首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Advanced stage and relapsing neuroblastoma (NB) has a poor prognosis with frequent treatment failures, warranting new treatment options and enhanced local tumor control. Treatment with conditionally replicative adenoviruses (CRAds) has shown effectiveness in various preclinical cancer models, but has not yet been evaluated for local control of NB. Here, we tested the efficacy of the CRAd AdDelta24 and of two AdDelta24 derivatives against NB. Derivative AdDelta24-425S11 infects cells deficient in coxsackie/adenovirus receptor (CAR) via the epidermal growth factor receptor (EGFR). Derivative AdDelta24-p53 expresses the tumor suppressor protein p53 to promote oncolysis. METHODS: Expression of CAR and EGFR, and p53 pathway and DNA damage responses were analyzed in six NB cell lines and two xenografts derived from primary NB using immunohistochemistry, reporter gene transactivation, Western blot and fluorescence-activated cell sorting (FACS) analysis. Efficacy of AdDelta24, AdDelta24-425S11 and AdDelta24-p53 against NB was evaluated in vitro by cell viability analysis and in vivo by monitoring subcutaneous xenograft tumor growth in mice and by histological analysis of treated tumors. RESULTS: Neuroblastoma cell lines were sensitive to oncolysis by AdDelta24, with a higher susceptibility of those with functional p53 and intact DNA damage responses. Compared to AdDelta24, AdDelta24-p53 exhibited enhanced oncolytic potency on all NB cell lines independent of their p53 status and AdDelta24-425S11 was more effective against CAR-low IGR-NB8 cells. Moreover, five daily intratumoral injections of 10(8) plaque-forming units (pfu) of AdDelta24-p53 or AdDelta24-425S11 into subcutaneous IGR-NB8 and IGR-N91 xenografts at an advanced tumor stage yielded significant tumor growth delays (TGD). In contrast, at this dose, AdDelta24 did not cause significant TGD of neuroblastoma xenografts. Injection of AdDelta24-p53 was associated with extensive cell lysis, apoptotic cell death, and fibrous fascicles in the tumors. CONCLUSION: CRAds expressing p53 and targeted towards EGFR appear promising new agents for local control in the treatment of neuroblastoma.  相似文献   

2.
The tumor suppressor p53 is activated in response to many types of cellular and environmental insults via mechanisms involving post-translational modification. Here we demonstrate that, unlike phosphorylation, p53 invariably undergoes acetylation in cells exposed to a variety of stress-inducing agents including hypoxia, anti-metabolites, nuclear export inhibitor and actinomycin D treatment. In vivo, p53 acetylation is mediated by the p300 and CBP acetyltransferases. Overexpression of either p300 or CBP, but not an acetyltransferase-deficient mutant, efficiently induces specific p53 acetylation. In contrast, MDM2, a negative regulator of p53, actively suppresses p300/CBP-mediated p53 acetylation in vivo and in vitro. This inhibitory activity of MDM2 on p53 acetylation is in turn abrogated by tumor suppressor p19(ARF), indicating that regulation of acetylation is a central target of the p53-MDM2-p19(ARF) feedback loop. Functionally, inhibition of deacetylation promotes p53 stability, suggesting that acetylation plays a positive role in the accumulation of p53 protein in stress response. Our results provide evidence that p300/CBP-mediated acetylation may be a universal and critical modification for p53 function.  相似文献   

