首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restoration of wetland and associated ecosystems is a major goal of land management agencies throughout the world. On the lower Colorado River, creation of riparian forests is planned to mitigate riparian habitat degradation by historic land-use conversions and river management. Current restoration practices use propagated plant stock. If direct seeding can be implemented, genetic and structural diversity could be enhanced at restoration sites even while reducing costs compared to vegetative propagation methods. A small-scale field study was implemented in Cibola, Arizona, to determine the effectiveness of direct seeding of Fremont cottonwood (Populus fremontii), Goodding's willow (Salix gooddingii), and coyote willow (S. exigua). For the first growing season, establishment of Fremont cottonwood averaged 7% of pure live seed rates for all treatments combined, whereas establishment of willows was less than 1%. Volunteer species were abundant, with grasses dominating cover and biomass after one growing season. Saltcedar (Tamarix ramosissima) established in abundance, but showed lower growth rates than Fremont cottonwood during the first growing season. Monitoring for three growing seasons indicated higher growth rates and survival of Fremont cottonwood compared to all volunteer species. Study results indicated that direct seeding of Fremont cottonwood is likely to be an efficient method for tree re-vegetation. Additional studies are required for willow species to determine if establishment from seed can be increased through enhanced weed control and elimination of Fremont cottonwood from the seed mix.  相似文献   

2.
In recent decades, invasive willows and poplars (Salicaceae) have built dense floodplain forests along most of the rivers in Patagonia, Argentina. These invasion processes may affect Salix humboldtiana as the only native floodplain tree species in this region. It is assumed, that the property to reproduce vegetatively can play an important role in the establishment of invasive species in their new range. Thus, in order to contribute to a better understanding of willow and poplar invasions in riparian systems and to assess the potential impacts on S. humboldtiana the vegetative reproduction capacities of native and invasive Salicaceae were analysed. In a greenhouse experiment, we studied cutting survival and growth performance of the three most dominant invasive Salicaceae of the Patagonian Río Negro region (two Salix hybrids and Populus spec.), as well as S. humboldtiana, taking into account three different moisture and two different soil conditions. In a subsequent experiment, the shoot and root biomass of cuttings from the former experiment were removed and the bare cuttings were replanted to test their ability to re-sprout. The two invasive willow hybrids performed much better than S. humboldtiana and Populus spec. under all treatment combinations and tended to re-sprout more successfully after repeated biomass loss. Taking into account the ecology of vegetative and generative recruits of floodplain willows, the results indicate that the more vigorous vegetative reproduction capacity can be a crucial property for the success of invasive willow hybrids in Patagonia being a potential threat for S. humboldtiana.  相似文献   

3.
Willows usually establish on wet substrates with fine sediments at sites that are created by large disturbances, but suitable microsites are spatially and temporally limited. Thus, we hypothesized that willow seeds are selectively dispersed to suitable microsites, such as those with a wet substrate, rather than unsuitable microsites, such as those with a dry substrate, with seedling establishment mediated by the cottony hairs attached to seeds (directed dispersal). To test our hypothesis, we compared several recruitment-related traits, including buoyancy, germination, and trapping at favorable microsites, in seeds of the riparian willows Salix sachalinensis and S. integra with and without cottony hairs in laboratory and field experiments. In both field and laboratory experiments, more seeds with cottony hairs were trapped in water and wet sand than in dry sand, in which no seeds of either species germinated. These results indicate that cottony hairs facilitate the recruitment of seeds to microsites favorable for seed germination and help seeds avoid unfavorable microsites. On the water surface, 17.6% of S. sachalinensis seeds and 68.0% S. integra seeds with cottony hairs floated for more than 6 days, whereas all seeds without cottony hairs sank immediately after being placed on the water surface. These results suggest that cottony hairs facilitate long-distance dispersal via flowing water and also help avoid germination under water, where willow seedlings fail to establish. Seeds of the two willow species were released from the cottony hairs and germinated immediately after the seeds were placed on wet sand, but not after placement on water or dry sand. These results suggest that the seeds are released from the cottony hairs when the hairs become wet and the seeds are striking to a suitable microsite for seedling establishment, such as wet sand. In riparian willows, the cottony hairs promote directed dispersal by moving seeds to discrete and predictable microsites where the seedling establishment is disproportionately high.  相似文献   

