首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Water homeostasis of the nervous system is important during neural signal transduction. Astrocytes are crucial in water transport in the central nervous system under both physiological and pathological conditions. To date, five aquaporins (AQP) have been found in rat brain astrocytes. Most studies have focused on AQP4 and AQP9, however, little is known about the expression of AQP3, ‐5, and ‐8 as well as their regulating mechanism in astrocytes. The expression patterns of AQP3, ‐5, and ‐8 in astrocytes exposed to hyperosmotic solutions were examined to clarify the roles of AQP3, ‐5, and ‐8 in astrocyte water movement. The expression of AQP4 and AQP9 under the same hyperosmotic conditions was also investigated. The AQP4 and AQP9 expressions continuously increased until 12 h after hyperosmotic solution exposure, whereas the AQP3, ‐5, and ‐8 expressions continued to increase until 6 h after hyperosmotic solution exposure. The different AQPs decreased at corresponding time points (24 h for AQP4 andAQP9; 12 h for AQP3, ‐5, and ‐8 after hyperosmotic solution exposure). The ERK inhibitor can attenuate the expression of AQP3, ‐5, and ‐8 after hyperosmotic solution exposure. The p38 inhibitor can inhibit the AQP4 and AQP9 expressions in cultured astrocytes. AQP expression is directly related to the extracellular hyperosmotic stimuli. Moreover, different AQPs can be regulated by a distinct MAPK signal transduction pathway. J. Cell. Biochem. 114: 111–119, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The membrane pore proteins, aquaporins (AQPs), facilitate the osmotically driven passage of water and, in some instances, small solutes. Under hyperosmotic conditions, the expression of some AQPs changes, and some studies have shown that the expression of AQP1 and AQP5 is regulated by MAPKs. However, the mechanisms regulating the expression of AQP4 and AQP9 induced by hyperosmotic stress are poorly understood. In this study, we observed that hyperosmotic stress induced by mannitol increased the expression of AQP4 and AQP9 in cultured rat astrocytes, and intraperitoneal infusion of mannitol increased AQP4 and AQP9 in the rat brain cortex. In addition, a p38 MAPK inhibitor, but not ERK and JNK inhibitors, suppressed their expression in cultured astrocytes. AQPs play important roles in maintaining brain homeostasis. The expression of AQP4 and AQP9 in astrocytes changes after brain ischemia or traumatic injury, and some studies have shown that p38 MAPK in astrocytes is activated under similar conditions. Since mannitol is commonly used to reduce brain edema, understanding the regulation of AQPs and p38 MAPK in astrocytes under hyperosmotic conditions induced with mannitol may lead to a control of water movements and a new treatment for brain edema.  相似文献   

4.
Aquaporins (AQPs) play fundamental roles in water and osmolyte homeostasis by facilitating water and small solute movement across plasma membranes of epithelial, endothelial, and other tissues. AQP proteins are abundantly expressed in the mammalian kidney, where they have been shown to play essential roles in fluid balance and urine concentration. Thus far, the majority of studies on renal AQPs have been carried out in laboratory rodents and sheep; no data have been published on the expression of AQPs in kidneys of equines or other large mammals. The aim of this comparative study was to determine the expression and nephron segment localization of AQP1-4 in Equus caballus by immunoblotting and immunohistochemistry with custom-designed rabbit polyclonal antisera. AQP1 was found in apical and basolateral membranes of the proximal convoluted tubules and thin descending limbs of the loop of Henle. AQP2 expression was specifically detected in apical membranes of cortical, medullary, and papillary collecting ducts. AQP3 was expressed in basolateral membranes of cortical, medullary, and papillary collecting ducts. Immunohistochemistry also confirmed AQP4 expression in basolateral membranes of cells lining the distal convoluted and connecting tubules. Western blots revealed high expression of AQP1-4 in the equine kidney. These observations confirm that AQPs are expressed in the equine kidney and are found in similar nephron locations to mouse, rat, and human kidney. Equine renal AQP proteins are likely to be involved in acute and chronic regulation of body fluid composition and may be implicated in water balance disorders brought about by colic and endotoxemia.  相似文献   

5.
Localization and trafficking of aquaporin 2 in the kidney   总被引:2,自引:1,他引:1  
Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood-brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2.  相似文献   

6.
The aquaporins (AQPs) are a family of transmembrane proteins forming water channels. In mammals, water transport through AQPs is important in kidney and other tissues involved in water transport. Some AQPs (aquaglyceroporins) also exhibit glycerol and urea permeability. Skin is the limiting tissue of the body and within skin, the stratum corneum (SC) of the epidermis is the limiting barrier to water loss by evaporation. The aquaglyceroporin AQP3 is abundantly expressed in keratinocytes of mammalian skin epidermis. Mice lacking AQP3 have dry skin and reduced SC hydration. Interestingly, however, results suggested that impaired glycerol, rather than water transport was responsible for this phenotype. In the present work, we examined the overall expression of AQPs in cells from human skin and we reviewed data on the functional role of AQPs in skin, particularly in the epidermis. By RT-PCR on primary cell cultures, we found that up to 6 different AQPs (AQP1, 3, 5, 7, 9 and 10) may be selectively expressed in various cells from human skin. AQP1, 5 are strictly water channels. But in keratinocytes, the major cell type of the epidermis, only the aquaglyceroporins AQP3, 10 were found. To understand the role of aquaglyceroporins in skin, we examined the relevance to human skin of the conclusion, from studies on mice, that skin AQP3 is only important for glycerol transport. In particular, we find a correlation between the absence of AQP3 and intercellular edema in the epidermis in two different experimental models: eczema and hyperplastic epidermis. In conclusion, we suggest that in addition to glycerol, AQP3 may be important for water transport and hydration in human skin epidermis.  相似文献   

