首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We have previously shown that high DNA repair capacity protects psoriasis patients against chemically induced basal cell carcinoma [Dybdahl et al. Mutat. Res. 433 (1999) 15-22]. We have used the same study persons to investigate the correlation between expression of eight genes involved in nucleotide excision repair and DNA repair capacity. mRNA levels of XPA, XPB, XPC, XPD, XPF, XPG, CSB and ERCC1 in primary lymphocytes from 33 individuals were quantified by dot-blots and normalized to beta-actin. ERCC1 and XPD mRNA quantities were highly correlated (r=0.89; P<10(-11)) while XPA, XPB, XPC, XPG, XPFand CSB mRNAs were moderately correlated (r=0.2-0.7). Thus, the mRNA expressions seem to fall in at least two groups. There was a three to sevenfold variation in the expression levels of the mRNAs. This is in contrast to the more than a hundredfold variation in mRNA levels reported in cancer patients.DNA repair capacity was measured in a host cell reactivation assay, where primary lymphocytes were transfected with an UV-irradiated plasmid encoding firefly-luciferase. Only ERCC1 and XPD mRNA levels correlated with the DNA repair capacity (P<0.03). In order to see if ERCC1 or XPD activity was limiting for DNA repair, we cotransfected with plasmids encoding NER genes, thus over-expressing either XPB, XPC, XPD, CSB or ERCC1 in the host cell reactivation assay. Only XPB over-expression increased DNA repair capacity. Thus, there is no indication that neither XPD nor ERCC1 limits the DNA repair capacity. However, our results indicate that ERCC1 and XPD mRNA levels may be used as a proxy for DNA repair capacity in lymphocytes.  相似文献   

2.
3.
Yin J  Li J  Vogel U  Wang H 《Biochemical genetics》2005,43(9-10):543-548
DNA repair systems are responsible for maintaining the integrity of the genome and have a critical role in protecting against mutations that can lead to cancer. DNA repair gene products of ERCC1 and ERCC2/XPD are involved in the nucleotide excision repair pathway. The allele frequencies of the polymorphisms ERCC1 G19007A and ERCC2/XPD C22541A were examined in a northeastern Chinese population. The allele frequencies were 0.21 (A) and 0.79 (G) for ERCC1 G19007A and 0.49 (A) and 0.51 (C) for ERCC2/XPD C22541A. Comparison with average frequencies from previously reported Caucasian studies demonstrated that the A-allele frequency of ERCC1 G19007A was much lower in the northeastern Chinese population, indicating a remarkable ethnic difference (chi((1)) (2) = 160.09, p < 0.001), and that allele frequencies of ERCC2/XPD C22541A showed marginal racial differences (chi((1)) (2) = 4.36, p = 0.04). We have previously reported that both homozygote carriers of the A-allele as well as homozygous carriers of a high-risk haplotype (which includes the AA genotype in ERCC1 G19007A) were at increased risk of basal cell carcinoma, breast cancer, and lung cancer among Caucasians. The low A-allele frequency of ERCC1 G19007A in the Chinese population may suggest that the genetic contribution to cancer risk differs substantially between ethnic groups.  相似文献   