4.
While several studies on regeneration in Salicaceae have focused on seedling recruitment, little is known about factors controlling their vegetative reproduction. In two greenhouse experiments, we studied the response of floodplain willows (Salix fragilis, S. viminalis, S. triandra) to competition with Poa trivialis, and to shoot and root removal when planted as vegetative cuttings. In the first experiment, growth performance variables were analysed in relation to full competition, shoot competition, root competition and control, taking into account two different water levels. After 9 weeks, shoots were removed and the resprouting capacity of the bare cuttings was recorded. In the second experiment, the cutting performance of the three floodplain and an additional two fen willow species (S. cinerea, S. aurita) was compared when grown in three different soil compositions and with two different water levels. After 9 weeks, shoot and root biomass was removed and the bare cuttings were replanted to test their ability to resprout. Cutting performance and secondary resprouting were negatively affected by full and shoot competition while root competition had no or weak effects. The floodplain species performed better than the fen species in all soil types and water levels. Secondary resprouting capacity was also higher in the floodplain species, which showed an additional strong positive response to the previous waterlogging treatment. The results contribute to understanding of the vegetative regeneration ecology of floodplain willows, and suggest that the use of vegetative plantings in restoration plantings could be an effective strategy for recovering floodplain forests.  相似文献   

5.
Populus nigra L. var betulifolia and Salix alba L. var alba are early successional riparian tree species threatened throughout Continental Europe by significant changes to the natural physical processes governing their natural habitat – geomorphologically active floodplains. River management activities have dramatically altered natural patterns of river flow and rates of sediment delivery along rivers, with possible consequences for the balance between sexual and asexual regeneration strategies in these species. Conservation strategies will benefit from a greater understanding of the ways in which dynamic physical processes on the floodplain influence sexual and asexual recruitment. This paper describes a field survey investigating the relative abundance and spatial distributions of P. nigra and S. alba sexual and asexual recruits during the first years of establishment along a braided gravel bed river. Sexual and asexual recruits were identified by excavation along transects in a wet and a dry field season and distributional differences were described in terms of elevation on the floodplain, local sediment type and exposure to floodwaters. Regeneration was overwhelmingly from seed in the first 2–3 years following recruitment, but poor survival rates among sexual recruits saw a shift in the relative abundance of regeneration strategies over time. In relating hydrological data to recruitment, unseasonal flood disturbances had a negative effect on recruitment from seed and a positive effect on vegetative regeneration. Seedlings were associated with fine sediment deposits and were restricted primarily to low elevations on the flood plain, while asexual recruits had a wider spatial distribution. Certain microsite types were unique to either regeneration strategy.  相似文献   

6.
Abernethy  V.J.  Willby  N.J. 《Plant Ecology》1999,140(2):177-190
This study used germination methods to examine the density, species composition and functional composition of propagule banks in a series of riverine wetland aquatic habitats subject to varying degrees of hydrological and management-related disturbance. Under permanent inundation (the conditions prevailing at most sites during the growing season) propagule germination and species richness was low, with floodplain perennials and helophytes particularly affected. Densities of floodplain annuals were largely maintained through continued germination of a few flooding tolerant species. On damp mud (conditions associated with hydrological instability) total seedling number and species richness increased significantly, but species richness of germinating hydrophytes declined. Mean seedling density at 0–0.1m depth was 15450 ± 4400 m–2, reaching a maximum (162 050 m–2) in temporary backwaters. Annual (e.g., Lindernia dubia, Cyperus fuscus) and facultative ruderal species (e.g., Lythrum salicaria and Alisma plantago-aquatica) predominated. Vertical zonation of the propagule bank was weakly developed. The numbers of individuals and species germinating varied significantly between sites. The seasonal, most intensely disturbed sites (temporary backwaters) supported a numerically large, species-rich propagule bank based on floodplain annuals, while the permanent, less disturbed sites (ditches and an oxbow pond) had a small, species-poor propagule bank composed of hydrophytes and helophytes supplemented by allochthonous seed inputs. Sites intermediate on the gradient had a propagule bank dominated by facultative amphibious, ruderal hydrophytes. The composition of the seed bank and the established vegetation was most similar at the heavily disturbed sites where the seed bank was maintained by vigorously fruiting annuals and supplemented by inputs from temporary habitats upstream. At permanent sites much of the propagule bank composition could be accounted for by inputs of floodborne seed from the immediately adjacent floodplain. The established vegetation at such sites appeared to be maintained mainly by vegetative propagation with recruitment from the propagule bank likely only after severe disturbance. The potential contribution of functionally diverse propagule banks to sucessional processes within fluvially dynamic floodplain aquatic habitats is emphasised.  相似文献   

