首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lysosomal enzymes in Dictyostelium discoideum contain high mannose oligosaccharides that contain mannose 6-phosphate and several unusual structures. The synthesis and distribution of these post-translational modifications were studied using probes for different carbohydrate groups. These probes include lectin-like antibodies directed to two distinct sulfated and one nonsulfated N-linked determinants, the lectin Con A, and the mammalian 215-kDa phosphomannosyl receptor. Only Con A binds to newly synthesized alpha-mannosidase present in the rough endoplasmic reticulum. The other modifications are acquired at different rates and are first detected on protein in light density Golgi-like membranes. Mutations which prevent protein transport to Golgi membranes block synthesis of these moieties, but inhibitors which prevent later transport steps have no effect. The majority of modified proteins are in lysosomes but significant amounts are delivered to nonlysosomal destinations. Different lysosomal proteins contain unequal amounts of each modification.  相似文献   

2.
Monoclonal antibodies were prepared against a mixture of purified lysosomal enzymes from Dictyostelium discoideum. Three classes of antibodies were found which recognized distinct antigenic determinants on N-linked oligosaccharides of multiple proteins. The structure of the determinants was studied by competition assays using monosaccharides and oligosaccharide/glycopeptide fractions prepared from one Dictyostelium lysosomal enzyme or other sources. The results of these studies suggest that one class of antibody recognizes an epitope containing residues of Man-6-SO4, another recognizes a domain containing a modified GlcNAc, and the third class recognizes an undefined determinant that involves the oligosaccharide. The three determinants are found on multiple overlapping, but nonidentical sets of glycoproteins. The ability to produce monoclonal antibodies against unusual N-linked oligosaccharides offers a powerful tool which can be used to investigate the occurrence, structure, biosynthesis, and the biological roles of these highly immunogenic saccharides.  相似文献   

3.
Evidence has been found for a generalized change in the post-translational modification of lysosomal enzymes during development of Dictyostelium discoideum. The physical and antigenic properties of four developmentally regulated lysosomal enzymes, N-acetylglucosaminidase, beta-glucosidase, alpha-mannosidase, and acid phosphatase, have been examined throughout the life cycle. In vegetative cells, a single major isoelectric species is detected for each enzymatic activity on native nonequilibrium isoelectric focusing gels. Between 6 and 10 hr of development, all activities, including the preformed enzyme, become less negatively charged, resulting in a modest but reproducible shift in the isoelectric focusing pattern. This alteration is not detected by native gel electrophoresis at constant pH. As development continues, the specific activity of beta-glucosidase, alpha-mannosidase, and acid phosphatase continues to increase and coincidentally, new, less acidic isozymic bands of activity can be observed on both gel systems. Some of these new isozymes accumulate preferentially in anterior cells, while others accumulate preferentially in posterior cells of migrating slugs. N-Acetylglucosaminidase does not increase in specific activity late in development and no new isozymic species appear. Using a monoclonal antibody that reacts with sulfated N-linked oligosaccharides shared by vegetative lysosomal enzymes in D. discoideum, the antigenicity of the developmental isozymes has been characterized. All of the enzymatic activity present during vegetative growth and early development is immunoprecipitable. However, the less negatively charged isozymes that accumulate after aggregation are not recognized by the antibody. Nonantigenic acid phosphatase and alpha-mannosidase are found in both anterior and posterior cells from migrating pseudoplasmodia. Since each enzyme is coded by a single structural gene, these results suggest that the isozymes present late in development arise from the synthesis of the same polypeptides with altered post-translational modifications. The appearance of anterior and posterior specific isozymes is likely to be the result of cell type specific changes in the glycoprotein modification pathway for newly synthesized proteins.  相似文献   

