首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.

Based mainly on pollen influx data, an attempt is made at reconstructing Holocene tree‐line fluctuations and palaeotemperatures in central Troms, North Norway. Both past and present‐day (Tauber trap) pollen influx data suggest that influx rates exceeding 250–300 pollen/cm2/year for each of the major arboreal taxa (Betula pubescens and Pinus sylvestris) are only found at sites with corresponding forest types in the immediate surroundings. High influx rates, raised tree‐lines and favourable climatic periods are recorded at 7500–4500 and 3000–2600 B.P. Betula and Pinus woodlands may have reached more than 200 m above their present altitude limits, suggesting a July mean temperature 2°C higher than at present during the Holocene optimum.  相似文献   

2.
This paper attempts to test the relationships between the surface arboreal pollen and the plants across the entire vegetation of China. Twelve genera from major arboreal plants are selected from 680 pollen taxa in a total of 803 surface pollen assemblages for this excise. The pollen data are quantitatively compared with the gridded vegetation map on spatial similarity, direction and distance of pollen dispersal, and pollen accuracy for indicating the plant distribution density.The results show that the distributions of the pollen taxa can reflect the major patterns of the plants. Abies, Larix, Picea, Pinus, Quercus and Betula exhibit high spatial similarities between pollen and source plants. The accuracy for Tsuga, Platycarya, Fagus and Cyclobalanopsis is relatively low, probably due to the low pollen productivities and the absence of samples from southern China. In the disagreement part of the pollen-plant accuracy percentage, the pollen taxa Larix, Platycarya, Fagus and Cyclobalanopsis have high proportions in underestimating plants, likely a “convergent-type” in the pollen deposition; while pollen Tsuga, Quercus, Pinus, Betula and Ulmus have high proportions in overestimating plants, likely a “divergent-type” in the pollen dispersal.Pollen dispersal estimates suggest that southward transportation of the 12 pollen taxa is dominant, and the transport distance can be up to ca. 1000 km. This is mainly caused by several months of persistent north winds from the winter monsoon, particularly in spring seasons in eastern China. The second highest pollen dispersal direction is eastward, which occurs mainly in the boreal or sub-boreal plants of Larix, Abies, Picea, Betula and Acer and is likely influenced by the Westerlies in the mid-latitudes of China. Summer-green and evergreen Platycarya, Fagus and Cyclobalanopsis are mainly dispersed to the north, reflecting the influence of the Asian summer monsoon in eastern and southern China. Results of spatial differentiation analysis using accuracy weighting suggest that the low percentage portion (1-10%) in pollen of Abies, Picea, Betula and Quercus and high percentage portion (>40%) in pollen Pinus are acceptable for the plant representatives.These results, based upon the analyses of surface pollen and modern vegetation types of China, can provide important information for testing the various methods for reconstructing and modelling the environmental or climatic parameters during the recent geological past from palaeovegetation data.  相似文献   

3.
Aim This modern pollen‐rain study documents the spatial and quantitative relationships between modern pollen and vegetation in Mongolia, and explores the potential for using this relationship in palaeoclimatic reconstructions. Location East‐central Mongolia. Methods We collected 104 pollen surface samples along a south–north transect across five vegetation zones in Mongolia. Discriminant analysis was used to classify the modern pollen spectra into five pollen assemblages corresponding to the five vegetation zones. Hierarchical cluster analysis was used to divide the main pollen taxa into two major groups and seven subgroups representing the dry and moist vegetation types and the main vegetation communities within them. Results Each vegetation zone along the transect can be characterized by a distinctive modern pollen assemblage as follows: (1) desert zone: Chenopodiaceae–Zygophyllaceae–Nitraria–Poaceae pollen assemblage; (2) desert‐steppe zone: Poaceae–Chenopodiaceae pollen assemblage; (3) steppe zone: ArtemisiaAster‐type–Poaceae–Pinus Haploxylon‐type pollen assemblage; (4) forest‐steppe zone: Pinus Haploxylon‐type–PiceaArtemisiaBetula, montane forb/shrub and pteridophyte pollen assemblage; and (5) mountain taiga zone: Pinus Haploxylon‐type–Picea–Poaceae–Cyperaceae, montane forb/shrub and Pteridophyte pollen assemblage. Main conclusions Based on the ratio between the major pollen taxon groups and subgroups, we propose two pollen–climate indices that represent the precipitation and temperature conditions in the study region. When plotted along our south–north transect, the moisture indices (M) and temperature indices (T) mimic the regional gradients of precipitation and temperature across Mongolia very closely. These pollen–climate indices can be used for palaeoclimatic reconstruction based on fossil pollen data.  相似文献   