7.
After direct habitat transformation, biological invasions are considered to be the second most important threat to biodiversity. A better understanding of the factors affecting invasion success in new areas is crucial, and may provide insight into potential control actions. We hypothesized that invasion risk increases in habitats undergoing a sudden change in the disturbance regime or environmental conditions. For testing this assumption we initiated a seed sowing experiment while introducing two novel treatments, mowing twice and fertilizer application, in two grassland sites (one dryer and one mesic) in Romania. The seeds of two invasive species, Solidago canadensis and Rudbeckia laciniata, and two resident natives of similar seed sizes, life-forms and strategies were sowed in treated and control plots, and seed germination, seedling establishment and growth were followed during four months. Contrary to our expectations, there was no difference in the treatment effects on seed germination and seedling establishment between species, while there was on seedling vigour of the larger seeded species in the dryer grassland site, where the native had a higher performance especially in increased nutrient conditions. Indifferently from applied treatments, invasive species had greater cumulative germination in the mesic site, while natives were far more successful in seedling establishment in the drier site. At the same time, seed size was found to be a very important factor explaining germination and establishment success, with large seeded species outperforming small seeded species in any circumstances. Our results call the attention upon management interventions in mesic, productive grassland sites opening colonization windows for the recruitment of those invasive species of which ecological requirements correspond to local environmental conditions.  相似文献   

8.
Spring ephemeral herbs inhabiting deciduous forests commonly complete reproduction and vegetative growth before canopy closure in early summer. Effects of shading by early canopy closure on reproductive output and vegetative growth, however, may vary depending on the seasonal allocation patterns of photosynthetic products between current reproduction and storage for future growth in each species. To clarify the effects of sink–source balance on seed production and bulb growth in a spring ephemeral herb, Gagea lutea, we performed a bract removal treatment (source reduction) and a floral-bud removal treatment (sink reduction) under canopy and open conditions. Leaf carbon fixations did not differ between the forest and open sites and among treatments. Bract carbon fixations were also similar between sites but tended to decrease when floral buds were removed. Seed production was higher under open condition but decreased by the bract-removal treatment under both light conditions. In contrast, bulb growth was independent of light conditions and the bract-removal treatment but increased greatly by the bud-removal treatment. Therefore, leaves and bracts acted as specialized source organs for vegetative and reproductive functions, respectively, but photosynthetic products by bracts were flexibly used for bulb growth when plants failed to set fruits. Extension of bright period was advantageous for seed production (i.e., source limited) but not for vegetative growth (i.e., sink limited) in this species.  相似文献   

9.
Myricaria laxiflora is an endangered plant that grows in the flood zone along the Yangtze River in the Three Gorges area from 70 m to 155 m above sea level. To understand the spatial distribution patterns of the species and to provide information for developing conservation strategies, we used field surveys to study its seed reproduction and dispersion, and used growth chambers to study seed germination. Results showed that M. laxiflora produced many flowering branches, inflorescences and seeds. Seeds were very small and output was high although biomass allocation to reproduction was low (∼4%). Reproductive allocation was strongly correlated with the biomass of stems and leaves. Seeds were dispersed either by the wind or the river current. Wind-dispersed seeds usually settled within 25 m from parent plants leading to a clumped distribution of individuals in populations. Water-dispersed seeds often landed and established on strands of firth where the fine sediment and gentle sloping were available. Seedlings that emerged from water-dispersed seeds were distributed along the water flood line. The life-span of M. laxiflora seeds was about 7 days. Seeds could germinate within 24 h when they absorbed adequate amounts of water. Soil water content was a key factor limiting the establishment ability of M. laxiflora. Experiments showed that the minimum soil water content for germination to occur was 10% on sand or 17% on sandy soil substrates, and the optimal conditions were on saturated soils. The water content of sandy soils on the riverbank was lower than 10% in autumn, the dry season, and seeds were able to germinate only on sandy beaches that were intermittently inundated by the fluctuating river current. These characteristics of seed dispersal and germination limit the ability for M. laxiflora to expand its distribution. These results provide information essential for the conservation and reintroduction of this endangered species.  相似文献   

