首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cation-pi interactions play an important role to the stability of protein structures. In this work, we analyze the influence of cation-pi interactions in three-dimensional structures of membrane proteins. We found that transmembrane strand (TMS) proteins have more number of cation-pi interactions than transmembrane helical (TMH) proteins. In TMH proteins, both the positively charged residues Lys and Arg equally experience favorable cation-pi interactions whereas in TMS proteins, Arg is more likely than Lys to be in such interactions. There is no relationship between number of cation-pi interactions and number of residues in TMH proteins whereas a good correlation was observed in TMS proteins. The average cation-pi interaction energy for TMH proteins is -16 kcal/mol and that for TMS proteins is -27 kcal/mol. The pair-wise cation-pi interaction energy between aromatic and positively charged residues showed that Lys-Trp energy is stronger in TMS proteins than TMH proteins; Arg-Phe, Arg-Tyr and Lys-Phe have higher energy in TMH proteins than TMS proteins. The decomposition of energies into electrostatic and van der Waals revealed that the contribution from electrostatic energy is twice as that from van der Waals energy in both TMH and TMS proteins. The results obtained in the present study would be helpful to understand the contribution of cation-pi interactions to the stability of membrane proteins.  相似文献   

2.
Cation-pi interactions are common in proteins, but their contribution to the stability and specificity of protein structure has not been well established. In this study, we examined the impact of cation-pi interactions in a diagonal position of a beta-hairpin peptide through comparison of the interaction of Phe or Trp with Lys or Arg. The diagonal interactions ranged from -0.20 to -0.48 kcal/mole. Our experimental values for the diagonal cation-pi interactions are similar to those found in alpha-helical studies. Upfield shifting of the Lys and Arg side chains indicates that the geometries of cation-pi interactions adopted in the 12-residue beta-hairpin are comparable to those found in protein structures. The Lys was found to interact through the polarized Cepsilon, and the Arg is stacked against the aromatic ring of Phe or Trp. Folding of these peptides was found to be enthalpically favorable (DeltaH degrees equals approximately -3 kcal/mole) and entropically unfavorable (DeltaS degrees equals approximately -8 cal mole(-1) K(-1)).  相似文献   

3.
Paddock ML  Weber KH  Chang C  Okamura MY 《Biochemistry》2005,44(28):9619-9625
The cation-pi interaction between positively charged and aromatic groups is a common feature of many proteins and protein complexes. The structure of the complex between cytochrome c(2) (cyt c(2)) and the photosynthetic reaction center (RC) from Rhodobacter sphaeroides exhibits a cation-pi complex formed between Arg-C32 on cyt c(2) and Tyr-M295 on the RC [Axelrod, H. L., et al. (2002) J. Mol. Biol. 319, 501-515]. The importance of the cation-pi interaction for binding and electron transfer was studied by mutating Tyr-M295 and Arg-C32. The first- and second-order rates for electron transfer were not affected by mutating Tyr-M295 to Ala, indicating that the cation-pi complex does not greatly affect the association process or structure of the state active in electron transfer. The dissociation constant K(D) showed a greater increase when Try-M295 was replaced with nonaromatic Ala (3-fold) as opposed to aromatic Phe (1.2-fold), which is characteristic of a cation-pi interaction. Replacement of Arg-C32 with Ala increased K(D) (80-fold) largely due to removal of electrostatic interactions with negatively charged residues on the RC. Replacement with Lys increased K(D) (6-fold), indicating that Lys does not form a cation-pi complex. This specificity for Arg may be due to a solvation effect. Double mutant analysis indicates an interaction energy between Tyr-M295 and Arg-C32 of approximately -24 meV (-0.6 kcal/mol). This energy is surprisingly small considering the widespread occurrence of cation-pi complexes and may be due to the tradeoff between the favorable cation-pi binding energy and the unfavorable desolvation energy needed to bury Arg-C32 in the short-range contact region between the two proteins.  相似文献   

