We investigated the localization of urate oxidase, peroxisomal fatty acyl-CoA oxidase, and catalase in bovine kidney by immunoblot analysis and protein A-gold immunocytochemistry, using the respective polyclonal monospecific antibodies raised against the enzymes purified from rat liver. By immunoblot analysis, these three proteins were detected in bovine kidney and bovine liver homogenates. Subcellular localization of these three enzymes in kidney was ascertained by protein A-gold immunocytochemical staining of Lowicryl K4M-embedded tissue. Peroxisomes in bovine kidney cortical epithelium possessed crystalloid cores or nucleoids, which were found to be the exclusive sites of urate oxidase localization. The limiting membrane, the marginal plate, and the matrix of renal peroxisomes were negative for urate oxidase staining. In contrast, catalase and fatty acyl-CoA oxidase were found in the peroxisome matrix. These results demonstrate that, unlike rat kidney peroxisomes which lack urate oxidase, peroxisomes of bovine kidney contain this enzyme as well as peroxisomal fatty acyl-CoA oxidase.  相似文献   

16.
S Yokota  T Oda  A Ichiyama 《Histochemistry》1987,87(6):601-606
The localization of serine:pyruvate aminotransferase (SPT) in human liver was investigated by indirect immunoenzyme and protein A-gold techniques. By light microscopy, diaminobenzidine reaction product was present in cytoplasmic granules of the parenchymal cells. By electron microscopy, gold particles indicating the antigenic sites for SPT were exclusively confined to peroxisomes but not to mitochondria. By double labeling technique, both peroxisomal marker enzyme, catalase and SPT were detected in the same peroxisomes. Quantitative analysis of the labeling density showed that SPT is contained only in peroxisomes. The results indicate that in human liver most of SPT is contained in the peroxisomes.  相似文献   

17.
Sterol carrier protein-2 (SCP-2) is a nonenzymatic protein of 13.5 kD which has been shown in in vitro experiments to be required for several stages in cholesterol utilization and biosynthesis. The subcellular localization of SCP-2 has not been definitively established. Using affinity-purified rabbit polyclonal antibodies against electrophoretically pure SCP-2 from rat liver, we demonstrate by immunoelectron microscopic labeling of ultrathin frozen sections of rat liver that the largest concentration of SCP-2 is inside peroxisomes. In addition the immunolabeling indicates that there are significant concentrations of SCP-2 inside mitochondria, and associated with the endoplasmic reticulum and the cytosol, but not inside the Golgi apparatus, lysosomes, or the nucleus. These results were confirmed by immunoblotting experiments with proteins from purified subcellular fractions of the rat liver cells carried out with the anti-SCP-2 antibodies. The large concentration of SCP-2 inside peroxisomes strongly supports the proposal that peroxisomes are critical sites of cholesterol utilization and biosynthesis. The presence of SCP-2 inside peroxisomes and mitochondria raises questions about the mechanisms involved in the differential targeting of SCP-2 to these organelles.  相似文献   

18.
Summary The localization of serine:pyruvate aminotransferase (SPT) in human liver was investigated by indirect immunoenzyme and protein A-gold techniques. By light microscopy, diaminobenzidine reaction product was present in cytoplasmic granules of the parenchymal cells. By electron microscopy, gold particles indicating the antigenic sites for SPT were exclusively confined to peroxisomes but not to mitochondria. By double labeling technique, both peroxisomal marker enzyme, catalase and SPT were detected in the same peroxisomes. Quantitative analysis of the labeling density showed that SPT is contained only in peroxisomes. The results indicate that in human liver most of SPT is contained in the peroxisomes.  相似文献   

19.
The beige mouse is an animal model for the human Chediak-Higashi syndrome, a disease characterized by giant lysosomes in most cell types. In mice, treatment with androgenic hormones causes a 20-50-fold elevation in at least one kidney lysosomal enzyme, beta-glucuronidase. Beige mice treated with androgen had significantly higher kidney beta-glucuronidase, beta-galactosidase, and N-acetyl-beta-D-glucosaminidase (hexosaminidase) levels than normal mice. Other androgen-inducible enzymes and enzyme markers for the cytosol, mitochondria, and peroxisomes were not increased in kidney of beige mice. No significant lysosomal enzyme elevation was observed in five other organs of beige mice with or without androgen treatment, nor in kidneys of beige females not treated with androgen. Histochemical staining for glucuronidase together with subcellular fractionation showed that the higher glucuronidase content of beige mouse kidney is caused by a striking accumulation of giant glucuronidase-containing lysosomes in tubule cells near the corticomedullary boundary. In normal mice lysosomal enzymes are coordinately released into the lumen of the kidney tubules and appreciable amounts of lysosomal enzymes are present in the urine. Levels of urinary lysosomal enzymes are much lower in beige mice than in normal mice. It appears that lysosomes may accumulate in beige mice because of defective exocytosis resulting either from decreased intracellular motility of lysosomes or from their improper fusion with the plasma membrane. A similar defect could account for characteristics of the Chediak-Higashi syndrome.  相似文献   

20.
Summary The feasibility of the application of a television-based image analyzer, the Texture Analysis System (TAS, Leitz Wetzlar, FRG) in conjunction with a light microscope for morphometric studies of hepatic peroxisomes has been investigated. Rat liver peroxisomes were stained with the alkaline-DAB method for localization of catalase and semi-thin (0.25 and 1 m) sections of plastic-embedded material were examined under an oil immersion objective. The TAS detected the peroxisomal profiles selectively and determined their morphometric parameters automatically. The same parameters were obtained also by morphometric analysis of electron micrographs from the same material. The volume density of peroxisomes determined by TAS in semithin sections of normal liver, after correction for section thickness, is quite close to the corresponding value obtained by morphometry of electron micrographs. The difference is approximately 20%. In animals treated with the hypolipidemic drug bezafibrate, which causes proliferation of peroxisomes, TAS detected readily the increase in volume density of peroxisomes in semithin sections. In comparison with electron microscopy, however, the light-microscopic approach seems to underestimate the proliferation. The lower resolution of the light microscope and overlapping of neighbouring particles in relatively thick sections used for lightmicroscopic analysis may account for the differences.The present study has demonstrated the usefulness of automatic image analysis in conjunction with selective cytochemical staining of peroxisomes for morphometry of this organelle in rat liver. The light-microscopic approach is not only faster but is also extremely economical by obviating the use of an electron microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号