10.
Recognition of spatial heterogeneity of fire at fine scales is emerging, particularly in ecosystems characterized by frequent, low-intensity fire regimes. Differences in heat flux associated with variation in fuel and moisture conditions create microsites that affect survivorship and establishment of species. We studied the mechanisms by which fire affects seed germination using exposure of seeds to fire surrogates (moist and dry heat). Tolerance (survival) and germination responses of six perennial, herbaceous legume species common to the fire-prone longleaf pine–wiregrass ecosystem of the southeastern USA were examined the following heat treatments. Moist heat was more effective in stimulating germination than dry heat flux for most species examined. We also compared intrinsic seed properties (relative seed coat hardness, percent moisture, and seed mass) among species relative to their heat tolerance and heat-stimulated germination responses. Seed coat hardness was closely associated with the probability of dry and moist heat-stimulated germination. Variation among species in optimal germination conditions and degree of heat tolerance likely reflects selection for specific microsites among a potentially diverse suite of conditions associated with a low-intensity fire regime. Fire-stimulated germination, coupled with characteristics of seed dormancy and longevity in the soil, likely fosters favorable recruitment opportunities in restoration situations aimed at reintroducing a frequently prescribed burn regime to a relict longleaf pine site. In a restoration context in which externally available seed pool inputs are limited, this regenerative mechanism may provide a significant source of recruitment for vegetative recovery in a post-fire landscape.  相似文献   

11.
Bender  Martin H.  Baskin  Jerry M.  Baskin  Carol C. 《Plant Ecology》2000,147(1):117-136
A demographic investigation was conducted to assess variation in life history of Polymnia canadensis (Asteraceae), a geographically-widespread, herbaceous species of deciduous forests in eastern North America. During 1985-1994, 23,063 seedlings of P. canadensis were monitored at five central Kentucky study sites. Numbers at the end were: biennials, 554; triennials, 142; winter annuals, 16; monocarpic perennials, 2; tricarpic perennials (three years), 3; and dicarpic perennials (some skipped years) that matured in the first year of life, 23; in the second year, 60; and in the third year, 9. Weekly cohorts of P. canadensis generally exhibited Deevey Type III survivorship with highest seedling mortality in summer associated with low soil moisture. Wide spatial variation in life history was displayed by the fact that fall germination cohorts at dry sites generally had greater germination and survivorship than at mesic sites during seedling establishment, while the reverse was true for spring cohorts. This led to more reproductive individuals in fall germination cohorts than spring cohorts at dry sites and generally the opposite case at mesic sites. Forest shade in mesic sites caused slower growth and a greater frequency of longer-lived reproductive individuals than in open, dry sites, but it also resulted in higher survivorship than at dry sites during moderate drought. Annual population growth rate averaged across four years was not significantly different between a dry site and mesic site, indicating that despite forest shade, P. canadensis persisted in the mesic site as well as it did in the dry site. Population structure varied among years, seasons, and study sites; at two study plots, a 2-year flowering cycle of mass seeding and senescence persisted for 4 years. At a smaller scale, there was little difference in survivorship between study plots within sites or between quadrats within study plots, while in a few instances there were large differences in the number of reproductive individuals. Weekly cohorts that germinated early within seasonal cohorts had greater number of reproductive individuals than later weekly cohorts, but not consistently greater survivorship. Several droughts induced temporal variation that was as important as spatial variation. During these droughts, the population size of all cohorts that germinated prior to the droughts declined to zero at all sites, and biennials were the longest lived type of reproductive individuals. During drought, Deevey Type I survivorship was prevalent, and lack of seed rain led to dependence on persistent seed banks for recruitment in some seasonal cohorts.  相似文献   