4.
Aim Beringia, far north‐eastern Siberia and north‐western North America, was largely unglaciated during the Pleistocene. Although this region has long been considered an ice‐age refugium for arctic herbs and shrubs, little is known about its role as a refugium for boreal trees and shrubs during the last glacial maximum (LGM, c. 28,000–15,000 calibrated years before present). We examine mapped patterns of pollen percentages to infer whether six boreal tree and shrub taxa (Populus, Larix, Picea, Pinus, Betula, Alnus/Duschekia) survived the harsh glacial conditions within Beringia. Methods Extensive networks of pollen records have the potential to reveal distinctive temporal–spatial patterns that discriminate between local‐ and long‐distance sources of pollen. We assembled pollen records for 149 lake, peat and alluvial sites from the Palaeoenvironmental Arctic Sciences database, plotting pollen percentages at 1000‐year time intervals from 21,000 to 6000 calibrated years before present. Pollen percentages are interpreted with an understanding of modern pollen representation and potential sources of long‐distance pollen during the glacial maximum. Inferences from pollen data are supplemented by published radiocarbon dates of identified macrofossils, where available. Results Pollen maps for individual taxa show unique temporal‐spatial patterns, but the data for each taxon argue more strongly for survival within Beringia than for immigration from outside regions. The first increase of Populus pollen percentages in the western Brooks Ranges is evidence that Populus trees survived the LGM in central Beringia. Both pollen and macrofossil evidence support Larix survival in western Beringia (WB), but data for Larix in eastern Beringia (EB) are unclear. Given the similar distances of WB and EB to glacial‐age boreal forests in temperate latitudes of Asia and North America, the widespread presence of Picea pollen in EB and Pinus pollen in WB indicates that Picea and Pinus survived within these respective regions. Betula pollen is broadly distributed but highly variable in glacial‐maximum samples, suggesting that Betula trees or shrubs survived in restricted populations throughout Beringia. Alnus/Duschekia percentages show complex patterns, but generally support a glacial refugium in WB. Main conclusions Our interpretations have several implications, including: (1) the rapid post‐glacial migration rate reported for Picea in western Canada may be over estimated, (2) the expansion of trees and shrubs within Beringia should have been nearly contemporaneous with climatic change, (3) boreal trees and shrubs are capable of surviving long periods in relatively small populations (at the lower limit of detection in pollen data) and (4) long‐distance migration may not have been the predominant mode of vegetation response to climatic change in Beringia.  相似文献   

5.
石家庄市空气花粉散布规律及与气候因子的关系   总被引:1,自引:0,他引:1  
李英  李月丛  吕素青  许清海 《生态学报》2014,34(6):1575-1586
石家庄市2007—2009连续两年空气花粉分析表明:受植物花期影响,春季以木本植物花粉为主,夏、秋季以草本植物花粉为主,不同类型花粉通量存在一定年际差异。松属、杨属、胡桃属等当地花粉含量占花粉组合的80.0%以上,桦木属、栎属、虎榛子属等区域花粉含量低于20.0%,显示空气花粉能较好地反映周围植被,但也受区域植被的影响。依据空气花粉通量变化规律,石家庄市主要空气花粉类型通量从高到低排在前5位的依次为:胡桃属、悬铃木属、蒿属、杨属、藜科,均为高致敏类型,花粉过敏症患者在其花期或通量较高时期应早作防范。空气花粉百分含量与气候因子之间的(CCA)分析结果显示,其主要受风速与水汽压影响;不同季节主要花粉类型通量与气候因子的相关分析表明:春季和秋季空气花粉通量主要受气温和水汽压的影响,夏季主要受相对湿度和水汽压的影响,冬季与气候因子相关较弱。  相似文献   