3.
4.
5.
In vitro experiments have demonstrated intercellular trafficking of the VP22 tegument protein of herpes simplex virus type 1 from infected cells to neighboring cells, which internalize VP22 and transport it to the nucleus. VP22 also can mediate intercellular transport of fusion proteins, providing a strategy for increasing the distribution of therapeutic proteins in gene therapy. Intercellular trafficking of the p53 tumor suppressor protein was demonstrated in vitro using a plasmid expressing full-length p53 fused in-frame to full-length VP22. The p53-VP22 chimeric protein induced apoptosis both in transfected tumor cells and in neighboring cells, resulting in a widespread cytotoxic effect. To evaluate the anti-tumor activity of p53-VP22 in vivo, we constructed recombinant adenoviruses expressing either wild-type p53 (FTCB) or a p53-VP22 fusion protein (FVCB) and compared their effects in p53-resistant tumor cells. In vitro, treatment of tumor cells with FVCB resulted in enhanced p53-specific apoptosis compared to treatment with equivalent doses of FTCB. However, in normal cells there was no difference in the dose-related cytotoxicity of FVCB compared to that of FTCB. In vivo, treatment of established tumors with FVCB was more effective than equivalent doses of FTCB. The dose-response curve to FVCB was flatter than that to FTCB; maximal antitumor responses could be achieved using FVCB at doses 1 log lower than those obtained with FTCB. Increased antitumor efficacy was correlated with increased distribution of p53 protein in FVCB-treated tumors. This study is the first demonstration that VP22 can enhance the in vivo distribution of therapeutic proteins and improve efficacy in gene therapy.  相似文献   

6.
A combination of 8-methoxypsoralen (8-MOP) and ultraviolet-A (UVA) radiation (320-400 nm) (PUVA) is widely used in the treatment of psoriasis and other skin diseases. PUVA is highly effective in eliminating hyperproliferative cells in the epidermis, but its mechanism of action has not been fully elucidated. In this study, we used immortalized JB6 mouse epidermal cells, p53(-/-), and Fas ligand deficient (gld) mice to investigate the molecular mechanism by which PUVA induces cell death. The results indicate that PUVA treatment induces apoptosis in JB6 cells. In addition, PUVA treatment of JB6 cells results in p53 stabilization, phosphorylation, and nuclear localization as well as induction of p21(Waf/Cip1) and caspase-3 activity. In vivo studies reveal that PUVA treatment induces significantly less apoptosis in the epidermis of p53(-/-) mice compared to p53(+/+) mice. Furthermore, FasL-deficient (gld) mice are completely resistant to PUVA-induced apoptosis compared to wild-type mice. These results indicate that PUVA treatment induces apoptosis in mouse epidermal cells in vitro and in vivo and that p53 and Fas/Fas ligand interactions are required for this process, at least in vivo. This implies that similar mechanisms may be involved in the elimination of psoriatic keratinocytes from human skin following PUVA therapy.  相似文献   

7.
Although much progress has been made in the treatment of gliomas, the prognosis for patients with gliomas is still very poor. Stem cell-based therapies may be promising options for glioma treatment. Recently, many studies have reported that umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) are ideal gene vehicles for tumor gene therapy. Interleukin 24 (IL-24) is a pleiotropic immunoregulatory cytokine that has an apoptotic effect on many kinds of tumor cells and can inhibit the growth of tumors specifically without damaging normal cells. In this study, we investigated UC-MSCs as a vehicle for the targeted delivery of IL-24 to tumor sites. UC-MSCs were transduced with lentiviral vectors carrying green fluorescent protein (GFP) or IL-24 complementary DNA. The results indicated that UC-MSCs could selectively migrate to glioma cells in vitro and in vivo. Injection of IL-24-UC-MSCs significantly suppressed tumor growth of glioma xenografts. The restrictive efficacy of IL-24-UC-MSCs was associated with the inhibition of proliferation as well as the induction of apoptosis in tumor cells. These findings indicate that UC-MSC-based IL-24 gene therapy may be able to suppress the growth of glioma xenografts, thereby suggesting possible future therapeutic use in the treatment of gliomas.  相似文献   