4.
Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes.  相似文献   

5.
The N-linked oligosaccharides found on the lysosomal enzymes from Dictyostelium discoideum are highly sulfated and contain methylphosphomannosyl residues (Gabel, C. A., Costello, C. E., Reinhold, V. N., Kurtz, L., and Kornfeld, S. (1984) J. Biol. Chem. 259, 13762-13769). Here we report studies done on the structure of N-linked oligosaccharides found on proteins secreted during growth, a major portion of which are lysosomal enzymes. Cells were metabolically labeled with [2-3H]Man and 35SO4 and a portion of the oligosaccharides were released by a sequential digestion with endoglycosidase H followed by endoglycosidase/peptide N-glycosidase F preparations. The oligosaccharides were separated by anion exchange high performance liquid chromatography into fractions containing from one up to six negative charges. Some of the oligosaccharides contained only sulfate esters or phosphodiesters, but most contained both. Less than 2% of the oligosaccharides contained a phosphomonoester or an acid-sensitive phosphodiester typical of the mammalian lysosomal enzymes. A combination of acid and base hydrolysis suggested that most of the sulfate esters were linked to primary hydroxyl groups. The presence of Man-6-SO4 was demonstrated by the appearance of 3,6-anhydromannose in acid hydrolysates of base-treated, reduced oligosaccharides. These residues were not detected in acid hydrolysates without prior base treatment or in oligosaccharides first treated by solvolysis to remove sulfate esters. Based on high performance liquid chromatography quantitation of percentage of 3H label found in 3,6-anhydromannose, it is likely that Man-6-SO4 accounts for the majority of the sulfated sugars in the oligosaccharides released from the secreted glycoproteins.  相似文献   

6.
To delineate the traffic route through the Golgi apparatus followed by newly synthesized lysosomal enzymes, we subfractionated the Golgi apparatus of rat liver by preparative free-flow electrophoresis into cisternae fractions of increasing content of trans face markers and decreasing contents of markers for the cis face. NADPase was used to mark median cisternae. Beta-Hexosaminidase, the high mannose oligosaccharide processing enzyme, alpha-mannosidase II, the two enzymes involved in the biosynthesis of the phosphomannosyl recognition marker, and the phosphomannosyl receptor itself decreased in specific activity or amount from cis to trans. Additionally, these activities were observed in a fraction consisting predominantly of cisternae, vesicles and tubules derived from trans-most Golgi apparatus elements. These results, along with preliminary pulse-labeling kinetic data for the phosphomannosyl receptor, suggest that lysosomal enzymes enter the Golgi apparatus at the cis face, are phosphorylated, and appear in trans face vesicles by a route whereby the phosphomannosyl receptor bypasses at least some median and/or trans Golgi apparatus cisternae.  相似文献   

7.
Dictyostelium discoideum is a useful system to study the biosynthesis of lysosomal enzymes because of the relative ease with which it can be manipulated genetically and biochemically. Previous studies have revealed that lysosomal enzymes are synthesized in vegetatively growing amoebae as glycosylated precursor polypeptides that are phosphorylated and sulfated on their N-linked oligosaccharide side-chains upon arrival in the Golgi complex. The precursor polypeptides are membrane associated until they are proteolytically processed and deposited as soluble mature enzymes in lysosomes. In this paper we review biochemical experiments designed to determine the roles of post-translational modification, acidic pH compartments, and proteolytic processing in the transport and sorting of lysosomal enzymes. We also describe molecular genetic approaches that are being employed to study the biosynthesis of these enzymes. Mutants altered in the sorting and secretion of lysosomal enzymes are being analyzed biochemically, and we describe recent efforts to clone the genes coding for three lysosomal enzymes in order to better understand the molecular mechanisms involved in the targeting of these enzymes.  相似文献   

8.
Western blotting and immunoprecipitation data indicated that lysosomal enzymes represent a subset of the sulfated macromolecules present in vegetative Dictyostelium discoideum amoebae and account for less than 2.5% of the total sulfate incorporated during vegetative growth. These data suggest that the majority of the highly sulfated macromolecules of vegetative D. discoideum amoebae are not related to the lysosomal enzymes.  相似文献   

9.
The phosphomannosyl receptor mediates intracellular targeting of newly synthesized acid hydrolases to lysosomes, and is also expressed as a pinocytosis receptor on the cell surface of fibroblasts. We have purified the phosphomannosyl receptor from bovine liver and produced rabbit antibodies to the bovine receptor. The antibodies partially blocked pinocytosis of human spleen beta-glucuronidase by fibroblasts, a process mediated by the phosphomannosyl receptor. Affinity-purified antibodies to the phosphomannosyl receptor were used to study the biosynthesis and turnover of the receptor in human fibroblasts. Phosphomannosyl receptor immunoprecipitated after a 15 min pulse-labelling of fibroblasts with [35S]methionine exhibited an identical mobility on sodium dodecyl sulphate/polyacrylamide gels as purified bovine liver phosphomannosyl receptor. Pulse-chase experiments for up to 3 days provided no evidence for changes in molecular weight attributable to post-translational processing of the phosphomannosyl receptor. Turnover studies determined that the half-life of the phosphomannosyl receptor in normal human fibroblasts was 24-29 h. The half-life of the receptor was slightly longer (32 h) in I-cell disease fibroblasts and normal fibroblasts exposed to leupeptin (32 h), slightly shorter in fibroblasts exposed to NH4Cl (23 h) and saturating amounts of ligand (21 h) and unaffected in cells exposed to mannose 6-phosphate (24 h). These studies show that the turnover of the phosphomannosyl receptor in fibroblasts is very slow, in contrast with its rate of internalization in endocytosis, and that its rate of degradation is not greatly altered by a variety of agents that affect lysosomal protein turnover and/or receptor-mediated endocytosis. These results suggest that the degradative activities of the lysosomes do not play an important role in phosphomannosyl receptor turnover in cultured fibroblasts.  相似文献   