7.
The aquaporins (AQPs) are a family of transmembrane proteins forming water channels. In mammals, water transport through AQPs is important in kidney and other tissues involved in water transport. Some AQPs (aquaglyceroporins) also exhibit glycerol and urea permeability. Skin is the limiting tissue of the body and within skin, the stratum corneum (SC) of the epidermis is the limiting barrier to water loss by evaporation. The aquaglyceroporin AQP3 is abundantly expressed in keratinocytes of mammalian skin epidermis. Mice lacking AQP3 have dry skin and reduced SC hydration. Interestingly, however, results suggested that impaired glycerol, rather than water transport was responsible for this phenotype. In the present work, we examined the overall expression of AQPs in cells from human skin and we reviewed data on the functional role of AQPs in skin, particularly in the epidermis. By RT-PCR on primary cell cultures, we found that up to 6 different AQPs (AQP1, 3, 5, 7, 9 and 10) may be selectively expressed in various cells from human skin. AQP1, 5 are strictly water channels. But in keratinocytes, the major cell type of the epidermis, only the aquaglyceroporins AQP3, 10 were found. To understand the role of aquaglyceroporins in skin, we examined the relevance to human skin of the conclusion, from studies on mice, that skin AQP3 is only important for glycerol transport. In particular, we find a correlation between the absence of AQP3 and intercellular edema in the epidermis in two different experimental models: eczema and hyperplastic epidermis. In conclusion, we suggest that in addition to glycerol, AQP3 may be important for water transport and hydration in human skin epidermis.  相似文献   

8.
9.
Aquaporins (AQP) 1, 2, 3 and 4 belong to the aquaporin water channel family and play an important role in urine concentration by reabsorption of water from renal tubule fluid. Renal AQPs have not been reported in the yak (Bos grunniens), which resides in the Qinghai Tibetan Plateau. We investigated AQPs 1?4 expressions in the kidneys of Yak using immunohistochemical staining. AQP1 was expressed mainly in the basolateral and apical membranes of the proximal tubules and descending thin limb of the loop of Henle. AQP2 was detected in the apical plasma membranes of collecting ducts and distal convoluted tubules. AQP3 was located in the proximal tubule, distal tubule and collecting ducts. AQP4 was located in the collecting ducts, distal straight tubule, glomerular capillaries and peritubular capillaries. The expression pattern of AQPs 1?4 in kidney of yak was different from other species, which possibly is related to kidney function in a high altitude environment.  相似文献   

10.
11.
12.
13.

Background

Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin.

Scope of review

This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies.

Major conclusions

Dysfunctions of AQPs are involved in disorders associated with disturbed water homeostasis. Hyponatremia with increased AQP levels can be caused by diseases with low effective circulating blood volume, such as congestive heart failure, or osmoregulation disorders such as the syndrome of inappropriate secretion of antidiuretic hormone. Treatment consists of fluid restriction, demeclocycline and vasopressin type-2 receptor antagonists. Decreased AQP levels can lead to diabetes insipidus (DI), characterized by polyuria and polydipsia. In central DI, vasopressin production is impaired, while in gestational DI, levels of the vasopressin-degrading enzyme vasopressinase are abnormally increased. Treatment consists of the vasopressin analogue dDAVP. Nephrogenic DI is caused by the inability of the kidney to respond to vasopressin and can be congenital, but is most commonly acquired, usually due to lithium therapy. Treatment consists of sufficient fluid supply, low-solute diet and diuretics.

General significance

In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies. This article is part of a Special Issue entitled Aquaporins.  相似文献   

14.
The discovery of water channel protein (aquaporin [AQP]) has made a great impact on life sciences. So far, 13 AQPs have been identified in human. AQP3, 7, 9, and 10 are subcategorized as aquaglyceroporins which permeabilize glycerol as well as water. Many investigators have demonstrated that AQPs play a crucial role in the maintenance of water homeostasis, but the physiological significance of some AQPs as glycerol channels remains elusive. Adipocyte is a major source of glycerol, which is one of the substrates for hepatic gluconeogenesis. This review focuses on recent studies on glycerol metabolism through AQP7 and AQP9, and briefly discusses the importance of glycerol channel in adipocytes, liver, and heart.  相似文献   