6.
Aim Determination of the main directions of variance in an extensive data base of annual pollen deposition, and the relationship between pollen data from modified Tauber traps and palaeoecological data. Location Northern Finland and Norway. Methods Pollen analysis of annual samples from pollen traps and contiguous high‐resolution samples from a peat sequence. Numerical analysis (principal components analysis) of the resulting data. Results The main direction of variation in the trap data is due to the vegetation region in which each trap is located. A secondary direction of variation is due to the annual variability of pollen production of some of the tree taxa, especially Betula and Pinus. This annual variability is more conspicuous in ‘absolute’ data than it is in percentage data which, at this annual resolution, becomes more random. There are systematic differences, with respect to peat‐forming taxa, between pollen data from traps and pollen data from a peat profile collected over the same period of time. Main conclusions Annual variability in pollen production is rarely visible in fossil pollen samples because these cannot be sampled at precisely a 12‐month resolution. At near‐annual resolution sampling, it results in erratic percentage values which do not reflect changes in vegetation. Profiles sampled at near annual resolution are better analysed in terms of pollen accumulation rates with the realization that even these do not record changes in plant abundance but changes in pollen abundance. However, at the coarser temporal resolution common in most fossil samples it does not mask the origin of the pollen in terms of its vegetation region. Climate change may not be recognizable from pollen assemblages until the change has persisted in the same direction sufficiently long enough to alter the flowering (pollen production) pattern of the dominant trees.  相似文献   

7.
通过四川螺髻山(1984、2017年)表土和化石孢粉与植被的关系分析发现:孢粉组合中木本植物含量(91.0%)占绝对优势,松属、冷杉属、青冈属、常绿栎类、落叶栎类、桤木属、杜鹃花科、禾本科和蒿属为主要花粉类型;人工次生林花粉组合能很好地反映母体植被的群落特征,并可指示优势种的存在和人类活动痕迹;针阔混交林花粉组合能较好地反映群落整体特征,花粉类型能与母体植被中优势种较好地对应;常绿阔叶林、针叶林和灌丛草甸的花粉组合难以反映母体植被的群落特征。DCA表明,花粉谱的百分含量,能较好地区分人工扰动植被和天然植被,但人工次生林、常绿阔叶林和针阔混交林之间以及针叶林和灌丛草甸之间未能区分。30年前后表土孢粉组合变化明显,1984年样品以松属、青冈属和桤木属等花粉为主,而2017年采样分析中松属、桤木属花粉占绝对优势。随着人类活动的加强,部分地区松树和桤木大面积飞播或种植,表土孢粉组合对当地植被指示意义与扰动强度呈负相关关系。现生植被与表土孢粉组合的差异能为恢复古植被和古环境提供参考,但原生植被已经被破坏地区的孢粉图谱,就很难作为重建历史时期植被的根据。本研究可以为亚热带山地利用孢粉学恢复第四纪时期植被与气候,探讨人类活动与环境的关系提供理论依据和实践参考。  相似文献   

8.
Twenty five surface samples/moss cushions were collected for palynological analysis from open areas of Reasi District, Jammu and Kashmir (India). These samples were used to investigate the relationships between extant vegetation and modern pollen spectra, which serve as modern analogue for the reliable ecological interpretation of fossil pollen records. The present vegetation in the region comprises tropical dry deciduous forests and subtropical pine forests with scattered stands of oak. The pollen analysis reveals that Pinus sp. (average 69% in the pollen assemblages), amongst the conifers, dominates the pollen rain, which can be attributed to its high pollen productivity and exceptional pollen dispersal efficiency. Cedrus sp. and Podocarpus sp. pollen contribute with an average of 16 and 5% to the total pollen rain. Other conifers such as Picea sp., Abies sp., Juniperus sp. and Tsuga sp., as well as broad-leaved taxa such as Quercus sp., Alnus sp., Betula sp., Carpinus sp., Corylus sp., Juglans sp., Ulmus sp., Salix sp., Elaeocarpus sp., Mallotus sp. and Aesculus sp., have lower averages of 1 to 4.5% in the total pollen rain which could be either due to their poor pollen dispersal efficiency or to the poor preservation in the samples. Tubuliflorae (average 25%), Poaceae (average 6.26%), Cerealia and other crop plants (average 7.68%) are other prominent taxa in the pollen rain. The nearly complete absence of members of tropical dry deciduous forests in the pollen spectra likely is due to the fact that most species in this vegetation type are not wind pollinated.  相似文献   