12.
Aim To explore: (1) the relative influences of site conditions, especially moisture relations, on pathways and rates of monsoon rain forest seedling and sapling regeneration, especially of canopy dominants, in northern Australia; and (2) contrasts between regeneration syndromes of dominant woody taxa in savannas and monsoon rain forest. Location Four monsoon rain forest sites, representative of regional major habitat and vegetation types, in Kakadu National Park, northern Australia. Methods A decadal study involved: (1) initial assessment over 2.5 years to explore within‐year variability in seed rain, dormant seed banks and seedling (< 50 cm height) dynamics; and (2) thereafter, monitoring of seedling and sapling (50 cm height to 5 cm d.b.h.) dynamics undertaken annually in the late dry season. On the basis of observations from this and other studies, regeneration syndromes of dominant monsoon rain forest taxa are contrasted with comparable information for dominant woody savanna taxa, Eucalyptus and Corymbia especially. Results Key observations from the monsoon rain forest regeneration dynamics study component are that: (1) peak seed rain inputs of rain forest taxa were observed in the wet season at perennially moist sites, whereas inputs at seasonally dry sites extended into, or peaked in, the dry season; (2) dormant soil seed banks of woody rain forest taxa were dominated by pioneer taxa, especially figs; (3) longevity of dormant seed banks of woody monsoon rain forest taxa, including figs, was expended within 3 years; (4) seedling recruitment of monsoon rain forest woody taxa was derived mostly from wet season seed rain with limited inputs from soil seed banks; (5) at all sites rain forest seedling mortality occurred mostly in the dry season; (6) rain forest seedling and sapling densities were consistently greater at moist sites; (7) recruitment from clonal reproduction was negligible, even following unplanned low intensity fires. Main conclusions By comparison with dominant savanna eucalypts, dominant monsoon rain forest taxa recruit substantially greater stocks of seedlings, but exhibit slower aerial growth and development of resprouting capacity in early years, lack lignotubers in mesic species, and lack capacity for clonal reproduction. The reliance on sexual as opposed to vegetative reproduction places monsoon rain forest taxa at significant disadvantage, especially slower growing species on seasonally dry sites, given annual–biennial fires in many north Australian savannas.  相似文献   

13.
To understand the relationships between the distribution of Chosenia arbutifolia and Salix sachalinensis and their mycorrhizal colonization, changes in the quality and types of ectomycorrhizas and arbuscular mycorrhizas of the seedlings of two species were studied at five different sites with different soil conditions in the floodplain of the Satsunai River, Hokkaido. High ectomycorrhizal and low arbuscular mycorrhizal colonization were found in roots of both plants. Ectomycorrhizal colonization of S. sachalinensis in wet sandy or muddy soil conditions was at the same level as that in dry gravelly sites. In contrast, ectomycorrhizal colonization of C. arbutifolia seedlings was lower from wet sandy sites than that from dry gravelly sites. In all study sites, the same three morphological types of ectomycorrhizas were dominant.  相似文献   

14.
Sub-arctic willow scrub is an endangered habitat in Britain, and typically occurs on steep crags inaccessible to grazing animals. These willows can reproduce both sexually and asexually, although the relative importance of each is unknown. Knowledge of reproductive mode is important for the design of grazing management and restoration programmes. Accordingly, clonality was assessed in the largest stand of sub-arctic willow scrub in the UK, focusing on Salix lanata and S. lapponum. Little evidence of clonal growth was detected; most individuals possessed distinct multi-locus genotypes. Thus despite the capacity for vegetative reproduction, and seedlings being rarely observed, sexual reproduction is the predominant means of perpetuation and dispersal at this site. We also examined clonal growth in a common willow species (Salix herbacea) that occupies a different habitat type (exposed mountain tops and ridges). Multiple individuals shared identical genotypes up to 7 m apart, suggesting an important role for clonal growth in local patch formation in this species.  相似文献   