4.
Two regions in chromosome 19q13.2-3 are associated with risk of lung cancer   总被引:11,自引:0,他引:11  
Lung cancer is the most common fatal cancer among Danish men, and the incidence rate is increasing among women. In a case-cohort study, we have investigated the occurrence of lung cancer in relation to a high-risk haplotype, previously identified for breast cancer among post-menopausal women, and in relation to the closely linked polymorphisms XPD Asp312Asn and Lys751Gln. Among 54220 members of a Danish prospective cohort study aged 50-64 at entry, 265 lung cancer cases were identified and a sub-cohort comprising 272 individuals was used for comparison. Among women in the 50-55 year age interval, homozygous carriers of the high-risk haplotype were at increased risk of lung cancer (RR=7.02, 95% CI=1.88-26.18). In the 56-60 year and 61-70 year age intervals, no associations were observed. Among men, no statistically significant associations were found in any age interval. Female homozygous carriers of the variant allele of XPD Lys751Gln were at significantly increased risk of lung cancer in the two younger age-intervals (50-55 years: RR=5.60, 95% CI=1.18-26.45, 56-60 years: RR=10.60, 95% CI=1.50-75.64). Among men, carriers of the variant allele of XPD Lys751Gln had a non-significantly increased risk of lung cancer in the youngest age interval (RR=6.38, 95% CI=0.74-54.90). When the polymorphisms in XPD Asp312Asn and Lys751Gln were mutually adjusted, XPD Asp312Asn was not associated with increased risk of cancer. We found no interaction between genotypes and duration of smoking. In conclusion, two regions of chromosome 19q13.2-3 seem to be associated with risk of lung cancer.  相似文献   

5.
Yin J  Vogel U  Ma Y  Qi R  Wang H  Yue L  Liang D  Wang C  Li X  Song T 《Mutation research》2011,713(1-2):1-7
DNA repair genes play a crucial role in carcinogenesis. The paper aims to explore if common variants in ERCC1 are involved in lung cancer susceptibility. A Chinese case-control study included 339 lung cancer cases and 358 controls using five haplotype-tagging SNPs (htSNPs) (rs3212980, rs3212964, rs3212961, rs11615 and rs2298881) from the HapMap database, capturing 95% of the common haplotypic diversity of ERCC1. A combined analysis of eleven htSNPs covering ERCC2 and ERCC1 was performed. No significant association between individual htSNPs and lung cancer susceptibility was observed. There were interactions between rs3212961 and rs2298881and smoking duration (P=0.03 and P=0.01, respectively). Thus, the variant alleles of rs3212961 [OR (95% CI)=1.81(1.03-3.17), P=0.04] and rs2298881 [OR (95% CI)=2.16(1.26-3.70), P=0.005] were associated with risk of lung cancer among long-term smokers (>20 years) but not among never smokers and short-term smokers. No significant associations with lung cancer susceptibility were observed for global or individual haplotypes defined by five htSNPs of ERCC1. A highly differential distribution of haplotypes based on eleven htSNPs covering ERCC2 and ERCC1 were found (global test P=4.3×10(-5)). After Bonferroni correction, haplotypeER2+1-1 [OR (95% CI)=3.63 (1.39-9.47), P=0.005, marginally] and haplotypeER2+1-8 [OR (95% CI)=4.46 (2.03-9.79), P=5.6×10(-5), strongly] were associated with increased risk of lung cancer. The diplotype analysis with haplotypeER2+1-8 was also statistically significant (P<0.001). Haplotype analysis of pathological subtypes revealed that htSNPs of both genes may mainly influence the risk of lung adenocarcinoma. Strong linkage disequilibrium exist in two regions encompassing ERCC2 and ERCC1. These data suggest that common genetic variations in ERCC1 may influence increased risk of smoking-related lung cancer and one of the causative effectors may locate around or within ERCC2.  相似文献   

6.
7.

Background

Although early-stage non-small-cell lung cancer (NSCLC) is considered a potentially curable disease following complete resection, patients have a wide spectrum of survival according to stage (IB, II, IIIA). Within each stage, gene expression profiles can identify patients with a higher risk of recurrence. We hypothesized that altered mRNA expression in nine genes could help to predict disease outcome: excision repair cross-complementing 1 (ERCC1), myeloid zinc finger 1 (MZF1) and Twist1 (which regulate N-cadherin expression), ribonucleotide reductase subunit M1 (RRM1), thioredoxin-1 (TRX1), tyrosyl-DNA phosphodiesterase (Tdp1), nuclear factor of activated T cells (NFAT), BRCA1, and the human homolog of yeast budding uninhibited by benzimidazole (BubR1).