9.
The Pinus genus has an elevated pollen production and an anemophilous nature. Although considered to be hypoallergenic, numerous cases of allergies caused by Pinus pollen have been cited and different authors believe that its allergenicity should be studied in more depth. In the city of Vigo several patients have tested positive for Pinus pollen extracts in skin tests, some of them being mono-sensitive to such pollens. In order to ascertain the behaviour of Pinus pollen and its correlation to the main meteorological factors, we carried out an aerobiological study in the city of Vigo from 1995 to 1998 by using a Hirst active-impact volumetric sporetrap, model Lanzoni VPPS 2000, placed on the left bank of the Vigo estuary (42°14’15’’N, 8°43’30’’W). Pinus has high quantitative importance in the airborne pollen spectrum of the city. It is one of the best represented taxa constituting 13%–20% of the total annual pollen levels. The quantity of Pinus pollen present in the atmosphere of the city of Vigo throughout a year is 5751 grains (as the average for the sampled years), with a very long pollination period, from the middle of January until May. The maximum concentration was recorded in 1998 with 1105 grains/m3 on 3 March, a much greater value than those for the previous years. At the end of its pollination period there is usually a final increase in Pinus pollen concentrations coinciding with the pollination of Pinus silvestris, which are more abundant in mountainous areas far from the city. Received: 17 March 1999 / Revised: 20 December 1999 / Accepted: 20 December 1999  相似文献   

10.
Adem Bicakci 《Biologia》2006,61(4):457-461
In this study, pollen grains were identified using Durham sampler in the atmosphere of Sakarya in 2000 and 2001. During these two years, a total of 10 805 pollen grains were recorded. A total of 5 386 pollen grains per cm2 were recorded in 2000 and a total of 5 419 pollen grains per cm2 in 2001. Pollen fall in the years 2000–2001 comprised grains belonging to 40 taxa and some unidentified pollen grains. Of these taxa, 22 belonged to arboreal and 18 taxa to non arboreal plants. Total pollen grains consisted of 69.45% grains from arboreal plants, 28.11% grains from non-arboreal plants and 2.44% unidentified pollen grains. In the region investigated, Gramineae, Pinus sp., Quercus sp., Cupressaceae/Taxaceae, Salix sp., Platanus sp., Populus sp., Carpinus sp., Fagus sp., Chenopodiaceae/Amaranthaceae, Xanthium sp., Moraceae, Corylus sp., Fraxinus sp., and Urticaceae released the greatest amount of pollen. The season of maximum pollen fall was from March to May, with a prevalence of arboreal pollen in the first months, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

11.
In this study, airborne pollen grains of Yalova province were investigated using VPSS 2000 from January to December 2004. During studying period, a total of 22409 pollen grains/m3 which belonged to 46 taxa and 74 unidentified pollen grains were recorded. From the identified taxa, 26 belong to arboreal and 20 to non-arboreal plants. Total pollen grains consist of 80.50% arboreal, 19.17% non-arboreal plants and 0.33% unidentified pollen grains. In the investigated region, from arboreal plant taxa Platanus spp. (29.08%), Cupressaceae/Taxaceae (21.22%), Pinus spp. (7.34%), Alnus spp. (4.75%), Castanea spp. (3.03%), Quercus spp. (3.07%), Olea spp. (2.50%), Acer spp. (2.21%), Corylus spp. (1.41%) and Fagus spp. (1.15%), and from non-arboreal plant taxa Poaceae (10.01%), Asteraceae (2.86%), Plantago spp. (1.47%) and Artemisia spp. (1.11%) were responsible for the greatest amounts of pollen.  相似文献   