4.
To investigate the role of the heme axial ligand in the conformational stability of c-type cytochrome, we constructed M58C and M58H mutants of the red alga Porphyra yezoensis cytochrome c(6) in which the sixth heme iron ligand (Met58) was replaced with Cys and His residues, respectively. The Gibbs free energy change for unfolding of the M58H mutant in water (DeltaG degrees (unf)=1.48 kcal/mol) was lower than that of the wild-type (2.43 kcal/mol), possibly due to the steric effects of the mutation on the apoprotein structure. On the other hand, the M58C mutant exhibited a DeltaG degrees (unf) of 5.45 kcal/mol, a significant increase by 3.02 kcal/mol compared with that of wild-type. This increase was possibly responsible for the sixth heme axial bond of M58C mutant being more stable than that of wild-type according to the heme-bound denaturation curve. Based on these observations, we propose that the sixth heme axial ligand is an important key to determine the conformational stability of c-type cytochromes, and the sixth Cys heme ligand will give stabilizing effects.  相似文献   

5.
The environmental preference for the occurrence of noncanonical hydrogen bonding and cation-pi interactions, in a data set containing 71 nonredundant (alpha/beta)(8) barrel proteins, with respect to amino acid type, secondary structure, solvent accessibility, and stabilizing residues has been performed. Our analysis reveals some important findings, which include (a) higher contribution of weak interactions mediated by main-chain atoms irrespective of the amino acids involved; (b) domination of the aromatic amino acids among interactions involving side-chain atoms; (c) involvement of strands as the principal secondary structural unit, accommodating cross strand ion pair interaction and clustering of aromatic amino acid residues; (d) significant contribution to weak interactions occur in the solvent exposed areas of the protein; (e) majority of the interactions involve long-range contacts; (f) the preference of Arg is higher than Lys to form cation-pi interaction; and (g) probability of theoretically predicted stabilizing amino acid residues involved in weak interaction is higher for polar amino acids such as Trp, Glu, and Gln. On the whole, the present study reveals that the weak interactions contribute to the global stability of (alpha/beta)(8) TIM-barrel proteins in an environment-specific manner, which can possibly be exploited for protein engineering applications.  相似文献   

6.
Anbarasu A  Anand S  Mathew L  Rao S 《Cytokine》2006,35(5-6):263-269
The roles played by the non-covalent interactions have been investigated for a set of six TNF proteins and nine Interleukins. The stabilizing residues have been identified by a consensus approach using the concepts of available surface area, medium and long-range interactions and conservation of amino acid residues. The cation-pi interactions have been computed based on a geometric approach such as distance and energy criteria. We identified an average of 1 energetically significant cation-pi interactions in every 94 residues in TNF proteins and 1 in every 62 residues in Interleukins. In TNF proteins, the cationic groups Lys preferred to be in helix while Arg preferred to be in strand regions while in Interleukins the Arg residues preferred to be in helix and Lys preferred to be in strand regions. From the available surface area calculations, we found that, almost all the cation and pi residues in TNF proteins and Interleukins were either in buried or partially buried regions and none of them in the exposed regions. Medium and long-range interactions were predominant in both TNF proteins and Interleukins. It was observed that the percentage of stabilizing centers were more in TNF proteins as compared to the Interleukins, while the percentage of conserved residues were more in Interleukins than in TNF proteins. In the stabilizing residues Lys was observed to be a stabilizing residue in both TNF proteins and Interleukins. Among the aromatic group, Phe was seen to be a stabilizing residue in both TNF and Interleukins. We suggest that this study on the computation of cation-pi interactions in TNF proteins and Interleukins would be very helpful in further understanding the structure, stability and functional similarity of these proteins.  相似文献   

7.
The average globular protein contains 30% alpha-helix, the most common type of secondary structure. Some amino acids occur more frequently in alpha-helices than others; this tendency is known as helix propensity. Here we derive a helix propensity scale for solvent-exposed residues in the middle positions of alpha-helices. The scale is based on measurements of helix propensity in 11 systems, including both proteins and peptides. Alanine has the highest helix propensity, and, excluding proline, glycine has the lowest, approximately 1 kcal/mol less favorable than alanine. Based on our analysis, the helix propensities of the amino acids are as follows (kcal/mol): Ala = 0, Leu = 0.21, Arg = 0.21, Met = 0.24, Lys = 0.26, Gln = 0.39, Glu = 0.40, Ile = 0.41, Trp = 0.49, Ser = 0.50, Tyr = 0. 53, Phe = 0.54, Val = 0.61, His = 0.61, Asn = 0.65, Thr = 0.66, Cys = 0.68, Asp = 0.69, and Gly = 1.  相似文献   