Methodology and Principal Findings

We performed real-time quantitative polymerase chain reaction (RT-QPCR) in frozen lung cancer tissue specimens from 126 chemonaive NSCLC patients who had undergone surgical resection and evaluated the association between gene expression levels and survival. For validation, we used paraffin-embedded specimens from 58 other NSCLC patients. A strong inter-gene correlation was observed between expression levels of all genes except NFAT. A Cox proportional hazards model indicated that along with disease stage, BRCA1 mRNA expression significantly correlated with overall survival (hazard ratio [HR], 1.98 [95% confidence interval (CI), 1.11-6]; P = 0.02). In the independent cohort of 58 patients, BRCA1 mRNA expression also significantly correlated with survival (HR, 2.4 [95%CI, 1.01-5.92]; P = 0.04).

Conclusions

Overexpression of BRCA1 mRNA was strongly associated with poor survival in NSCLC patients, and the validation of this finding in an independent data set further strengthened this association. Since BRCA1 mRNA expression has previously been linked to differential sensitivity to cisplatin and antimicrotubule drugs, BRCA1 mRNA expression may provide additional information for customizing adjuvant antimicrotubule-based chemotherapy, especially in stage IB, where the role of adjuvant chemotherapy has not been clearly demonstrated.  相似文献   

8.
Excision Repair Cross-Complementing Group 1 (ERCC1) is an important DNA repair gene, playing critical role in nucleotide excision repair pathway and having a significant influence on genomic instability. Some studies support that ERCC1 might be a potential predictive and prognostic marker in non-small cell lung cancer (NSCLC). ERCC1 has also been shown to be a promising biomarker in NSCLC treated with a cisplatin-based regimen. Therefore, the determination of ERCC1 expression at DNA, mRNA and protein level in different stages of NSCLC is still an important topic in the cancer. Ninety-one formalin-fixed paraffin-embedded tumor samples histopathologically diagnosed as NSCLC were examined in this study. ERCC1 expression at protein level were scored by immunohistochemistry. The gene amplification and mRNA expression levels for ERCC1 were determined by real-time quantitative PCR. There was complete concordance among the three methods in 39 tumor samples (42.9%). A strong correlation was found between DNA amplification and mRNA expression (r = 0.662) while there was no correlation between mRNA and protein assessment for ERCC1 expression (r = −0.013). ERCC1 expression at mRNA and DNA level (63.1 and 84.2%, respectively) in tumors at stage III was higher than at the other stages. In contrast, the protein expression at stage II and III (56.6 and 52.6%, respectively) of NSCLC was lower than that of tumors with stage I NSCLC. These results show that the mechanism by which ERCC1 expression might play a role in tumor behavior. This study was also confirmed that the appropriate validation and qualification in methods used for ERCC1 status were needed before its clinical application and implementation.  相似文献   

9.
MicroRNAs are deemed as key regulators of gene expression. In particular, the elevated expression of excision repair cross-complementing 1 (ERCC1) significantly reduced the effectiveness of gastric cancer treatment by cisplatin (CDDP)-based therapies. In this paper, qRT-PCR and western blot were adopted to measure miR-122 and ERCC1 messenger RNA (mRNA) expression in all samples. Luciferase assay was carried out to verify the role of ERCC1 as a target of miR-122. The CCK-8 assay was carried out to study the effect of ERCC1 and miR-122 on cell survival and apoptosis. The results demonstrated that miR-122 expression was reduced in cisplatin-resistant gastric cancer. Using bioinformatic analysis, miR-122 was shown to target the 3′-UTR of human ERCC1. A dual-luciferase assay demonstrated that miR-122 downregulated ERCC1 expression, while the mutations in ERCC1 3′-UTR abolished its interaction with miR-122. Transfection of miR-122 mimics decreased the levels of ERCC1 mRNA and protein expression, while the transfection of miR-122 inhibitors increased the levels of both ERCC1 mRNA and protein expression. Furthermore, we found that overexpressed miR-122 promoted the proliferation of MKN74 cells and reduced their apoptotic by targeting ERCC1. In addition, the levels of miR-122 and ERCC1 were negatively correlated in gastric cancer samples. In summary, the reduced miR-122 expression may play an essential role in the induction of cisplatin-resistance by increasing ERCC1 expression.  相似文献   

