首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analogues of d-glucose modified at C-3, and in some cases at a second position, were prepared and tested for active accumulation by everted segments of hamster intestine. Their relative affinity for the sugar carrier was measured by tissue/medium ratio, Michaelis-Menten kinetics and competitive inhibition of d-galactose or methyl alpha-d-glucoside transport. d-Glucose and its 3-deoxy-3-fluoro, 3-chloro-3-deoxy and to a smaller extent its 3-bromo-3-deoxy derivatives, bound and were transported more strongly than 3-deoxy-d-glucose and other sugars not containing an electronegative atom in the gluco configuration at C-3. 3-Deoxy-d-galactose, 3,6-dideoxy-d-glucose and d-gulose, which have two alterations from the d-glucose structure, were not, or only very weakly, transported. The results are interpreted as indicating the presence of a hydrogen bond from the carrier to the hydroxyl group at C-3 of d-glucose. Spatial requirements are also discussed. New syntheses are reported for 3-chloro-3-deoxy- and 3-bromo-3-deoxy-d-glucose and 3,6-dideoxy-d-glucose.  相似文献   

2.
3,4,6-Tri-O-acetyl-D-galactal was transformed into methyl 6-O-acetyl-2-azido-4-O-benzyl-2-deoxy-beta-D-galactopyranoside and its 4-O-acetyl-6-O-benzyl analogue, each of which was glycosylated with activated, O-acetylated derivatives of methyl D-glucopyranosyluronate. The resulting beta-(1----3)-linked disaccharide derivatives were each reductively N-acetylated, hydrogenolysed, O-sulfated, and saponified to afford the disodium salts of methyl 2-acetamido-2-deoxy-3-O-(beta-D-glucopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside and the 6-O-sulfo analogue. D-Galactal was also transformed into activated derivatives of 2-azido-3,6-di-O-benzyl-2-deoxy-D-galactopyranose and their 3,4-di-O-benzyl analogues with various substituents at O-4 and O-6. These glycosyl donors were condensed with 6-O-protected derivatives of methyl 2,3-di-O-benzyl-beta-D-glucopyranoside to give the beta-(1----4)-linked disaccharide derivatives, which were selectively deprotected, then oxidised at C-6 of the gluco unit, reductively N-acetylated, selectively deprotected, O-sulfated at C-4 or C-6 of the galacto unit, and hydrogenolysed to give the disodium salts of methyl 4-O-(2-acetamido-2-deoxy-4-O-sulfo-beta-D-galactopyranosyl)-beta-D- glucopyranosiduronic acid and the 6-O-sulfo analogue.  相似文献   

3.
Several weakly transported sugars were tested for transport by the Na+-dependent sugar carrier with slices of everted hamster intestinal tissue. Sugars were assumed to be transported by this carrier if the accumulation was diminished in the absence of Na+ and in the presence of the competitive inhibitor 1,5-anhydro-d-glucitol. The extent of accumulation was correlated with the number of hydroxyl groups in the d-gluco configuration if the ring oxygen was placed in the normal d-glucose position. 5-Thio-d-glucose, with a sulphur atom in the ring, was transported at about the same rate as d-glucose and had a similar Ki for d-galactose transport, but myoinositol was poorly accumulated. It is suggested that there is no hydrogen bonding at the ring oxygen atom, but that the oxygen atom is found at this position as a result of steric constraints. No sugar without a hydroxyl group in the d-gluco position at C-2 of the sugar, including d-mannose, 2-deoxy-d-glucose, 2-chloro-2-deoxy-d-glucose and 2-deoxy-2-fluoro-d-glucose, was transported by the Na+-dependent carrier, but these sugars and l-fucose weakly and competitively inhibit the Na+-dependent accumulation of l-glucose into slices of everted hamster intestinal tissue. It is concluded that the bond between the carrier and C-2 of the sugar may be covalent, and a possible mechanism for active intestinal transport is proposed.  相似文献   