8.
There are frequent contacts between aromatic rings and sulfur atoms in proteins. However, it is unclear to what degree this putative interaction is stabilizing and what the nature of the interaction is. We have investigated the aryl-sulfur interaction by placing a methionine residue diagonal to an aromatic ring on the same face of a beta-hairpin, which places the methionine side chain in close proximity to the aryl side chain. The methionine (Met)-aryl interaction was compared with an equivalent hydrophobic and cation-pi interaction in the context of the beta-hairpin. The interaction between phenylalanine (Phe), tryptophan (Trp), or cyclohexylalanine (Cha) and Met stabilized the beta-hairpin by -0.3 to -0.5 kcal mole(-1), as determined by double-mutant cycles. The peptides were subjected to thermal denaturations that suggest a hydrophobic driving force for the interactions between Met and Trp or Cha. The observed interaction of Met or norleucine (Nle) with Trp or Cha are quite similar, implying a hydrophobic driving force for the Met-pi interaction. However, the thermodynamic data suggest that there may be some differences between the interaction of Met with Trp and Phe and that there may be a small thermodynamic component to the Met...Phe interaction.  相似文献   

9.
Retroviruses employ -1 translational frameshifting to regulate the relative concentrations of structural and non-structural proteins critical to the viral life cycle. The 1.6 A crystal structure of the -1 frameshifting pseudoknot from beet western yellows virus reveals, in addition to Watson-Crick base-pairing, many loop-stem RNA tertiary structural interactions and a bound Na(+). Investigation of the thermodynamics of unfolding of the beet western yellows virus pseudoknot reveals strongly pH-dependent loop-stem tertiary structural interactions which stabilize the molecule, contributing a net of DeltaH approximately -30 kcal mol(-1) and DeltaG degrees (37) of -3.3 kcal mol(-1) to a total DeltaH and DeltaG degrees (37) of -121 and -16 kcal mol(-1), respectively, at pH 6.0, 0.5 M K(+) by DSC. Characterization of mutant RNAs supports the presence of a C8(+).G12-C26 loop 1-stem 2 base-triple (pK(a)=6.8), protonation of which contributes nearly -3.5 kcal mol(-1) in net stability in the presence of a wild-type loop 2. Substitution of the nucleotides in loop 2 with uridine bases, which would eliminate the minor groove triplex, destroys pseudoknot formation. An examination of the dependence of the monovalent ion and type on melting profiles suggests that tertiary structure unfolding occurs in a manner quantitatively consistent with previous studies on the stabilizing effects of K(+), NH(4)(+) and Na(+) on other simple duplex and pseudoknotted RNAs.  相似文献   

10.
Bradshaw JM  Waksman G 《Biochemistry》1999,38(16):5147-5154
SH2 domains are protein modules which interact with specific tyrosine phosphorylated sequences in target proteins. The SH2 domain of the Src kinase binds with high affinity to a tyrosine phosphorylated peptide containing the amino acids Glu, Glu, and Ile (EEI) at the positions +1, +2, and +3 C-terminal to the phosphotyrosine, respectively. To investigate the degree of selectivity of the Src SH2 domain for each amino acid of the EEI motif, the binding thermodynamics of a panel of substitutions at the +1 (Gln, Asp, Ala, Gly), +2 (Gln, Asp, Ala, Gly), and +3 (Leu, Val, Ala, Gly) positions were examined using titration microcalorimetry. It was revealed that the Src SH2 domain is insensitive (DeltaDeltaG degrees 相似文献   