8.
The HR6A and -B genes, homologues of the yeast Rad6 gene, encode ubiquitin-conjugating enzymes that are required for postreplication repair of DNA and damage-induced mutagenesis. Using surface plasmon resonance, we show here that HR6 protein (referred as Rad6) physically interacts with p53. Analysis of proteins coimmunoprecipitated with Rad6 antibody from metabolically labeled normal MCF10A human breast epithelial cells not only confirmed Rad6-p53 interactions in vivo but also demonstrated for the first time that exposure of MCF10A cells to cisplatin or adriamycin (ADR) induces recruitment of p14ARF into Rad6-p53 complexes. Further analysis of ADR-induced p53 response showed that stable Rad6-p53-p14ARF complex formation is associated with a parallel increase and decrease in monoubiquitinated and polyubiquitinated p53, respectively, and arrest in G(2)/M phase of the cell cycle. Interestingly, the ADR-induced suppression of p53 polyubiquitination correlated with a corresponding decline in intact Hdm2 protein levels. Treatment of MCF10A cells with MG132, a 26S proteasome inhibitor, effectively stabilized monoubiquitinated p53 and rescued ADR-induced downregulation of Hdm2. These data suggest that ADR-induced degradation of Hdm2 occurs via the ubiquitin-proteasome pathway. Rad6 is present in both the cytoplasmic and nuclear compartments of normal MCF10A cells, although in response to DNA damage it is predominantly found in the nucleus colocalizing with ubiquitinated p53, whereas Hdm2 is undetectable. Consistent with in vivo data, results from in vitro ubiquitination assays show that Rad6 mediates addition of one (mono-) to two (multimono-) ubiquitin molecules on p53 and that inclusion of Mdm2 is essential for its polyubiquitination. The data presented in the present study suggest that Rad6-p53-p14ARF complex formation and p53 ubiquitin modification are important damage-induced responses that perhaps determine the fidelity of DNA postreplication repair.  相似文献   

9.
BACKGROUND: A long-standing goal in genetic therapy for cancer is a systemic gene delivery system that selectively targets tumor cells, including metastases. Here we describe a novel cationic immunolipoplex system that shows high in vivo gene transfer efficiency and anti- tumor efficacy when used for systemic p53 gene therapy of cancer. MATERIALS AND METHODS: A cationic immunolipoplex incorporating a biosynthetically lipid-tagged, anti-transferrin receptor single-chain antibody (TfRscFv), was designed to target tumor cells both in vitro and in vivo. A human breast cancer metastasis model was employed to evaluate the in vivo efficacy of systemically administered, TfRscFv-immunolipoplex-mediated, p53 gene therapy in combination with docetaxel. RESULTS: The TfRscFv-targeting cationic immunolipoplex had a size of 60-100 nm, showed enhanced tumor cell binding, and improved targeted gene delivery and transfection efficiencies, both in vitro and in vivo. The p53 tumor suppressor gene was not only systemically delivered by the immunolipoplex to human tumor xenografts in nude mice but also functionally expressed. In the nude mouse breast cancer metastasis model, the combination of the p53 gene delivered by the systemic administration of the TfRscFv-immunolipoplex and docetaxel resulted in significantly improved efficacy with prolonged survival. CONCLUSIONS: This is the first report using scFv-targeting immunolipoplexes for systemic gene therapy. The TfRscFv has a number of advantages over the transferrin (Tf) molecule itself: (1) scFv has a much smaller size than Tf producing a smaller immunolipoplex giving better penetration into solid tumors; (2) unlike Tf, the scFv is a recombinant protein, not a blood product; (3) large scale production and strict quality control of the recombinant scFv, as well as scFv-immunolipoplex, are feasible. The sensitization of tumors to chemotherapy by this tumor-targeted and efficient p53 gene delivery method could lower the effective dose of the drug, correspondingly lessening the severe side effects, while decreasing the possibility of recurrence. Moreover, this approach is applicable to both primary and recurrent tumors, and more significantly, metastatic disease. The TfRscFv-targeting of cationic immunolipoplexes is a promising method of tumor targeted gene delivery that can be used for systemic gene therapy of cancer with the potential to critically impact the clinical management of cancer.  相似文献   

10.
Primate's p53 inhibits SV40 DNA replication in vitro   总被引:1,自引:0,他引:1  
Previous reports indicated that rodent p53 inhibits simian virus 40 (SV40) DNA replication in vitro as well as in vivo while that from primate cells does not (1-4). Here we report the evidence that p53 of primate origin also inhibits SV40 DNA replication in vitro. p53-SV40 large tumor antigen (T antigen) complex purified from SV40 infected COS-1 cells had little replication activity and inhibited SV40 DNA replication in vitro. These results suggest that inhibition of SV40 DNA replication by p53 should be regarded as general property of the protein and does not determine the mode of species specific replication of SV40 DNA.  相似文献   