10.
Antisera have been prepared against two lysosomal enzymes of the cellular slime mold, Dictyostelium discoideum. The two purified enzyme preparations used for immunization, N-acetylglucosaminidase and beta-glucosidase-1, show no cross-contamination with each other and no significant contamination by other lysosomal enzymes. However, antisera raised against either enzyme bind equally well to seven different lysosomal enzymes and show no preference for the enzyme against which they were raised. A total of 10 different antisera have been examined and all show similar results. Preadsorption of antisera with either purified enzyme removes all antibody activity against the other enzyme. Evidence is presented which indicates that the same species of antibodies are responsible for the precipitation of seven lysosomal enzymes. These data are discussed in terms of the proposal that the antigen that is shared by the lysosomal enzymes is a post-translational modification of the enzyme proteins. We have sought to further characterize the distribution of this common antigen among cellular proteins. We show that N-acetylglucosaminidase and beta-glucosidase-1 represent less than 5% of the total common antigen containing proteins in the cell. Precipitation of 35S-labeled cellular proteins from vegetative cells indicates that as much as 15-30% of the total cell protein may possess the common antigen. Preadsorption experiments confirm that all of the proteins immunoprecipitated in these experiments are recognized by the same antibodies that precipitate the lysosomal enzyme activities. Most of the labeled proteins are secreted into the medium along with the lysosomal enzyme activities during axenic growth. During the developmental phase of the life cycle of Dictyostelium, the total amount of the common antigen decreases about 2-fold relative to total cell protein. However, the synthesis of antigenic proteins continues throughout most of development.  相似文献   

11.
The recessive mutation, mod A, in the Dictyostelium discoideum strain M31 results in an alteration in the post-translational modification of lysosomal enzymes. We now report studies which indicate that mod A is deficient in glucosidase II, an enzyme which is involved in the processing of asparagine-linked oligosaccharides. [2-3H]Mannose-labeled glycopeptides were prepared from three purified mod A lysosomal enzymes and compared to the equivalent glycopeptides from parental enzymes. The mod A glycopeptides were deficient in high mannose oligosaccharides containing two phosphomannosyl residues and accumulated oligosaccharides with one phosphomannosyl residue. The phosphate was present in the form of an acid-stable phosphodiester in both instances. There was also an increase in the amount of nonphosphorylated high mannose oligosaccharides mod A and these were larger than the corresponding material from the parental enzymes. In addition, the nonphosphorylated oligosaccharides were only partially degraded by alpha-mannosidase, indicating the presence of a blocking moiety. In vitro enzyme assays demonstrated that the mod A cells cannot remove the inner 1 leads to 3-linked glucose from a glucosylated high mannose oligosaccharide. The cells are also deficient in membrane-bound neutral p-nitrophenyl-alpha-D-glucosidase activity. This activity has been attributed to glucosidase II in other systems. Removal of the outer 1 leads to 2-linked glucose from Glc3Man9Glc-NAc2 is normal, demonstrating the presence of glucosidase I activity. We conclude from these data that M31 cells are deficient in glucosidase II, the enzyme which removes the two inner glucose residues from the glucosylated oligosaccharides of newly glycosylated proteins. This defect can explain the mod A phenotype and is proposed to be the primary genetic defect in these cells.  相似文献   

12.
The lysosomal hydrolases of the cellular slime mold, Dictyostelium discoideum, possess a common posttranslational modification which is extremely antigenic in rabbits and mice. Rabbit antisera and mouse monoclonal antibodies that recognize this determinant cross-react with a group of at least 40-50 highly negatively charged proteins which include most or all of the lysosomal enzymes. (Knecht, D. A., Dimond, R. L., Wheeler, S., and Loomis, W. F. (1984) J. Biol. Chem. 259, 10633-10640). The present study demonstrates that the determinant is found on certain N-linked oligosaccharides derived from one of these proteins. An esterified sulfate is absolutely required for antigenicity.  相似文献   