10.
The candidate-gene approach in association studies of polygenic diseases has often yielded conflicting results. In this hospital-based case-control study with 696 white patients newly diagnosed with bladder cancer and 629 unaffected white controls, we applied a multigenic approach to examine the associations with bladder cancer risk of a comprehensive panel of 44 selected polymorphisms in two pathways, DNA repair and cell-cycle control, and to evaluate higher-order gene-gene interactions, using classification and regression tree (CART) analysis. Individually, only XPD Asp312Asn, RAG1 Lys820Arg, and a p53 intronic SNP exhibited statistically significant main effects. However, we found a significant gene-dosage effect for increasing numbers of potential high-risk alleles in DNA-repair and cell-cycle pathways separately and combined. For the nucleotide-excision repair pathway, compared with the referent group (fewer than four adverse alleles), individuals with four (odds ratio [OR] = 1.52, 95% CI 1.05-2.20), five to six (OR = 1.81, 95% CI 1.31-2.50), and seven or more adverse alleles (OR = 2.50, 95% CI 1.69-3.70) had increasingly elevated risks of bladder cancer (P for trend <.001). Each additional adverse allele was associated with a 1.21-fold increase in risk (95% CI 1.12-1.29). For the combined analysis of DNA-repair and cell-cycle SNPs, compared with the referent group (<13 adverse alleles), the ORs for individuals with 13-15, 16-17, and >or=18 adverse alleles were 1.22 (95% CI 0.84-1.76), 1.57 (95% CI 1.05-2.35), and 1.77 (95% CI 1.19-2.63), respectively (P for trend = .002). Each additional high-risk allele was associated with a 1.07-fold significant increase in risk. In addition, we found that smoking had a significant multiplicative interaction with SNPs in the combined DNA-repair and cell-cycle-control pathways (P<.01). All genetic effects were evident only in "ever smokers" (persons who had smoked >or=100 cigarettes) and not in "never smokers." A cross-validation statistical method developed in this study confirmed the above observations. CART analysis revealed potential higher-order gene-gene and gene-smoking interactions and categorized a few higher-risk subgroups for bladder cancer. Moreover, subgroups identified with higher cancer risk also exhibited higher levels of induced genetic damage than did subgroups with lower risk. There was a significant trend of higher numbers of bleomycin- and benzo[a]pyrene diol-epoxide (BPDE)-induced chromatid breaks (by mutagen-sensitivity assay) and DNA damage (by comet assay) for individuals in higher-risk subgroups among cases of bladder cancer in smokers. The P for the trend was .0348 for bleomycin-induced chromosome breaks, .0036 for BPDE-induced chromosome breaks, and .0397 for BPDE-induced DNA damage, indicating that these higher-order gene-gene and gene-smoking interactions included SNPs that modulated repair and resulted in diminished DNA-repair capacity. Thus, genotype/phenotype analyses support findings from CART analyses. This is the first comprehensive study to use a multigenic analysis for bladder cancer, and the data suggest that individuals with a higher number of genetic variations in DNA-repair and cell-cycle-control genes are at an increased risk for bladder cancer, confirming the importance of taking a multigenic pathway-based approach to risk assessment.  相似文献   