11.
Upon exposure of cells to hydrogen peroxide (H(2)O(2)) phosphorylation of p53 was rapidly induced in human fibroblast GM00637, and this phosphorylation occurred on serine 9, serine 15, serine 20, but not on serine 392. In addition, H(2)O(2)-induced phosphorylation of p53 was followed by induction of p21, suggesting functional activation of p53. Induction of phosphorylation of p53 on multiple serine residues by H(2)O(2) was caffeine-sensitive and blocked in ATM(-/-) cells. Polo-like kinase-3 (Plk3) activity was also activated upon H(2)O(2) treatment, and this activation was ATM-dependent. Recombinant His(6)-Plk3 phosphorylated glutathione S-transferase (GST)-p53 fusion protein but not GST alone. When phoshorylated in vitro by His(6)-Plk3, but not by the kinase-defective mutant His6-Plk3(K52R), GST-p53 was recognized by an antibody specifically to serine 20-phosphorylated p53, indicating that serine 20 is an in vitro target of Plk3. Also serine 20-phosphorylated p53 was coimmunoprecipitated with Plk3 in cells treated with H(2)O(2). Furthermore, although H(2)O(2) strongly induced serine 15 phosphorylation of p53, it failed to induce serine 20 phosphorylation in Plk3-dificient Daudi cells. Ectopic expression of a Plk3 dominant negative mutant, Plk3(K52R), in GM00637 cells suppressed H(2)O(2)-induced serine 20 phosphorylation. Taken together, our studies strongly suggest that the oxidative stress-induced activation of p53 is at least in part mediated by Plk3.  相似文献   

12.
Nitric oxide (NO) is a potent activator of the p53 tumor suppressor protein. However, the mechanisms underlying p53 activation by NO have not been fully elucidated. We previously reported that a rapid downregulation of Mdm2 by NO may contribute to the early phase of p53 activation. Here we show that NO promotes p53 nuclear retention and inhibits Mdm2-mediated p53 nuclear export. NO induces phosphorylation of p53 on serine 15, which does not require ATM but rather appears to depend on the ATM-related ATR kinase. An ATR-kinase dead mutant or caffeine, which blocks the kinase activity of ATR, effectively abolishes the ability of NO to cause p53 nuclear retention, concomitant with its inhibition of p53 serine 15 phosphorylation. Of note, NO enhances markedly the ability of low-dose ionizing radiation to elicit apoptotic killing of neuroblastoma cells expressing cytoplasmic wild-type p53. These findings imply that, through augmenting p53 nuclear retention, NO can sensitize tumor cells to p53-dependent apoptosis. Thus, NO donors may potentially increase the efficacy of radiotherapy for treatment of certain types of cancer.  相似文献   

13.
14.
p53 regulates a key pathway which protects normal tissues from tumor development that may result from diverse forms of stress. In the absence of stress, growth suppressive and proapoptotic activity of p53 is inhibited by MDM2 which binds p53 and negatively regulates its activity and stability. MDM2 antagonists could activate p53 and may offer a novel therapeutic approach to cancer. Recently, we identified the first potent and selective low molecular weight inhibitors of MDM2-p53 binding, the Nutlins. These molecules activate the p53 pathway and suppress tumor growth in vitro and in vivo. They represent valuable new tools for studying the p53 pathway and its defects in cancer. Nutlins induce p53-dependent apoptosis in human cancer cells but appear cytostatic to proliferating normal cells. Their potent activity against osteosarcoma xenografts suggests that MDM2 antagonists may have clinical utility in the treatment of tumors with wild-type p53.  相似文献   

15.
Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-Ser392-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-Ser392-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-Ser392-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on Ser392 presents an alternative for HCC chemotherapy. [BMB Reports 2014; 47(4): 221-226]  相似文献   