13.
The major N-linked, anionic oligosaccharide found on several lysosomal enzymes of Dictyostelium discoideum contains five charges, composed of three sulfate esters and two residues of Man-6-P in phosphodiester linkage. Most of the SO4 was found as Man-6-SO4. This novel sulfated sugar was detected and quantitated by measuring the appearance of 3,6-anhydromannitol following acid hydrolysis and reduction of base-treated, reduced oligosaccharides. If SO4 is removed by solvolysis prior to the base treatment, the anhydrosugar is not formed, indicating that its presence is not an artifact of the procedure. That these oligosaccharides are derived from standard high-mannose-type oligosaccharides indicates that only one or, at most, two Man residues are unsubstituted at the 6-position.  相似文献   

14.
Dahms NM  Olson LJ  Kim JJ 《Glycobiology》2008,18(9):664-678
The two members of the P-type lectin family, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR), are ubiquitously expressed throughout the animal kingdom and are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The best-characterized function of the MPRs is their ability to direct the delivery of approximately 60 different newly synthesized soluble lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) on their N-linked oligosaccharides to the lysosome. In addition to its intracellular role in lysosome biogenesis, the CI-MPR, but not the CD-MPR, participates in a number of other biological processes by interacting with various molecules at the cell surface. The list of extracellular ligands recognized by this multifunctional receptor has grown to include a diverse spectrum of Man-6-P-containing proteins as well as several non-Man-6-P-containing ligands. Recent structural studies have given us a clearer view of how these two receptors use related, but yet distinct, approaches in the recognition of phosphomannosyl residues.  相似文献   

15.
The endogenous activity and the binding of high-uptake beta-N-acetylglucosaminidase were assayed in the membranes of heart and skeletal muscles of young (2 months) and old (15 months) NMRI-mice (Mus musculus) to evaluate the age-related changes in the phosphomannosyl receptors of lysosomal enzymes in muscular membranes. The total activities of beta-N-acetylglucosaminidase were significantly higher in cardiac and skeletal muscles of old than young mice. The total and the specific (inhibited by mannose-6-phosphate) binding of beta-N-acetylglucosaminidase to the membranes of cardiac muscle, but not to those of skeletal muscle, were higher in old mice than in young ones. The endogenous activity of beta-N-acetylglucosaminidase was significantly higher in the membranes of skeletal muscles of old mice than in those of young mice. The membranes of heart muscles did not show any difference in the endogenous activities. The saturation properties of the binding of beta-N-acetylglucosaminidase to the phosphomannosyl receptors were very similar in the membranes of heart and skeletal muscles of both age groups. We conclude that during aging the number of phosphomannosyl receptors of lysosomal enzymes increases in the membranes of heart muscle while the occupancy of phosphomannosyl receptors with endogenous ligands increases in the membranes of skeletal muscle.  相似文献   

16.
Renin, a secretory glycoprotein, acquires phosphomannosyl residues   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1987,105(5):1947-1955
Renin is an aspartyl protease which is highly homologous to the lysosomal aspartyl protease cathepsin D. During its biosynthesis, cathepsin D acquires phosphomannosyl residues that enable it to bind to the mannose 6-phosphate (Man-6-P) receptor and to be targeted to lysosomes. The phosphorylation of lysosomal enzymes by UDP- GlcNAc:lysosomal enzyme N-acetylglucosaminylphosphotransferase (phosphotransferase) occurs by recognition of a protein domain that is thought to be present only on lysosomal enzymes. In order to determine whether renin, being structurally similar to cathepsin D, also acquires phosphomannosyl residues, human renin was expressed from cloned DNA in Xenopus oocytes and a mouse L cell line and its biosynthesis and posttranslational modifications were characterized. In Xenopus oocytes, the majority of the renin remained intracellular and underwent a proteolytic cleavage which removed the propiece. Most of the renin synthesized by oocytes was able to bind to a Man-6-P receptor affinity column (53%, 57%, and 90%, in different experiments), indicating the presence of phosphomannosyl residues. In the L cells, the majority of the renin was secreted but 5-6% of the renin molecules contained phosphomannosyl residues as demonstrated by binding of [35S]methionine- labeled renin to the Man-6-P receptor as well as direct analysis of [2- 3H]mannose-labeled oligosaccharides. Although the level of renin phosphorylation differed greatly between the two cell types examined, these results demonstrate that renin is recognized by the phosphotransferase and suggest that renin contains at least part of the lysosomal protein recognition domain.  相似文献   