11.
It is hypothesized that high expression of the excision repair cross-complementation group 1 (ERCC1) gene might be a positive prognostic factor, but predict decreased sensitivity to platinum-based chemotherapy. Results from the published data are inconsistent. To derive a more precise estimation of the relationship between ERCC1 and the prognosis and predictive response to chemotherapy of non-small cell lung cancer (NSCLC), a meta-analysis was performed. An electronic search of the PubMed and Embase database was performed. Hazard ratio (HR) for overall survival (OS) was pooled in early stage patients received surgery alone to analyze the prognosis of ERCC1 on NSCLC. HRs for OS in patients received surgery plus adjuvant chemotherapy and in patients received palliative chemotherapy and relative risk (RR) for overall response to chemotherapy were aggregated to analyze the prediction of ERCC1 on NSCLC. The pooled HR indicated that high ERCC1 levels were associated with longer survival in early stage patients received surgery alone (HR, 0.69; 95% confidence interval (CI), 0.58–0.83; P = 0.000). There was no difference in survival between high and low ERCC1 levels in patients received surgery plus adjuvant chemotherapy (HR, 1.41; 95% CI, 0.93–2.12; P = 0.106). However, high ERCC1 levels were associated with shorter survival and lower response to chemotherapy in advanced NSCLC patients received palliative chemotherapy (HR, 1.75; 95% CI, 1.39–2.22; P = 0.000; RR, 0.77; 95% CI, 0.64–0.93; P = 0.007; respectively). The meta-analysis indicated that high ERCC1 expression might be a favourable prognostic and a drug resistance predictive factor for NSCLC.  相似文献   

12.
The published data on the predictive role of ERCC1 polymorphisms in lung cancer risk and survival of patients with advanced non-small cell lung cancer (NSCLC) receiving platinum-based chemotherapy remains inconsistent. The aim of this meta-analysis was to determine the role of ERCC1 gene polymorphisms (C118T and C8092A) in this clinical situation. Eligible studies were included and assessed for quality using multiple search strategies. Thirty-nine published papers involving 9615 cases (4606 with Stage III/IV disease) and 5542 controls were included in the analysis. Pooled odds ratios (OR) or hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate risk. ERCC1-C118T was associated with lung cancer risk. The OR was 0.90 (95% CI: 0.81–0.99, p = 0.043) in an additive genetic model (C allele vs. T allele) and 0.77 (95% CI: 0.63–0.95, p = 0.013) in a recessive genetic model (CC/CT vs. TT). The corresponding risk was 0.74 (95% CI: 0.58–0.94, p = 0.013) based on a homozygous comparison (CC vs. TT). No significant correlation was found for ERCC1 C8092A and there was no obvious relationship between ERCC1 C118T/C8092A polymorphisms and objective response to platinum-based chemotherapy. Overall survival (OS) of patients with non-small cell lung cancer (NSCLC) receiving platinum-based chemotherapy was significantly related to ERCC1 C118T (HR: 1.29, 95% CI: 1.07–1.56, p = 0.007, CT/TT vs. CC). There was no relationship between ERCC1 C8092A and survival (HR: 1.32, 95% CI: 0.84–2.10, p = 0.23, CA/AA vs. CC). These findings suggest that ERCC1 C118T polymorphisms may serve as a biomarker for lung cancer risk and have prognostic value in patients with advanced non-small cell lung cancer (NSCLC) undergoing platinum-based treatment. Further studies with larger numbers of subjects from a worldwide arena are needed to validate the associations.  相似文献   

13.
A defective ratio between DNA damage and repair may result in the occurrence of a malignant phenotype. Previous studies have found that many genetic alterations in DNA repair genes occur frequently in lung cancer. However, the epigenetic mechanisms underlying this tumorigenesis are not clear. Herein, we have used a chemical-induced rat lung carcinogenesis model to study the evolution of methylation alterations of DNA repair genes BRCA1, ERCC1, XRCC1, and MLH1. Methylation-specific PCR and immunohistochemistry were used to analyze gene methylation status and protein expression during the progression of lung carcinogenesis. Promoter hypermethylation of BRCA1 was only detected in three samples of infiltrating carcinoma. CpG island hypermethylation of ERCC1, XRCC1, and MLH1 was found to increase gradually throughout lung carcinogenesis progression. Both the prevalence of at least one methylated gene and the average number of methylated genes were heightened in squamous metaplasia and dysplasia compared with normal tissue and hyperplasia, and was further increased in carcinoma in situ (CIS) and infiltrating carcinoma. Immunohistochemical analysis showed that BRCA1 and MLH1 protein expression decreased progressively during the stages of lung carcinogenesis, whereas ERCC1 and XRCC1 expression were only found in later stages. Although methylation levels were elevated for ERCC1 and XRCC1 during carcinogenesis, an inverse correlation with protein expression was found only for BRCA1 and MLH1. These results suggest that a continuous accumulation of DNA repair gene hypermethylation and the consequent protein alterations might be a vital molecular mechanism during the process of multistep chemical-induced rat lung carcinogenesis.  相似文献   