12.
Airborne pollen sampling in Toledo, Central Spain   总被引:2,自引:0,他引:2  
Toledo is one of the main tourist spots of Spain, attracting around two million visitors per year. Its geographical situation in the vast and scarcely monitored Region of Castilla La Mancha and the high number of tourists (especially in the spring) has resulted in the Spanish Aerobiology Network (REA) making this city a major study objective. Air monitoring studies carried out using REA sampling procedures commenced in October 2002. Thirty-two pollen types were identified during the sampling period (October 2002 to October 2004). The annual Pollen Index (PI) was 44124 for the agricultural year October 2002–October 2003, and 29666 in the same period of 2003–2004. The most abundant taxa were, in decreasing order of dominance: Cupressaceae, Quercus, Poaceae, Populus, Olea, Urticaceae, Platanus, Pinus and Ulmus. Other, less well-represented pollen taxa included Salix, Alnus, Fraxinus and Tamarix, which were characteristic of riverside areas, and Morus, Artemisia and Chenopodiaceae. The presence of Castanea pollen grains originating from chestnut crops far away from the city was clearly an example of long-distance transport. The highest concentrations of airborne pollen were detected from March to May and also in January, due to the flowering of Cupressaceae species. In general, there was a correlation between pollen and meteorological parameters: a positive correlation with temperature and a negative correlation with rainfall and humidity during the pre-peak period. A negative correlation between temperature and some tree pollen taxa was detected in the principal pollen period correlation analysis due to their long pollination periods.  相似文献   

13.
The Setesdal valley in South Norway runs north to south for 200 km, from alpine vegetation at 1200 m, passing the tree-line at around 1000 m, through Boreal forests, to Nemoral forest at sea level. The Holocene vegetation history and its altitudinal differentiation were reconstructed using pollen percentages and influx and plant macrofossil concentration records from four lakes along an altitudinal transect. During the early Holocene (c. 10500–8000 cal b.p.) Betula pubescens, Pinus sylvestris, Alnus, and Corylus expanded in the lowlands. Only Pinus and B. pubescens reached 1000 m asl (Lille Kjelavatn). Only B. pubescens reached Holebudalen (1144 m asl) at about the same time as it arrived in the lowlands. Between c. 8000–3000 cal b.p. mixed deciduous forest developed around Dalane (40 m asl) and to a lesser extent around Grostjørna (180 m asl), birch woodland with pine surrounded Lille Kjelavatn and birch woodland occurred at Holebudalen. From c. 3000 cal b.p. to present, the vegetation at Dalane hardly changed except for slight human impact and the immigration of Picea abies. At Grostjørna Pinus expanded. At Lille Kjelavatn Pinus disappeared and Betula became sparse as at the tree-line today. Betula retreated from Holebudalen thus leaving it above the tree-line in low-alpine vegetation. The strengths and weaknesses of pollen and plant macrofossil data were assessed for forest reconstructions. Where local pollen production is low, as near the tree-line, percentages of long-distance tree pollen can be misleadingly high. Pollen influxes of Betula and Pinus were much smaller near their altitudinal limits than at lower altitudes, although their macrofossils were equally abundant. The limited dispersal capacity of macrofossils documents the local presence of species and the character of the local vegetation, although macrofossils of some tree taxa are rarely found. Pollen and plant macrofossil evidence complement each other to provide a more complete reconstruction of Holocene tree-limits and tree-lines and hence climate changes, than either form of evidence alone.  相似文献   