15.
Models of hybrid zone dynamics incorporate different patterns of hybrid fitness relative to parental species fitness. An important but understudied source of variation underlying these fitness differences is the environment. We investigated the performance of two willow species and their F1, F2, and backcross hybrids using a common-garden experiment with six replicated gardens that differed in soil moisture. Aboveground biomass, catkin production, seed production per catkin, and seed germination rate were significantly different among genetic classes. For aboveground biomass and catkin production, hybrids generally had intermediate or inferior performance compared to parent species. Salix eriocephala had the highest performance for all performance measures, but in two gardens F, plants had superior or equal performance for aboveground biomass and female catkin production. Salix eriocephala and backcrosses to S. eriocephala had the highest numbers of filled seeds per catkin and the highest estimates of total fitness in all gardens. Measures of filled seeds per catkin and germination rate tend to support the model of endogenous hybrid unfitness, and these two measures had major effects on estimates of total seed production per catkin. We also estimated how the two willow species differ genetically in these fitness measures using line cross analysis. We found a complex genetic architecture underlying the fitness differences between species that involved additive, dominance, and epistatic genetic effects for all fitness measures. The environment was important in the expression of these genetic differences, because the type of epistasis differed among the gardens for above-ground biomass and for female catkin production. These findings suggest that fine-scale environmental variation can have a significant impact on hybrid fitness in hybrid zones where parents and hybrids are widely interspersed.  相似文献   

16.
1. A long‐lived bank of propagules consisting of eggs, seeds and spores is one mechanism that allows aquatic communities to survive drought. A drying (drought) event is, for aquatic organisms in a temporary wetland, a phase from which communities must recover. Such a dry phase is often considered a disturbance but should not be considered adverse or catastrophic for the organisms that have evolved to live in temporarily wet habitats. 2. This paper explores the parallels between the egg bank of zooplankton and the seed bank of aquatic plants as means of survival in temporary wetlands. The resilience of communities in temporary wetland ecosystems is assessed by examining dormancy, hatching, germination, establishment and reproduction of animals and plants from the egg and seed banks of wetlands with a range of wetting and drying regimes. 3. Both the zooplankton and aquatic plants of the temporary wetlands studied rely on their egg and seed banks as a means for surviving drying. These communities recover after the disturbance of drying by means of specific patterns of dormancy, dormancy breakage, hatching, germination, establishment and reproduction. Spatial and temporal patterns of species richness allow resilience through dormancy, as not all species are present at all sites and not all species hatch and germinate at the same time. Multiple generations in the egg and seed bank and complexity of environmental cues for dormancy breakage also contribute to the ecosystem's ability to recover after a drying event. A persistent egg and seed bank allows species‐rich communities to hatch, germinate and develop rapidly once dormancy is broken. Rapid establishment of species‐rich communities that reproduce rapidly and leave many propagules in the egg and seed bank also facilitates community recovery on flooding of a temporary wetland after a drying event. 4. To maintain the diversity of temporary wetland communities through droughts and floods we need to manage the dry and wet phases of wetlands. To conserve a wide range of wetland types, we need to maintain a variety of hydrological patterns across the landscape.  相似文献   

17.
The study followed the harvest of natural willow from three wetlands using a prototype modified agricultural round baler nicknamed a Bio-Baler. The study reports fuel characteristics and combustion testing of biomass harvested from natural willow rings. Composition of native willow species in the harvested willow rings was determined. We specifically measured regrowth of the biomass and number of regenerated stems per stump 1 year after harvest to determine how different willow species responded to mechanical biomass cutting with the Bio-Baler. The results of combustion testing for the natural willow were essentially similar to those with “conventional” wood chips or planted willows. The ash content was approximately 1.65%, slightly lower than for planted willow plantations. The calorific value of the natural willow was 19.6 MJ kg?1 (dry basis) similar to what is expected for wood and planted willow. Four Salix species (Salix bebbiana Sarg., Salix petiolaris Sm., Salix eriocephala Michx., and Salix discolor Muhl) were identified in the willow rings. Stem biomass increased for all species except S. bebbiana after willow was harvested with the Bio-Baler. Overall, willow regeneration was not affected by mechanical harvesting compared to hand cutting. Regenerated stem density was 93 stems per square meter for mechanically harvested stumps compared to 105 stems per square meter for hand-pruned stumps. Based on the results, biomass harvested from natural willow rings has acceptable fuel characteristics when compared to purpose-grown willows and mechanical harvest with a Bio-Baler does not have a negative effect on willow regeneration.  相似文献   