14.
BackgroundThe nucleotide excision repair pathway is crucial for cellular DNA integrity and the ERCC1 helicase is also potentially involved in resistance to platinum-based chemotherapy, and high levels of ERCC1 mRNA in tumours have been associated with cisplatin resistance in different human cancers. The aim of this work was to investigate the correlation between DNA repair gene expression levels in tumour tissue, normal tissue and peripheral blood samples from patients with two common human cancers, non-small cell lung cancer (NSCLC) and squamous cell carcinoma of the head and neck (HNSCC), to test if blood gene expression could be a proxy for tumour tissue gene expression to predict response to platinum-based chemotherapy.MethodsUsing RT-qPCR we determined ERCC1, ERCC2, ERCC4, XPA, XPC, XRCC1, XRCC3, APEX, OGG1, MGMT mRNA levels in fresh NSCLC, normal lung and HNSCC tissue, as well as blood, from NSCLC and HNSCC patients who were treated surgically.ResultsTarget gene expression in NSCLC and HNSCC tissue was higher than in blood. A statistically significant correlation (p < 0.05) was found between target gene mRNA expression in tumour tissue and blood, in particular ERCC1, MGMT, XPC, XRCC1 and XRCC3 in NSCLC and APEX, ERCC1, ERCC2, ERCC4, XRCC1 and XRCC3 in HNSCC.ConclusionsThe existence of a significant correlation between blood and tumour tissue expression of some genes of clinical interest, such as ERCC1 in NSCLC and HNSCC, could allow the introduction in clinical practice of a simple test that would measure mRNA levels of DNA repair genes in peripheral blood samples instead of tissue samples to determine prognostic and predictive factors in NSCLC and HNSCC patients.  相似文献   

15.
There was analyzed single nucleotide polymorphisms of DNA excision repair enzyme genes hOGG, XPD, XPG, XRCC1 in 98 Siberian Group of Chemical Enterprises cancer patients and 148 healthy donors. No association was observed between the analyzed polymorphisms and malignant tumors in both control and subgroup (under study) of persons exposed to occupational ionizing radiation. Heterozygosis for the genes hOGG and XPD was found to be a protective factor to malignant tumors in exposed persons: the odds ratio = 0.42 (95% CI 0.18-0.98; p = 0.044) for the 326Ser/Cys genotype of the hOGG gene and 0.48 (95% CI 0.23-0.99; p = = 0.047) the 751Lys/Gln genotype of the XPD gene. The data obtained show a possible modifying role of the hOGG and XPD gene polymorphisms for malignant tumors risk in exposed persons.  相似文献   

16.
目的:观察非小细胞肺癌中ERCC1和RRM1表达,并探讨其临床意义。方法:选择本院及西安交通大学第一附属胸外二科于2013年1月-2013年6月收治的经术后病理证实为非小细胞癌肺癌患者40例作为研究对象,均采取免疫组化技术测定组织中ERCC1和RRM1表达水平,并分析ERCC1和RRM1表达水平与患者年龄、病理分期、是否淋巴结转移等相关因素之间的关系。结果:40例非小细胞肺癌患者中,ERCC1表达阴性28例(70.0%),阳性12例(30.0%);RRM1表达阴性9例(22.5%),阳性31例(77.5%)。ERCC1和RRM1表达阴性非小细胞肺患者生存期均优于表达阳性患者,均P0.05。患者非小细胞癌TNM分期及淋巴结转移转移情况与ERCC1及RRM1表达情况具有相关性,均P0.05。结论:非小细胞肺癌ERCC1和RRM1表达水平测定有助于预后情况,具有重要临床价值。  相似文献   