4.
The structural requirements for binding to the glucose/sorbose-transport system in the human erythrocyte were explored by measuring the inhibition constants, K(i), for specifically substituted analogues of d-glucose when l-sorbose was the penetrating sugar. Derivatives in which a hydroxyl group in the d-gluco configuration was inverted, or replaced by a hydrogen atom, at C-1, C-2, C-3, C-4 or C-6 of the d-glucose molecule, all bound to the carrier, confirming that no single hydroxyl group is essential for binding to the carrier. The binding and transport of 1-deoxy-d-glucose confirmed that the sugars bind in the pyranose form. The relative inhibition constants of d-glucose and its deoxy, epimeric and fluorinated analogues are consistent with the combination of beta-d-glucopyranose with the carrier by hydrogen bonds at C-1, C-3, probably C-4, and possibly C-6 of the sugar. Both polar and non-polar substituents at C-6 enhance the affinity of d-glucose derivatives relative to d-xylose, and d-galactose derivatives relative to l-arabinose, and it is suggested that the carrier region around C-6 of the sugar may contain both hydrophobic and polar binding groups. The spatial requirements at C-1, C-2, C-3, C-4 and C-6 were explored by comparing the relative binding of d-glucose and its halogeno and O-alkyl substituents. The carrier protein closely approaches the sugar except at C-3 in the d-gluco configuration, C-4 and C-6. d-Glucal was a good inhibitor, showing that a strict chair form is not essential for binding. 3-O-(2',3'-Epoxypropyl)-d-glucose, a potential substrate-directed alkylating agent, bound to the carrier, but did not inactivate it.  相似文献   

5.
1-C-(1-Acetylacetonyl)-2-deoxy-2-(1-methyl-3-oxobut-1-enyl)amino -d-galactitol is obtained from the condensation of 2-amino-2-deoxy-d-galactose with pentane-2,4-dione in anhydrous solvent. On treatment with hot alkali it gives 2-methylpyrrole with 37% yield. By acid hydrolysis under mild conditions the compound loses the N substituent and from the resulting unstable derivative 2-methylpyrrole is obtained (52% yield). It is concluded that derivatives of aminohexoses substituted at C-1 with a dioxopentyl chain are the precursors of 2-methylpyrrole in the Cessi & Serafini-Cessi (1963) modification of the Elson-Morgan reaction. As demonstrated previously, products of condensation of aminohexoses with pentane-2,4-dione at the amino group are not converted directly into 2-methylpyrrole, but this step provides protection of the amino group during condensation at C-1.  相似文献   

6.
UDP-GlcNAc: Lysosomal enzyme precursor N-acetylglucosamine-1-phosphotransferase activity from normal fibroblasts was measured using methyl 2-O-(alpha-D-mannopyranosyl) 6-deoxy-6-fluoro-alpha-D-mannopyranoside and methyl 2-O-(6-deoxy-6-fluoro-alpha-D-mannopyranosyl) alpha-D-mannopyranoside as acceptors. The results indicate that the phosphorylation in man alpha 1----2 man sequence occurs at the C-6 position of the terminal mannose residue.  相似文献   

7.
The synthesis of methyl (beta-D-glucopyranosyluronic acid)-(1-->3)-(2-acetamido-2-deoxy-6-O-sulfonato-beta-D-galactopyr anosyl)-(1-->4)-(beta-D-glucopyranosid)uronate trisodium salt, a chondroitin 6-sulfate trisaccharide derivative, is described. Loss of stereocontrol in glycosylation reactions involving activated 4,6-O-benzylidene derivatives of the 2-deoxy-2-trichloroacetamido-D-galacto series and D-glucuronic acid-derived acceptors was highlighted. This draw-back was overcome through the use of phenyl 3,4,6-tri-O-acetyl-2-deoxy-1-thio-2-trichloroacetamido-beta-D-gala ctopyranoside, which afforded the desired beta-linked disaccharide derivative in high yield with an excellent stereoselectivity. This later was submitted to acid-catalyzed methanolysis, followed by benzylidenation, and condensed with methyl 2,3,4-tri-O-benzoyl-1-O-trichloroacetimidoyl-alpha-D-glucopyran uronate to afford the expected trisaccharide derivative. Subsequent transformation of the N-trichloroacetyl group into N-acetyl, mild acid hydrolysis, selective O-sulfonation at C-6 of the amino sugar moiety, and saponification afforded the target molecule as its sodium salt in high yield.  相似文献   

8.
The C-6 positions of chitosan were successively modified in a highly regioselective manner. The starting material, N-phthaloyl-chitosan, was successfully converted into the corresponding 6-deoxy-6-halo derivatives by reaction with N-halosuccinimides and triphenylphosphine in N-methyl-2-pyrrolidone. The resulting chloride and bromide derivatives were then substituted with azido groups by reaction with sodium azide at 120 and 80 degrees C, respectively. The azido groups were then reduced to amines via formation of the triphenylphosphinimine intermediate followed by hydrolysis using aqueous hydrazine, which also led to the removal of the N-phthaloyl groups at the C-2 positions. This sequence gave 6-amino-6-deoxy-chitosan, which, unlike chitosan, is soluble in water at neutral pH. The synthesized 6-amino-6-deoxy-chitosan derivative was evaluated as a gene carrier, and the transfection efficiency for COS-1 cells was shown to be superior to chitosan. In addition, the cytotoxicity was similar to chitosan.  相似文献   