11.
J F Hall  L D Kanbi  R W Strange  S S Hasnain 《Biochemistry》1999,38(39):12675-12680
Type 1 Cu centers in cupredoxins, nitrite reductases, and multi-copper oxidases utilize the same trigonal core ligation to His-Cys-His, with a weak axial ligand generally provided by a Met sulfur. In azurin, an additional axial ligand, a carbonyl oxygen from a Gly, is present. The importance of these axial ligands and in particular the Met has been debated extensively in terms of their role in fine-tuning the redox potential, spectroscopic properties, and rack-induced or entatic state properties of the copper sites. Extensive site-directed mutagenesis of the Met ligand has been carried out in azurin, but the presence of an additional carbonyl oxygen axial ligand has made it difficult to interpret the effects of these substitutions. Here, the axial methionine ligand (Met148) in rusticyanin is replaced with Leu, Gln, Lys, and Glu to examine the effect on the redox potential, acid stability, and copper site geometry. The midpoint redox potential varies from 363 (Met148Lys) to 798 mV (Met148Leu). The acid stability of the oxidized proteins is reduced except for the Met148Gln mutant. The Gln mutant remains blue at all pH values between 2.8 and 8, and has a redox potential of 563 mV at pH 3.2. The optical and rhombic EPR properties of this mutant closely resemble those of stellacyanin, which has the lowest redox potential among single-type 1 copper proteins (185 mV). The Met148Lys mutant exhibits type 2 Cu EPR and optical spectra in this pH range. The Met148Glu mutant exhibits a type 2 Cu EPR spectrum above pH 3 and a mixture of type 1 and type 2 Cu spectra at lower pH. The Met148Leu mutant exhibits the highest redox potential ( approximately 800 mV at pH 3.2) which is similar to the values in fungal laccase and in the type 1 Cu site of ceruloplasmin where this axial ligand is also a Leu.  相似文献   

12.
Detailed sequence analyses of the hydrophobic core residues of two long two-stranded alpha-helical coiled-coils that differ dramatically in sequence, function, and length were performed (tropomyosin of 284 residues and the coiled-coil domain of the myosin rod of 1086 residues). Three types of regions were present in the hydrophobic core of both proteins: stabilizing clusters and destabilizing clusters, defined as three or more consecutive core residues of either stabilizing (Leu, Ile, Val, Met, Phe, and Tyr) or destabilizing (Gly, Ala, Cys, Ser, Thr, Asn, Gln, Asp, Glu, His, Arg, Lys, and Trp) residues, and intervening regions that consist of both stabilizing and destabilizing residues in the hydrophobic core but no clusters. Subsequently, we designed a series of two-stranded coiled-coils to determine what defines a destabilizing cluster and varied the length of the destabilizing cluster from 3 to 7 residues to determine the length effect of the destabilizing cluster on protein stability. The results showed a dramatic destabilization, caused by a single Leu to Ala substitution, on formation of a 3-residue destabilizing cluster (DeltaT(m) of 17-21 degrees C) regardless of the stability of the coiled-coil. Any further substitution of Leu to Ala that increased the size of the destabilizing cluster to 5 or 7 hydrophobic core residues in length had little effect on stability (DeltaT(m) of 1.4-2.8 degrees C). These results suggested that the contribution of Leu to protein stability is context-dependent on whether the hydrophobe is in a stabilizing cluster or its proximity to neighboring destabilizing and stabilizing clusters.  相似文献   

13.
Proteins from (hyper-)thermophiles are known to exhibit high intrinsic stabilities. Commonly, their thermodynamic characterization is impeded by irreversible side reactions of the thermal analysis or calorimetrical problems. Small single-domain proteins are suitable candidates to overcome these obstacles. Here, the thermodynamics of the thermal denaturation of the recombinant cold-shock protein (Csp) from the hyperthermophilic bacterium Thermotoga maritima (Tm) was studied by differential scanning calorimetry. The unfolding transition can be described over a broad pH range (3.5-8.5) by a reversible two-state process. Maximum stability (DeltaG (25 degrees C)=6.5 kcal/mol) was observed at pH 5-6 where Tm Csp unfolds with a melting temperature at 95 degrees C. The heat capacity difference between the native and the denatured states is 1.1(+/-0.1) kcal/(mol K). At pH 7, thermal denaturation occurs at 82 degrees C. The corresponding free energy profile has its maximum at 30 degrees C with DeltaGN-->U=4.8(+/-0.5) kcal/mol. At the optimal growth temperature of T. maritima (80 degrees C), Tm Csp in the absence of ligands is only marginally stable, with a free energy of stabilization not far beyond the thermal energy. With the known stabilizing effect of nucleic acids in mind, this suggests a highly dynamical interaction of Tm Csp with its target molecules.  相似文献   