16.
BACKGROUND: p51 (p73L/p63/p40/KET), a recently isolated novel p53 homologue, binds to p53-responsive elements to upregulate some p53 target genes and has been suggested to share partially overlapping functions with p53. p51 may be a promising candidate target molecule for anti-cancer therapy. METHODS: In this study, we adenovirally transduced p51A cDNA into human lung, gastric and pancreatic cancer cells and analyzed the intracellular function of p51 in anti-oncogenesis in vitro and in vivo. RESULTS: Overexpression of p51A revealed an anti-proliferative effect in vitro in all the cancer cells examined in this study. The anchorage-dependent and -independent cell growth of EBC1 cells carrying mutations in both p51 and p53 was suppressed and significant apoptosis following adenoviral transduction with p51 and/or p53 was seen. This growth suppression was cooperatively enhanced by the combined infection with adenoviral vectors encoding both p51 and p53. Furthermore, p51 activated several, but not all, p53-inducible genes, indicating that the mechanisms controlling p51- and p53-mediated tumor suppression differed. CONCLUSIONS: Our observations indicate that, although p51 exhibited reduced anti-oncogenetic effects compared with p53, it cooperatively enhanced the anti-tumor effects of p53. Our results suggest that p51 functions as a tumor suppressor in human cancer cells in vitro and in vivo and may be useful as a potential tool for cancer gene therapy.  相似文献   

17.
After treatment with ultraviolet radiation (UV), human fibroblasts that express the HPV type 16 E6 oncoprotein display defects in repair of cyclobutane pyrimidine dimers, hypersensitivity to inactivation of clonogenic survival and an inability to sustain DNA replication. To determine whether these effects are specific to depletion of p53 or inactivation of its function , fibroblast lines were constructed with ectopic expression of a dominant-negative p53 allele (p53-H179Q) to inactivate function or a short-hairpin RNA (p53-RNAi) to deplete expression of p53. Only the expression of HPV16E6 sensitized fibroblasts to UV or the chemical carcinogen, benzo[a]pyrene diolepoxide I (BPDE). Carcinogen-treated cells expressing p53-H179Q or p53-RNAi were resistant to inactivation of colony formation and did not suffer replication arrest. CHK1 is a key checkpoint kinase in the response to carcinogen-induced DNA damage. Control and p53-RNAi-expressing fibroblasts displayed phosphorylation of Ser345 on CHK1 45-120 min after carcinogen treatment with a return to near baseline phosphorylation by 6 h after treatment. HPV16E6-expressing fibroblasts displayed enhanced and sustained phosphorylation of CHK1. This was associated with enhanced phosphorylation of Thr68 on CHK2 and Ser139 on H2AX, both markers of severe replication stress and DNA double strand breaks. Incubation with the phosphatase inhibitor okadaic acid produced more phosphorylation of CHK1 in UV-treated HPV16E6-expressing cells than in p53-H179Q-expressing cells suggesting that HPV16E6 may interfere with the recovery of coupled DNA replication at replication forks that are stalled at [6-4]pyrimidine-pyrimidone photoproducts and BPDE-DNA adducts. The results indicate that HPV16E6 targets a protein or proteins other than p53 to deregulate the activity of CHK1 in carcinogen-damaged cells.  相似文献   

18.
19.
20.
The regimen of afatinib and vinorelbine has been used to treat breast or lung cancer cells with some limitations. Aspirin alone or in combination with other agents has shown unique efficacy in the treatment of cancer. We designed a preclinical study to investigate whether the triple therapy of aspirin, afatinib, and vinorelbine could synergistically inhibit the growth of p53 wild-type nonsmall cell lung cancer (NSCLC) cells. Three NSCLC cells A549, H460, and H1975 were selected to study the effect of triple therapy on cell proliferation and apoptosis. Compared to single agents, triple therapy synergistically inhibited the proliferation of lung cancer cells with combination index <1. Meanwhile, the therapeutic index of triple therapy was superior to that of single agents, indicating a balance between efficacy and safety in the combination of three agents. Mechanistic studies showed that triple therapy significantly induced apoptosis by decreasing mitochondrial membrane potential, increasing reactive oxygen species, and regulating mitochondria-related proteins. Moreover, epidermal growth factor receptor (EGFR) downstream signaling proteins including JNK, AKT, and mTOR were dramatically suppressed and p53 was substantially increased after NSCLC cells were exposed to the triple therapy. We provided evidence that the triple therapy of aspirin, afatinib and vinorelbine synergistically inhibited lung cancer cell growth through inactivation of the EGFR/AKT/mTOR pathway and accumulation of p53, providing a new treatment strategy for patients with p53 wild-type NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号