14.
Aim To identify and interpret spatial patterns of vegetation and sedimentation during the Weichselian Late‐glacial. Location North‐eastern Germany and the adjacent fringe of north‐western Poland. Methods An inspection and comparison of palynological data from c. 150 sites. Results Open Vegetation phase I (Oldest Dryas = earlier part of the Meiendorf, 12,900–12,450 14C bp ) and the Hippophaë phase (Bølling = later part of the Meiendorf; 12,450–12,000 bp ) were rather homogeneous palynologically in the study area. Open Vegetation phase II (Older Dryas; 12,000–11,900 bp ) is strongly recorded in the northern part of the study area with relatively thick sediments (suggesting severe soil erosion), but it can hardly be traced 200 km further to the south. This is attributed to sea buckthorn (Hippophaë) shrubs persisting longer in the south due to higher temperatures, to Betula forests expanding earlier under the influence of a more humid climate or to a generally denser vegetation independent of the behaviour of Hippophaë and Betula. During the late‐glacial Betula/Pinus forest phase (Allerød; 11,900–11,000 bp ), pine (Pinus) forests dominated in the southern regions, whereas birch (Betula) forests prevailed in the north. Open Vegetation phase III (Younger Dryas; 11,000–10,000 bp ) was characterized by heathlands in the northern regions with scattered birches and with sedimentation dominated by in‐washed silicates. In the south, pine parklands occurred with sedimentation dominated by local primary production which had markedly decreased after the previous warmer vegetation phase. Main conclusions The differences in vegetation and sedimentation during the open vegetation phases are attributed to a colder climate in the north than in the south, probably related to a climatic gradient between the ice‐free continental central Europe and the decaying Scandinavian ice sheet. The vegetation patterns during the late‐glacial Betula/Pinus forest phase are attributed to edaphic differences between the predominantly till plains in the northern part of the study area and the prevailing sandy outwash plains and Urstromtäler of the southern regions.  相似文献   

15.
Volumetric data on airborne pollen have been gathered for two consecutive years at a neotropical location (Caracas). Among the 65 taxa which were identified, pollen from aCupressus species (introduced) and from aCecropia species (indigenous) were dominant. Less numerous but also abundant (daily averages ≥5 grains/m3 air) were pollen from Gramineae, Urticaceae,Alcalypha, Pinus, Piperaceae andMimosa. Pollen grains were recorded daily throughout the year. They increased in numbers during April–May and again during November–December. The first peak was contributed mainly by indigenous species, the second peak mainly by introduced species.  相似文献   

16.

Respiratory allergies triggered by pollen allergens represent a significant health concern to the Irish public. Up to now, Ireland has largely refrained from participating in long-term aerobiological studies. Recently, pollen monitoring has commenced in several sampling locations around Ireland. The first results of the pollen monitoring campaigns for Dublin (urban) and Carlow (rural) concerning the period 2017–2019 and 2018–2019, respectively, are presented herein. Additional unpublished pollen data from 1978–1980 and, 2010–2011 were also incorporated in creating the first pollen calendar for Dublin. During the monitoring period over 60 pollen types were identified with an average Annual Pollen Integral (APIn) of 32,217 Pollen × day/m3 for Dublin and 78,411 Pollen × day/m3 for Carlow. The most prevalent pollen types in Dublin were: Poaceae (32%), Urticaceae (29%), Cupressaceae/Taxaceae (11%), Betula (10%), Quercus (4%), Pinus (3%), Fraxinus (2%), Alnus (2%) and Platanus (1%). The predominant pollen types in Carlow were identified as Poaceae (70%), Urticaceae (12%), Betula (10%), Quercus (2%), Fraxinus (1%) and Pinus (1%). These prevalent pollen types increased in annual pollen concentration in both locations from 2018 to 2019 except for Fraxinus. Although higher pollen concentrations were observed for the Carlow (rural) site a greater variety of pollen types were identified for the Dublin (urban) site. The general annual trend in the pollen season began with the release of tree pollen in early spring, followed by the release of grass and herbaceous pollen which dominated the summer months with the annual pollen season coming to an end in October. This behaviour was illustrated for 21 different pollen types in the Dublin pollen calendar. The correlation between ambient pollen concentration and meteorological parameters was also examined and differed greatly depending on the location and study year. A striking feature was a substantial fraction of the recorded pollen sampled in Dublin did not correlate with the prevailing wind directions. However, using non-parametric wind regression, specific source regions could be determined such as Alnus originating from the Southeast, Betula originating from the East and Poaceae originating from the Southwest.