14.
Singh RP  Brooks BR  Klauda JB 《Proteins》2009,75(2):468-477
Sterols have been shown experimentally to bind to the Osh4 protein (a homolog of the oxysterol binding proteins) of Saccharomyces cerevisiae within a binding tunnel, which consists of antiparallel beta-sheets that resemble a beta-barrel and three alpha-helices of the N-terminus. This and other Osh proteins are essential for intracellular transport of sterols and ultimately cell life. Molecular dynamics (MD) simulations are used to study the binding of cholesterol to Osh4 at the atomic level. The structure of the protein is stable during the course of all MD simulations and has little deviation from the experimental crystal structure. The conformational stability of cholesterol within the binding tunnel is aided in part by direct or water-mediated interactions between the 3-hydroxyl (3-OH) group of cholesterol and Trp(46), Gln(96), Tyr(97), Asn(165), and/or Gln(181) as well as dispersive interactions with Phe(42), Leu(24), Leu(39), Ile(167), and Ile(203). These residues along with other nonpolar residues in the binding tunnel and lid contribute nearly 75% to the total binding energy. The strongest and most populated interaction is between Gln(96) and 3-OH with a cholesterol/Gln(96) interaction energy of -4.5 +/- 1.0 kcal/mol. Phe(42) has a similar level of attraction to cholesterol with -4.1 +/- 0.3 kcal/mol. A MD simulation without the N-terminus lid that covers the binding tunnel resulted in similar binding conformations and binding energies when compared with simulations with the full-length protein. Steered MD was used to determine details of the mechanism used by Osh4 to release cholesterol to the cytoplasm. Phe(42), Gln(96), Asn(165), Gln(181), Pro(211), and Ile(206) are found to direct the cholesterol as it exits the binding tunnel as well as Lys(109). The mechanism of sterol release is conceptualized as a molecular ladder with the rungs being amino acids or water-mediated amino acids that interact with 3-OH.  相似文献   

15.
Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mol per -CH2- group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per -CH2- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH2- group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds contribute 40 ± 4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions.  相似文献   

16.
Barman A  Schürer S  Prabhakar R 《Biochemistry》2011,50(20):4337-4349
In this combined MD simulation and DFT study, interactions of the wild-type (WT) amyloid precursor protein (APP) and its Swedish variant (SW), Lys670 → Asn and Met671 → Leu, with the beta-secretase (BACE1) enzyme and their cleavage mechanisms have been investigated. BACE1 catalyzes the rate-limiting step in the generation of 40-42 amino acid long Alzheimer amyloid beta (Aβ) peptides. All key structural parameters such as position of the flap, volume of the active site, electrostatic binding energy, structures, and positions of the inserts A, D, and F and 10s loop obtained from the MD simulations show that, in comparison to the WT-substrate, BACE1 exhibits greater affinity for the SW-substrate and orients it in a more reactive conformation. The enzyme-substrate models derived from the MD simulations were further utilized to investigate the general acid/base mechanism used by BACE1 to hydrolytically cleave these substrates. This mechanism proceeds through the following two steps: (1) formation of the gem-diol intermediate and (2) cleavage of the peptide bond. For the WT-substrate, the overall barrier of 22.4 kcal/mol for formation of the gem-diol intermediate is 3.3 kcal/mol higher than for the SW-substrate (19.1 kcal/mol). This process is found to be the rate-limiting in the entire mechanism. The computed barrier is in agreement with the measured barrier of ca. 18.00 kcal/mol for the WT-substrate and supports the experimental observation that the cleavage of the SW-substrate is 60 times more efficient than the WT-substrate.  相似文献   

17.
Anbarasu A  Anand S  Rao S 《Bio Systems》2007,90(3):792-801
We have investigated the roles played by C-H...O=C interactions in RNA binding proteins. There was an average of 78 CH...O=C interactions per protein and also there was an average of one significant CH...O=C interactions for every 6 residues in the 59 RNA binding proteins studied. Main chain-Main chain (MM) CH...O=C interactions are the predominant type of interactions in RNA binding proteins. The donor atom contribution to CH...O=C interactions was mainly from aliphatic residues. The acceptor atom contribution for MM CH...O=C interactions was mainly from Val, Phe, Leu, Ile, Arg and Ala. The secondary structure preference analysis of CH...O=C interacting residues showed that, Arg, Gln, Glu and Tyr preferred to be in helix, while Ala, Asp, Cys, Gly, Ile, Leu, Lys, Met, Phe, Trp and Val preferred to be in strand conformation. Most of the CH...O=C interacting polar amino acid residues were solvent exposed while, majority of the CH...O=C interacting non polar residues were excluded from the solvent. Long and medium-range CH...O=C interactions are the predominant type of interactions in RNA binding proteins. More than 50% of CH...O=C interacting residues had a higher conservation score. Significant percentage of CH...O=C interacting residues had one or more stabilization centers. Sixty-six percent of the theoretically predicted stabilizing residues were also involved in CH...O=C interactions and hence these residues may also contribute additional stability to RNA binding proteins.  相似文献   