9.
10.
Four modified substrates for acetylxylan esterases, 2-deoxy, 3-deoxy, 2-deoxy-2-fluoro, and 3-deoxy-3-fluoro derivatives of di-O-acetylated methyl beta-D-xylopyranoside were synthesized via 2,3-anhydropentopyranoside precursors. Methyl 2,3-anhydro-4-O-benzyl-beta-D-ribopyranoside was transformed into methyl 2,3-anhydro-4-O-benzyl-beta-D-lyxopyranoside in three steps. The epoxide ring opening of 2,3-anhydropentopyranosides was accomplished either by hydride reduction or hydrofluorination. Methyl beta-D-xylopyranoside 2,3,4-tri-O-, 2,4-di-O-, and 3,4-di-O-acetates, and the prepared diacetate analogues were tested as substrates of acetylxylan esterases from Schizophyllum commune and Trichoderma reesei. Measurement of their rate of deacetylation pointed to unique structural requirements of the enzymes for the substrates. The enzymes differed particularly in the requirement for the trans vicinal hydroxy group in the deacetylation at C-2 and C-3 and in the tolerance to the presence of trans vicinal acetyl groups esterifying the OH group at C-2 and C-3.  相似文献   

11.
Experiments were performed to investigate whether the fluid transported across the small intestine is isoosmotic with the mucosal solution when the active transport of glucose is partially inhibited. Everted hamster mid small intestine was incubated in one of the following four mucosal solutions: (1) Isotonic control, Krebs-Ringer bicarbonate solution containing 10 mM glucose (KRBSG), (2) Isotonic with phlorizin, KRBSG + 5X10-5 M phlorizin, (3) Hypertonic control, KRBSG + 50 mM mannitol, (4) Hypertonic with phlorizin, KRBSG + 50 MM mannitol + 5x10-5 M phlorizin. The serosal surface of the intestine was not bathed. Results indicate that the transported fluid was always isoosmotic with any of the mucosal solutions used. When the mucosal solution was made hypertonic with mannitol, the concentration of glucose and electrolytes in the absorbate increased, and as a result, the absorbate became hypertonic and isoosmotic with the mucosal solution. The presence of phlorizin either in the isotonic or in the hypertonic mucosal solution decreased the glucose concentration of the absorbate, but the transported fluid became isoosmotic with the mucosal solution due to a higher concentration of Na, K, and their associated anions. Phlorizin caused a decrease in the transmural potential difference. In spite of this, the presence of this glucoside in the mucosal solution increased the transport of sodium in relation to glucose transport. It is suggested that, at the concentrations used, phlorizin inhibits sodium movement through the electrogenic pathway, but increases the transport of this ion through the non-electrogenic route. This increase in neutral sodium transport seems to compensate for the low concentration of glucose in the absorbate, so that the absorbate becomes isoosmotic with the mucosal solution whether the latter is isotonic or hypertonic. It is suggested further that isoosmotic transport of fluid is an inherent property of the small intestine and that there may be an osmoregulatory mechanism in the gut which controls this process.  相似文献   

12.
Methyl 6-C-alkyl-6-deoxy-alpha-D-mannofuranoside derivatives have been synthesized from methyl 2,3-O-isopropylidene-5,6-O-sulfuryl-alpha-D-mannofuranoside (1). In a Path A, reaction of the 5,6-cyclic sulfate 1 with 2-lithio-1,3-dithiane afforded 2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane (2). Treatment of 2 with n-butyllithium then alkyl iodide gave the corresponding 2-(methyl 5-O-alkyl-6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl )-1,3- dithiane. Reaction of 2 with n-butyllithium and 5,6-cyclic sulfate 1 furnished 2-[methyl 6-deoxy-2,3-O-isopropylidene-5-O-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-manno-furanosid-6-yl)-alpha-D - mannofuranosid-6-yl]-1,3-dithiane. 2-(Methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid- 6-yl)-1,3-dithiane was converted into the lithiated anion, which after treatment with alkyl halide afforded the corresponding 2-alkyl-C-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-1,3- dithiane. In a Path B, 5,6-cyclic sulfate 1 reacted with 2-alkyl-2-lithio-1,3-dithiane derivatives, which led after acidic hydrolysis to 2-alkyl-2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane accompanied by methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranos-5-u loside as the by-product. This methodology was applied to synthesize 2-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-2- (methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane.  相似文献   