17.
Oxidative DNA damage is believed to be implicated in lung carcinogenesis. 8-OxodG is a mutagenic and abundant oxidative modification induced in DNA. OGG1, NEIL1 and MUTYH are all involved in the repair and prevention of 8-oxodG-derived mutations and may be up-regulated by oxidative stress. The polymorphism OGG1 Ser326Cys has in some studies been associated with risk of lung cancer. In a population-based cohort of 57,053 Danes, we examined associations between mRNA levels of OGG1, NEIL1, MUTYH and NUDT in buffy coat material and subsequent lung cancer risk. 260 cases with lung cancer were identified and a sub-cohort of 263 individuals was matched on sex, age and smoking duration. We found that OGG1 mRNA levels in healthy individuals were not associated with risk of subsequent getting lung cancer. However, subjects with the OGG1 Cys326/Cys326 genotype had a higher expression level of OGG1 mRNA than wildtype-allele carriers. For homozygous Cys326 carriers, the incidence rate ratio (IRR) was 1.51 (95% CI: 1.09-2.08) for a doubling of the OGG1 mRNA level and there was a statistically significant interaction between the genotype and mRNA level. Among never-smokers, the IRR was 4.29 (1.09-16.9) per doubling of the OGG1 mRNA level, which was not found among smokers. Furthermore, we found a positive correlation between OGG1 mRNA expression and urinary excretion of 8-oxodG (RS=0.18; p<0.005). NUDT1 mRNA levels were omitted due to low and unreliable expression levels. The results suggest that OGG1 mRNA levels should be regarded as a biomarker of exposure to oxidative stress with induction of DNA rather than a marker of inborn DNA repair capacity.  相似文献   

18.
Radiotherapy has played a key role in the control of tumor growth in many cancer patients. It is usually difficult to determine what fraction of the tumor cell population is radioresistant after a course of radiotherapy. The response of tumor cells to radiation is believed to be accompanied by complex changes in the gene expression pattern. It may be possible to use these to sensitize radioresistant tumor cells and improve radiocurability. Based on the biological effects of ionizing radiation, in the present study, we developed one oligonucleotide microarray to analyze the expression of 143 genes in cells of two lung cancer cell lines with different radiosensitivities. Compared to NCI-H446 cells, expression of 18 genes significantly increased the basal levels in the radioresistant A549 cells, in which eight genes were up-regulated and 10 genes were down-regulated. In A549 cells irradiated with 5 Gy, 22 (19 up-regulated and three down-regulated) and 26 (eight up-regulated and 18 down-regulated) differentially expressed genes were found 6 and 24 h after irradiation, respectively. In NCI-H446 cells, the expression of 17 (nine up-regulated and eight down-regulated) and 18 (six up-regulated and 12 down-regulated) genes was altered 6 and 24 h after irradiation, respectively. RT-PCR was performed, and we found that MDM2, BCL2, PKCZ and PIM2 expression levels were increased in A549 cells and decreased in NCI-H446 cells after irradiation. Genes involved in DNA repair, such as XRCC5, ERCC5, ERCC1, RAD9A, ERCC4 and the gene encoding DNA-PK, were found to be increased to a higher level in A549 cells than in NCI-H446 cells. Antisense suppression of MDM2 resulted in increased radiosensitivity of A549 cells. Taken together, these results demonstrate the possibility that a group of genes involved in DNA repair, regulation of the cell cycle, cell proliferation and apoptosis is responsible for the different radioresistance of these two lung cancer cells. This list of genes may be useful in attempts to sensitize the radioresistant lung cancer cells.  相似文献   

19.