18.
Protein-DNA interactions facilitate the fundamental functions of living cells and are universal in all living organisms. Several investigations have been carried out, essentially identifying pairs of interactions between the amino acid residues in proteins and the bases in DNA. In the present study, we have detected the recognition motifs that may constitute a cluster of spatially interacting residues in proteins, which interact with the bases of DNA. Graph spectral algorithm has been used to detect side chain clusters comprising Arg, Lys, Asn, Gln and aromatic residues from proteins interacting with DNA. We find that the interaction of proteins with DNA is through clusters in about half of the proteins in the dataset and through individual residues in the rest. Furthermore, inspection of the clusters has revealed additional interactions in a few cases, which have not been reported earlier. The geometry of the interaction between the DNA base and the protein residue is quantified by the distance d and the angle theta. These parameters have been identified for the cation-pi/H-bond stair motif that was reported earlier. Among the Arg, Lys, Asn and Gln residues, the range of (d, theta) values of the interacting Arg clearly falls into the cation-pi and the hydrogen bond interactions of the 'cation-pi/H-bond' stair motif. Analysis of the cluster composition reveals that the Arg residue is predominant than the Lys, Asn and Gln residues. The clusters are classified into Type I and Type II based on the presence or absence of aromatic residues (Phe, Tyr) in them. Residue conservation in these clusters has been examined. Apart from the conserved residues identified previously, a few more residues mainly Phe, Tyr and Arg have also been identified as conserved and interactive with the DNA. Interestingly, a few residues that are parts of interacting clusters and do not interact directly with the DNA have also been conserved. This emphasizes the importance of recognizing the protein side chain cluster motifs interacting with the DNA, which could serve as signatures of protein-DNA recognition in the families of DNA binding proteins.  相似文献   

19.
Refolding curves of the integral membrane protein outer membrane protein A (OmpA) were measured to determine the conformational stabilities of this model system for membrane protein folding. Wild-type OmpA exhibits a free energy of unfolding (DeltaG degrees H2O) of 10.5 kcal/mol. Mutants, containing a single tryptophan residue at the native positions 7, 15, 57, 102, or 143, are less stable than wild-type OmpA, with DeltaG degrees H2O values of 6.7, 4.8, 2.4, 4.7, and 2.8 kcal/mol, respectively. The trend observed here is discussed in terms of noncovalent interactions, including aromatic interactions and hydrogen bonding. The effect of the soluble tail on the conformational stability of the transmembrane domain of OmpA was also investigated via truncated single-Trp mutants; DeltaG degrees H2O values for four of the five truncated mutants are greater by >2.7 kcal/mol relative to the full-length versions, suggesting that the absence of the soluble domain may destabilize the unfolded transmembrane domain. Finally, dynamic light scattering experiments were performed to measure the effects of urea and protein on vesicle size and stability. Urea concentrations greater than 1 M cause an increase in vesicle size, and these diameters are unaltered in the presence of protein. These dynamic light scattering results complement the fluorescence studies and illustrate the important effects of vesicle size on protein conformational stability.  相似文献   

20.
The assumption that the intrinsic alpha-helical propensities of the amino acids are position independent was critical in several helix/coil transition theories. In the first paper of these series, we reported that this is not the case for Gly and nonpolar aliphatic amino acids (Val, Leu, Met, and Ile). Here we have analyzed the helical intrinsic propensities of noncharged polar residues (Ser, Thr, Asn, and Gln) at different positions of a model polyalanine-based peptide. We found that Thr is more favorable (by approximately 0.3 kcal/mol) at positions N1 and N2 than in the helix center, although for Ser, Asn, and Gln the differences are smaller (+/-0.2 kcal/mol), and in many cases within the experimental error. There is a reasonable agreement (+/-0.2 kcal/mol) between the calculated free energies, using the ECEPP/2 force field equipped with a hydration potential, and the experimental data, except at position N1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号