13.
Specificity of substrate recognition in lactose permease is directed toward the galactosyl moiety of lactose. In this study, binding of 31 structural analogues of D-galactose was examined by site-directed N-[(14)C]ethylmaleimide-labeling of the substrate-protectable Cys148 in the binding site. Alkylation of Cys148 is blocked by D-galactose with an apparent affinity of approximately 30 mM. Epimers of D-galactose at C-3 (D-gulose) and C-4 (D-glucose) or deoxy derivatives at these positions exhibit no binding whatsoever, indicating that these OH groups participate in essential interactions. Interestingly, the C-2 epimer alpha-D-talose binds almost as well as D-galactose, while 2-deoxy-D-galactose affords no substrate protection, indicating that nonstereospecific H-bonding at C-2 is required for stable binding. No substrate protection is detected with D-fucose, L-arabinose, 6-deoxy-6-fluoro-D-galactose, 6-O-methyl-D-galactose, or D-galacturonic acid, suggesting that the C-6 OH is an essential H-bond donor. Both alpha- and beta-methyl D-galactopyranosides bind more strongly than galactose, supporting the notion that the cyclic pyranose conformation is the bound form and that the anomeric configuration at C-1 does not contribute to substrate specificity. However, methyl or allyl alpha-D-galactopyranosides exhibit 60-fold lower apparent K(d)'s than D-galactose, demonstrating that binding affinity is significantly influenced by the functional group at C-1 and its orientation. Taken together, the observations confirm and extend the current binding site model [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] and indicate that specificity toward galactopyranosides is governed by H-bonding interactions at C-2, C-3, C-4, and C-6 OH groups, while binding affinity can be increased dramatically by hydrophobic interactions with the nongalactosyl moiety.  相似文献   

14.
A variety of N-acetylneuraminic acid (AcNeu) derivatives and analogs were examined as inducers of the extracellular neuraminidase of Arthrobacter sialophilus. Neuraminidase inductions were primarily studied with tryptone-yeast extract-grown cells after washing and resuspension in a defined replacement medium. The addition of readily metabolizable carbon sources to the latter, such as 0.1% casein hydrolysate, glutamate, or glucose, enhanced enzyme synthesis. Enzyme appearance occurred after a lag in the uptake of inducers, suggesting the participation of a co-inducible transport system. Neuraminidase formation during exponential growth in the presence of AcNeu ceased after depletion of this end product from the medium. It was found, besides AcNeu, that its methyl ester, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid and 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid methyl ester are each active inducers, whereas beta-anomers of AcNeu-ketosides are not. These results, in comparison to known enzyme specificity, have revealed significant differences and parallels between the inductive and catalytic processes for neuraminidase. In particular, it would appear that the free carboxylate and oxygenation at C-2 of AcNeu, essential for enzyme catalysis with traditional AcNeu substrates, are not necessary for induction and, furthermore, that transition state analogs can specifically induce this enzyme. The failure to observe catabolite repression in this system is discussed in relation to the intermediary metabolism of the genus Arthrobacter.  相似文献   

15.
6-O-methyl-, 6-O-propyl-, 6-O-pentyl- and 6-O-benzyl-D-galactose, and 6-O-methyl-, 6-O-propyl- and 6-O-pentyl-D-glucose inhibit the glucose-transport system of the human erythrocyte when added to the external medium. Penetration of 6-O-methyl-D-galactose is inhibited by D-glucose, suggesting that it is transported by the glucose-transport system, but the longer-chain 6-O-alkyl-D-galactoses penetrate by a slower D-glucose-insensitive route at rates proportional to their olive oil/water partition coefficients. 6-O-n-Propyl-D-glucose and 6-O-n-propyl-D-galactose do not significantly inhibit L-sorbose entry or D-glucose exit when present only on the inside of the cells whereas propyl-beta-D-glucopyranoside, which also penetrates the membrane slowly by a glucose-insensitive route, only inhibits L-sorbose entry or D-glucose exit when present inside the cells, and not when on the outside. The 6-O-alkyl-D-galactoses, like the other nontransported C-4 and C-6 derivatives, maltose and 4,6-O-ethylidene-D-glucose, protect against fluorodinitrobenzene inactivation, whereas propyl beta-D-glucopyranoside stimulates the inactivation. Of the transported sugars tested, those modified at C-1, C-2 and C-3 enhance fluorodinitrobenzene inactivation, where those modified at C-4 and C-6 do not, but are inert or protect against inactivation. An asymmetric mechanism is proposed with two conformational states in which the sugar binds to the transport system so that C-4 and C-6 are in contact with the solvent on the outside and C-1 is in contact with the solvent on the inside of the cell. It is suggested that fluorodinitrobenzene reacts with the form of the transport system that binds sugars at the inner side of the membrane. An Appendix describes the theoretical basis of the experimental methods used for the determination of kinetic constants for non-permeating inhibitors.  相似文献   