15.
Proteomic knowledge of human aquaporins   总被引:8,自引:0,他引:8  
Aquaporins (AQPs) are an ubiquitous family of proteins characterized by sequence similarity and the presence of two NPA (Asp-Pro-Ala) motifs. At present, 13 human AQPs are known and they are divided into two subgroups according to their ability to transport only water molecules (AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8), or also glycerol and other small solutes (AQP3, AQP7, AQP9, AQP10, AQP12). The genomic, structural, and functional aspects of this family are briefly described. In particular, proteomic approaches to identify and characterize the most studied AQPs, mainly through SDS-PAGE followed by MS analysis, are discussed. Moreover, the clinical importance of the best studied aquaporin (AQP1) in human diseases is also provided.  相似文献   

16.
Kidneys play an essential role in fluid-ion balance, but the mechanisms of renal handling of water vary depending on structural organization of kidneys and the environment. Fishes and amphibians in a hypoosmotic environment excrete excess water by forming dilute urine, whereas terrestrial tetrapods require water conservation by the kidney for survival. Diluting segments operated by a luminal Na(+)-K(+)-2Cl(-) cotransporter coupled with a basolateral Na(+)-K(+) pump are essential in forming dilute urine. In birds and mammals, the diluting segment that has the same transport characteristics now serves, with the development of additional architectural organization, for countercurrent urine concentration and water conservation. Recently, a number of aquaporin (AQP) water channels have been identified in various transporting epithelia. AQPs conserve the NPA (asparagine-proline-alanine) motif, forming pores selective to water. Although all vertebrate kidneys presumably possess AQP water channels, AQP homologues have been cloned only from amphibian, avian and mammalian renal systems. Studies on expression sites, function and regulation of AQPs will provide important insight into cellular and molecular mechanisms of epithelial water transport and its control by humoral, neural and hemodynamic mechanisms.  相似文献   

17.
Expression and localization of members of the aquaporin (AQP) family (AQP1, 2, 3, 4, and 5) in the kidney of the musk shrew (Suncus murinus) was examined by immunohistochemistry. AQP1 was expressed in the proximal tubules and in the thin limb of the loops of Henle. AQP1 was the only water channel expressed in the proximal nephron examined, indicating that AQP1 may be an independent water transporter in the proximal nephron. AQP2 and AQP5 were localized to the apical cytoplasm of the cortical to medullary collecting duct (CD) cells and AQP3 and AQP4 were localized to the basal aspect of the cortical to medullary CD cells. AQP3 expression was weaker in the cortical cells compared with the medullary cells, whereas AQP4 was strongly positive throughout the CD. These indicate that the CD is the main water reabsorption segment of the nephron and is regulated by AQPs. Indeed, apical water transport of CD cells of the musk shrew may be controlled by both AQP2 and AQP5. The characteristic expression pattern of the AQPs in this animal provides a novel animal model for elucidating the regulation of water reabsorption by AQPs in the mammalian kidney.  相似文献   

18.

Background

Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes.

Scope of review

AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volume regulation (CVR) is particularly notable. This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR. We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema.

Major conclusions

AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapid movement of water across diverse cell membranes and playing regulatory roles in CVR. Gating mechanisms have been proposed for human AQPs, but have only been reported for plant and microbial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow.

General significance

Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.  相似文献   

19.
20.
Both mammals and birds can concentrate urine hyperosmotic to plasma via a countercurrent multiplier mechanism, although evolutionary lines leading to mammals and birds diverged at an early stage of tetrapod evolution. We reported earlier (Nishimura H, Koseki C, and Patel TB. Am J Physiol Regul Integr Comp Physiol 271: R1535-R1543, 1996) that arginine vasotocin (AVT; avian antidiuretic hormone) increases diffusional water permeability in the isolated, perfused medullary collecting duct (CD) of the quail kidney. In the present study, we have identified an aquaporin (AQP) 2 homolog water channel in the medullary cones of Japanese quail, Coturnix coturnix (qAQP2), by RT-PCR-based cloning techniques. A full-length cDNA contains an 822-bp open reading frame that encodes a 274-amino acid sequence with 75.5% identity to rat AQP2. The qAQP2 has six transmembrane domains, two asparagine-proline-alanine (NPA) sequences, and putative N-glycosylation (asparagine-124) and phosphorylation sites (serine-257) for cAMP-dependent protein kinase. qAQP2 is expressed in the membrane of Xenopus laevis oocytes and significantly increased its osmotic water permeability (P(f)), inhibitable (P < 0.01) by mercury chloride. qAQP2 mRNA (RT-PCR) was detected in the kidney; medullary mRNA levels were higher than cortical levels. qAQP2 protein that binds to rabbit anti-rat AQP2 antibody is present in the apical/subapical regions of both cortical and medullary CDs from normally hydrated quail, and the intensity of staining increased only in the medullary CDs after water deprivation or AVT treatment. The relative density of the approximately 29-kDa protein band detected by immunoblot from the medullary cones was modestly higher in water-deprived/AVT-treated quail. The results suggest that 1) medullary CDs of quail kidneys express a mercury-sensitive functioning qAQP2 water channel, and 2) qAQP2 is at least partly regulated by an AVT-dependent mechanism. This is the first clear identification of AQP2 homolog in nonmammalian vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号