  相似文献   

17.
Modern pollen samples from alpine vegetation on the Tibetan Plateau   总被引:6,自引:0,他引:6  
  • 1 A set of 316 modern surface pollen samples, sampling all the alpine vegetation types that occur on the Tibetan Plateau, has been compiled and analysed. Between 82 and 92% of the pollen present in these samples is derived from only 28 major taxa. These 28 taxa include examples of both tree (AP) and herb (NAP) pollen types.
  • 2 Most of the modern surface pollen samples accurately reflect the composition of the modern vegetation in the sampling region. However, airborne dust‐trap pollen samples do not provide a reliable assessment of the modern vegetation. Dust‐trap samples contain much higher percentages of tree pollen than non‐dust‐trap samples, and many of the taxa present are exotic. In the extremely windy environments of the Tibetan Plateau, contamination of dust‐trap samples by long‐distance transport of exotic pollen is a serious problem.
  • 3 The most characteristic vegetation types present on the Tibetan Plateau are alpine meadows, steppe and desert. Non‐arboreal pollen (NAP) therefore dominates the pollen samples in most regions. Percentages of arboreal pollen (AP) are high in samples from the southern and eastern Tibetan Plateau, where alpine forests are an important component of the vegetation. The relative importance of forest and non‐forest vegetation across the Plateau clearly follows climatic gradients: forests occur on the southern and eastern margins of the Plateau, supported by the penetration of moisture‐bearing airmasses associated with the Indian and Pacific summer monsoons; open, treeless vegetation is dominant in the interior and northern margins of the Plateau, far from these moisture sources.
  • 4 The different types of non‐forest vegetation are characterized by different modern pollen assemblages. Thus, alpine deserts are characterized by high percentages of Chenopodiaceae and Artemisia, with Ephedra and Nitraria. Alpine meadows are characterized by high percentages of Cyperaceae and Artemisia, with Ranunculaceae and Polygonaceae. Alpine steppe is characterized by high abundances of Artemisia, with Compositae, Cruciferae and Chenopodiaceae. Although Artemisia is a common component of all non‐forest vegetation types on the Tibetan Plateau, the presence of other taxa makes it possible to discriminate between the different vegetation types.
  • 5 The good agreement between modern vegetation and modern surface pollen samples across the Tibetan Plateau provides a measure of the reliability of using pollen data to reconstruct past vegetation patterns in non‐forested areas.
  相似文献   

18.
19.
Reliable information on past and present vegetation is important to project future changes, especially for rapidly transitioning areas such as the boreal treeline. To study past vegetation, pollen analysis is common, while current vegetation is usually assessed by field surveys. Application of detailed sedimentary DNA (sedDNA) records has the potential to enhance our understanding of vegetation changes, but studies systematically investigating the power of this proxy are rare to date. This study compares sedDNA metabarcoding and pollen records from surface sediments of 31 lakes along a north–south gradient of increasing forest cover in northern Siberia (Taymyr peninsula) with data from field surveys in the surroundings of the lakes. sedDNA metabarcoding recorded 114 plant taxa, about half of them to species level, while pollen analyses identified 43 taxa, both exceeding the 31 taxa found by vegetation field surveys. Increasing Larix percentages from north to south were consistently recorded by all three methods and principal component analyses based on percentage data of vegetation surveys and DNA sequences separated tundra from forested sites. Comparisons of the ordinations using procrustes and protest analyses show a significant fit among all compared pairs of records. Despite similarities of sedDNA and pollen records, certain idiosyncrasies, such as high percentages of Alnus and Betula in all pollen and high percentages of Salix in all sedDNA spectra, are observable. Our results from the tundra to single‐tree tundra transition zone show that sedDNA analyses perform better than pollen in recording site‐specific richness (i.e., presence/absence of taxa in the vicinity of the lake) and perform as well as pollen in tracing vegetation composition.  相似文献   

20.
The annual sums of daily airborne pollen concentrations fluctuate from year to year. It has been suggested that for some taxa there is a regular or alternating pattern in these fluctuations. On the other hand, environmental changes may lead to decreasing or increasing trends in airborne pollen concentrations. These two phenomena can only be studied reliably on the basis of long-term volumetric observations of abundantly occurring pollen types. For this study two arboreal (Betula and Quercus) and two herbaceous (Poaceae and Urtica) types were chosen.

For some of these pollen types a weak but significant trend is observed. For the arboreal types (Quercus and Betula) there appears to be a rather constant biennial fluctuating rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号