16.
Methyl oligobiosaminide (1) the core structure of oligostatin C, and five analogues, the 6-hydroxy-(2), 2-deoxy- (3), 2-deoxy-6-hydroxy- (4), 3-deoxy- (5), and 3-deoxy-6-hydroxy derivatives (6), were synthesized by coupling the protected pseudo-sugar epoxide 46 with suitable methyl 4-amino-4-deoxy-alpha-D-hexopyranoside derivatives. Compounds 3 and 6 showed notable inhibitory activity against alpha-D-glucosidase and alpha-D-mannosidase, respectively, whereas compound 1 had almost no activity.  相似文献   

17.
Methyl 6-O-(6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl)-2,3,4-tri- O-benzyl-alpha-D-glucopyranoside (5) was formed with high stereoselectivity when the condensation of methyl 2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl (1) with 6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl chloride in ether was promoted with silver perchlorate in the presence of 2,4,6-trimethylpyridine. O-Deacetylation of 5, followed by treatment of the formed 6, containing only HO-6' unsubstituted, with diethylaminosulfur trifluoride (DAST) or dimethylaminosulfur trifluoride (methyl DAST) gave the per-O-benzyl derivative (9) of methyl 6'-deoxy-6'-fluoro-alpha-isomaltoside. Compound 9 was also obtained by condensation of 1 with 2,3,4-tri-O-benzyl-6-deoxy-6-fluoro-beta-D-glucopyranosyl fluoride (4) in the presence of silver perchlorate and anhydrous stannous chloride. The fully benzylated methyl alpha-glycoside (15) of 6-deoxy-6-fluoro-isomaltotriose, was obtained by condensation of 6 with 4. Hydrogenolysis of 9 and 15 gave the methyl alpha-glycosides of isomaltose and isomaltotriose fluorinated at C-6 of their (nonreducing) D-glucosyl group. Fluoride-ion displacements involving DAST and methyl DAST gave practically identical results, but mixtures arising from reactions involving the latter reagent were lighter-colored and easier to resolve by chromatography. The isolation of methyl alpha-glycosides of 6'-deoxy-6'-fluorogentiobiose and of 6'-O-(6-deoxy-6-fluoro-beta-D-glucopyranosyl) isomaltose is also described.  相似文献   

18.
Acetolysis of (Z)-1,3-di-O-acetyl-2,4-O-benzylidene-6-C-(2,4-dichlorophenyl)-D-xylo-he x- 5-enitol (3) afforded (E)-1,2,3,4-tetra-O-acetyl-6-C-(2,4-dichlorophenyl)-D-xylo-hex-5-enit ol and 2-C-[(R)-acetoxy(2,4-dichlorophenyl)methyl]-3,4,6-tri-O-acetyl-2-deoxy- beta-L-galacto- and -beta-L-gulo-hexopyranosylbenzene. The mechanism of this new rearrangement was studied by exchanging the substituents at C-1 and C-3 in 3 and those of the aromatic ring attached to C-6.  相似文献   

19.
20.
The uptake of a number of amino acids by the developing small intestine of the rat was investigated in vitro. L-valine, L-leucine, L-methionine, L-phenylalanine, L-arginine and L-lysine were all taken up by active transport and concentrated within the jejunal mucosa. GABA was not actively transported by the jejunum. The kinetics of carrier transport of amino acids was determined from birth to maturity. The Michaelis constant (Km) of the L-leucine, L-methionine, L-arginine and l-lysine transport systems was found to be low postnatally and increased with age, particularly after the time of weaning. The rate of l-leucine, L-methionine, L-phenylalanine and L-lysine transport (Vmax) was high postnatally but decreased after weaning. Neutral amino acids were transported at higher rates than basic amino acids. l-arginine was poorly transported by the jejunum. The specificity of transport systems for amino acids was investigated in inhibition studies. Amino acid transport systems appeared to be polyfunctional in the postnatal period but were more specific in post-weaned animals. The changes in kinetics and specificity of amino acid transport in the small intestine are discussed with reference to their possible functional significance and to the maturational changes in the jejunum, particularly with the appearance of a functionally distinct absorptive cell lining the intestinal villi during the third postnatal week (the time of weaning).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号