17.
During development in Dictyostelium discoideum, several lysosomal glycosidases undergo changes in post-translational modification that are thought to involve differences in the extent of sulfation or phosphorylation, and appear to be required for the maintenance of cellular enzyme activity late in development. We have used monoclonal antibodies specific to the lysosomal enzyme alpha-mannosidase-1 to study the major late (12 hr) developmental change in the modification system. Pulse-chase experiments performed both early and late in development reveal that the substrate for the late form of modification is restricted to newly synthesized alpha-mannosidase-1 precursor protein. We have identified one modification difference between the two developmentally distinct isozymes of alpha-mannosidase-1: 35SO4 pulse-chase data show that the newly synthesized "late" enzyme precursor is significantly undersulfated in comparison with the enzyme synthesized early in development. This apparent lack of sulfation is associated with the lack of acquisition of endoglycosidase H resistance. By contrast, an aggregation-deficient mutant, which is defective with regard to the accumulation of alpha-mannosidase-1 activity late in development, synthesizes the "early" sulfated form of the enzyme throughout development. We conclude that the late developmental change in post-translational modification specifically involves one of the biochemical steps in which the N-linked oligosaccharide side chains of the newly synthesized alpha-mannosidase-1 precursor are modified by sulfation.  相似文献   

18.
Proteins that bind phosphomannose residues in glycoproteins exhibit widely different functions. They are found as receptors of lysosomal enzymes, as ligatin that binds peripheral glycoproteins and as a lectin in parasites. The identity of the phosphomannosyl receptor for lysosomal enzymes and the insulin like growth factor II receptor raises interesting questions regarding their function.  相似文献   

19.
We have examined the relationship of N-linked oligosaccharide structures to the proper targeting and proteolytic processing of two lysosomal enzymes, alpha-mannosidase and beta-glucosidase, in the slime mold Dictyostelium discoideum. Two different mutant strains, HL241 and HL243, each synthesize the same nonglucosylated, truncated, lipid-linked oligosaccharide precursor, Man6GlcNAc2. [3H]Mannose-labeled N-linked oligosaccharides were studied following their release from immunoprecipitated alpha-mannosidase and beta-glucosidase by digestion with peptide:N-glycosidase F. The oligosaccharides from both mutants resembled each other, but they were smaller and contained fewer anionic groups than those from the wild-type. The oligosaccharides from the mutants strains were reduced in sulfate and Man-6-P content, and all Man-6-P was in the form of acid-stable phosphodiesters. Pulse-chase radiolabeling experiments using [35S] methionine indicated that the precursor forms of both enzymes were smaller than wild-type, and that this difference was due solely to differences in N-linked oligosaccharides. The precursor forms of the enzymes were not over-secreted, but appeared to be proteolytically processed into mature forms at approximately 50% the rate of wild-type. This is mainly due to their prolonged retention in the rough endoplasmic reticulum, but, ultimately, both enzymes were properly targeted to lysosomes. These studies indicate that a reduction in the amount of sulfation, phosphorylation or size of the N-linked oligosaccharides in these mutants is not critical for the proteolytic processing and targeting of the lysosomal enzymes, but that these changes may influence their rate of exit from the rough endoplasmic reticulum.  相似文献   

20.
In order to analyze the molecular mechanism of sexual cell fusion between cells of HM1 and NC4 (opposite mating type strains in Dictyostelium discoideum ), monoclonal antibodies were raised against partially-purified gp 70, a fusion-related protein of HM1 cells. The antibodies were screened for activity to inhibit cell fusion and 9 hybridoma clones were obtained. One of the fusion-blocking monoclonal antibodies, mAb1G7, was used for further analysis. It recognized nearly ten bands in an immunoblot of fusion competent HM1 cells, but no bands when HM1 membrane proteins had been deglycosylated. These results suggest the importance of carbohydrates in the cell fusion process. To confirm this possibility, effects of sugars or lectins on cell fusion were examined. Although inhibition by the sugars was incomplete, Con A, WGA, LCA, strongly inhibited cell fusion. Furthermore, tunicamycin inhibited the acquisition of fusion competence in HM1 cells, indicating the importance of N-linked glycosylation of proteins in cell fusion. All above results suggest that N-linked carbohydrates on HM1 cell surface are involved in the sexual cell fusion of D. discoideum .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号