Introduction

Our retrospective cohort study investigated the effect of tumor site and stage on the associations between the allelic variants of glutathione S-transferase (GST) and DNA-repair genes and overall survival (OS) in CRC patients treated with 5-fluorouracil (5-FU)-based adjuvant chemotherapy.

Material and Methods

We genotyped GSTM1, GSTT1, GSTP1 Ile105Val, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln in 491 CRC patients between 1995 and 2001. A Cox proportional-hazards model was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the relationships between the allelic variants and OS. Survival analyses were performed for each allelic variant by using the log-rank test and Kaplan-Meier analysis.

Results

The CRC patients with the XPD Gln allelic variants had poorer survival than patients with the Lys/Lys genotype (HR  = 1.38, 95% CI  = 1.02–1.87), and rectal cancer patients had the poorest survival among them (HR  = 1.87, 95% CI  = 1.18–2.95). A significantly shorter OS was observed among stage II/III colon cancer patients with the XRCC1 Gln allelic variants (HR  = 1.69, 95% CI  = 1.06–2.71), compared to those with XRCC1 Arg/Arg genotype. In the combined analysis of the XRCC1 and XPD genes patients with stage II/III tumors, the poorest OS occurred in colon cancer patients with the XRCC1 Gln and XPD Gln allelic variants (HR  = 2.60, 95% CI  = 1.19–5.71) and rectal cancer patients with the XRCC1 Arg/Arg and XPD Gln allelic variants (HR  = 2.77, 95% CI  = 1.25–6.17).

Conclusion

The XPD and XRCC1 allelic variants may be prognostic markers for CRC patients receiving 5-FU based chemotherapy. The contributions of the XPD and XRCC1 allelic variants to OS are tumor site- and/or stage-dependent.  相似文献   

20.
Polymorphisms in DNA repair genes may be associated with differences in DNA repair capacity, thereby influencing the individual susceptibility to smoking-related cancer. We investigated the association of 10 base-excision and nucleotide-excision repair gene polymorphisms (XRCC1 -77 T/C, Arg194Trp, Arg280His and Arg399Gln; APE1 Asp148Glu; OGG1 Ser326Cys; XPA -4 G/A; XPC PAT; XPD Asp312Asn and Lys751Gln) with lung cancer risk in Caucasians. Genotypes were determined by PCR-RFLP and PCR-single base extension assays in 110 lung cancer patients and 110 age- and sex-matched controls, and the results were analyzed using logistic regression adjusted for relevant covariates. A significant association between the APE1 Asp148Glu polymorphism and lung cancer risk was found, with adjusted odds ratios (OR) of 3.38 (p=0.001) for the Asp/Glu genotype and 2.39 (p=0.038) for the Glu/Glu genotype. Gene-smoking interaction analyses revealed a statistically significant interaction between cumulative cigarette smoking and the XRCC1 Arg399Gln and XPD Lys751Gln polymorphisms: these polymorphisms were significantly associated with lung cancer in nonsmokers and light smokers (<25 PY; OR=4.92, p=0.021 for XRCC1 399 Gln/Gln; OR=3.62, p=0.049 for XPD 751 Gln/Gln), but not in heavy smokers (> or =25 PY; OR=0.68, p=0.566 for XRCC1 399 Gln/Gln; OR=0.46, p=0.295 for XPD 751 Gln/Gln). Both the XRCC1 Arg194Trp and Arg280His as well as the OGG1 Ser326Cys heterozygous genotypes were associated with a significantly reduced risk for lung cancer (OR=0.32, p=0.024; OR=0.25, p=0.028; OR=0.51, p=0.033, respectively). No associations with lung cancer risk were found for the XRCC1 -77 T/C, the XPA -4 G/A and the XPC PAT polymorphisms. In conclusion, the APE1 Asp148Glu polymorphism is highly predictive for lung cancer, and cumulative cigarette smoking modifies the associations between the XRCC1 Arg399Gln and the XPD Lys751Gln polymorphisms and lung cancer risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号