18.
During recent decades, many studies have shown that the successful restoration of species-rich grasslands is often seed-limited because of depleted seed banks and limited seed dispersal in modern fragmented landscapes. In Europe, commercial seed mixtures, which are widely used for restoration measures, mostly consist of species and varieties of non-local provenance. The regional biodiversity of a given landscape, however, can be preserved only when seeds or plants of local provenance are used in restoration projects. Furthermore, the transfer of suitable target species of local provenance can strongly enhance restoration success.We review and evaluate the success of currently used near-natural methods for the introduction of target plant species (e.g. seeding of site-specific seed mixtures, transfer of fresh seed-containing hay, vacuum harvesting, transfer of turves or seed-containing soil) on restoration sites, ranging from dry and mesic meadows to floodplain grasslands and fens. Own data combined with literature findings show species establishment rates during the initial phase as well as the persistence of target species during long-term vegetation development on restoration sites.In conclusion, our review indicates that seed limitation can be overcome successfully by most of the reviewed measures for species introduction. The establishment of species-rich grasslands is most successful when seeds, seed-containing plant material or soil are spread on bare soil of ex-arable fields after tilling or topsoil removal, or on raw soils, e.g. in mined areas. In species-poor grasslands without soil disturbance and on older ex-arable fields with dense weed vegetation, final transfer rates were the lowest. For future restoration projects, suitable measures have to be chosen carefully from case to case as they differ considerably in costs and logistic effort. Long-term prospects for restored grassland are especially good when management can be incorporated in agricultural systems.  相似文献   

19.
塔里木河中游洪水漫溢区荒漠河岸林实生苗更新   总被引:2,自引:1,他引:1  
赵振勇  张科  卢磊  周生斌  张慧 《生态学报》2011,31(12):3322-3329
以塔里木河中游荒漠河岸林为研究对象,2008年6月至2009年8月,对洪水漫溢区河漫滩裸地、林下及林隙三种生境植物一年生实生苗进行了调查。结果表明:实生苗更新主要依赖洪水漫溢,在非漫溢区没有发现实生苗存在;洪水降低了漫溢区的土壤盐度,更重要的是其提供了宝贵的水分条件,在时间和水量上都有效地满足了胡杨等植物种子萌发和幼株生长的水分需求;河漫滩是河岸林种子实生苗产生的基地,洪水漫溢后的河漫滩种子实生苗密度显著大于其余两生境内实生苗密度,同时该生境内物种多样性也显著高于林下和林隙生境;光照决定着漫溢区实生苗能否成林,光照不同的空间样点上,实生苗发生数量和个体生长均存在显著差异,光照强的河漫滩,实生苗发生数量较多且幼苗能保持较高的生长活力和较多的生物量积累。  相似文献   

20.
1. This paper explores soil seed bank composition and its contribution to the vegetation dynamics of a hydrologically variable desert floodplain in central Australia: the Cooper Creek floodplain. We investigated patterns in soil seed bank composition both temporally, in response to flooding (and drying), and spatially, with relation to flood frequency. Correlations between extant vegetation and soil seed bank composition are explored with respect to flooding. 2. A large and diverse germinable soil seed bank was detected comprising predominantly annual monocot and annual forb species. Soil seed bank composition did not change significantly in response to a major flood event but some spatial patterns were detected along a broad flood frequency gradient. Soil seed bank samples from frequently flooded sites had higher total germinable seed abundance and a greater abundance of annual monocots than less frequently flooded sites. In contrast, germinable seeds of perennial species belonging to the Poaceae family were most abundant in soil seed bank samples from rarely flooded sites. 3. Similarity between the composition of the soil seed bank and extant vegetation increased following flooding and was greatest in more frequently flooded areas of the floodplain, reflecting the establishment of annual species. The results indicate that persistent soil seed banks enable vegetation in this arid floodplain to respond to unpredictable patterns of flooding and drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号