首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horizontal gene transfer (HGT) is part of prokaryotic life style and a major factor in evolution. In principle, any combinations of genetic information can be explored via HGT for effects on prokaryotic fitness. HGT mechanisms including transformation, conjugation, transduction, and variations of these plus the role of mobile genetic elements are summarized with emphasis on their potential to translocate foreign DNA. Complementarily, we discuss how foreign DNA can be integrated in recipient cells through homologous recombination (HR), illegitimate recombination (IR), and combinations of both, site-specific recombination, and the reconstitution of plasmids. Integration of foreign DNA by IR is very low, and combinations of IR with HR provide intermediate levels compared to the high frequency of homologous integration. A survey of studies on potential HGT from various transgenic plants indicates very rare transfer of foreign DNA. At the same time, in prokaryotic habitats, genes introduced into transgenic plants are abundant, and natural HGT frequencies are relatively high providing a greater chance for direct transfer instead of via transgenic plants. It is concluded that potential HGT from transgenic plants to prokaryotes is not expected to influence prokaryotic evolution and to have negative effects on human or animal health and the environment.  相似文献   

2.
The pool of mobile genetic elements (MGE) in microbial communities consists of plasmids, bacteriophages and other elements that are either self-transmissible or use mobile plasmids and phages as vehicles for their dissemination. By facilitating horizontal gene exchange, the horizontal gene pool (HGP) promotes the evolution and adaptation of microbial communities. Efforts to characterise MGE from bacterial populations resident in a variety of ecological habitats have revealed a surprisingly vast and seemingly untapped diversity. MGE, conferring such selectable traits as mercury or antibiotic resistance and degradative functions, have been readily acquired from diverse microbial communities. To circumvent the need to isolate microbial hosts, polymerase chain reaction (PCR)-based detection methods have frequently been used to assess the prevalence of MGE-specific sequences resident in the ‘microbial community’ HGP. As studies continue to reveal novel and distinct MGE, sequencing of newly isolated MGE from diverse habitats is essential for the continued development of DNA probes, PCR primers as well as for gene array and proteomics-based approaches. This minireview highlights insight gained from different methodological approaches, biased albeit largely toward plasmids in Gram-negative bacteria, used to study the HGP of naturally occurring microbial communities from various aquatic and terrestrial habitats.  相似文献   

3.
Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed.  相似文献   

4.
To explore the diversity of mobile genetic elements (MGE) associated with archaea of the phylum Thaumarchaeota, we exploited the property of most MGE to integrate into the genomes of their hosts. Integrated MGE (iMGE) were identified in 20 thaumarchaeal genomes amounting to 2 Mbp of mobile thaumarchaeal DNA. These iMGE group into five major classes: (i) proviruses, (ii) casposons, (iii) insertion sequence-like transposons, (iv) integrative-conjugative elements and (v) cryptic integrated elements. The majority of the iMGE belong to the latter category and might represent novel families of viruses or plasmids. The identified proviruses are related to tailed viruses of the order Caudovirales and to tailless icosahedral viruses with the double jelly-roll capsid proteins. The thaumarchaeal iMGE are all connected within a gene sharing network, highlighting pervasive gene exchange between MGE occupying the same ecological niche. The thaumarchaeal mobilome carries multiple auxiliary metabolic genes, including multicopper oxidases and ammonia monooxygenase subunit C (AmoC), and stress response genes, such as those for universal stress response proteins (UspA). Thus, iMGE might make important contributions to the fitness and adaptation of their hosts. We identified several iMGE carrying type I-B CRISPR-Cas systems and spacers matching other thaumarchaeal iMGE, suggesting antagonistic interactions between coexisting MGE and symbiotic relationships with the ir archaeal hosts.  相似文献   

5.
Phylogenetic surveys based on cultivation-independent methods have revealed that tidal flat sediments are environments with extensive microbial diversity. Since most of prokaryotes in nature cannot be easily cultivated under general laboratory conditions, our knowledge on prokaryotic dwellers in tidal flat sediment is mainly based on the analysis of metagenomes. Microbial community analysis based on the 16S rRNA gene and other phylogenetic markers has been widely used to provide important information on the role of microorganisms, but it is basically an indirect means, compared with direct sequencing of metagenomic DNAs. In this study, we applied a sequence-based metagenomic approach to characterize uncultivated prokaryotes from tidal flat sediment. Two large-insert genomic libraries based on fosmid were constructed from tidal flat metagenomic DNA. A survey based on end-sequencing of selected fosmid clones resulted in the identification of clones containing 274 bacterial and 16 archaeal homologs in which majority were of proteobacterial origins. Two fosmid clones containing large metagenomic DNAs were completely sequenced using the shotgun method. Both DNA inserts contained more than 20 genes encoding putative proteins which implied their ecological roles in tidal flat sediment. Phylogenetic analyses of evolutionary conserved proteins indicate that these clones are not closely related to known prokaryotes whose genome sequence is known, and genes in tidal flat may be subjected to extensive lateral gene transfer, notably between domains Bacteria and Archaea. This is the first report demonstrating that direct sequencing of metagenomic gene library is useful in underpinning the genetic makeup and functional roles of prokaryotes in tidal flat sediments.  相似文献   

6.
Among the bacteria groups, most of them are known to be beneficial to human being whereas only a minority is being recognized as harmful. The pathogenicity of bacteria is due, in part, to their rapid adaptation in the presence of selective pressures exerted by the human host. In addition, through their genomes, bacteria are subject to mutations, various rearrangements or horizontal gene transfer among and/or within bacterial species. Bacteria’s essential metabolic functions are generally encoding by the core genes. Apart of the core genes, there are several number of mobile genetic elements (MGE) acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. These MGE namely bacteriophages, transposons, plasmids, and pathogenicity islands represent about 15 % Staphylococcus aureus genomes. The acquisition of most of the MGE is made by horizontal genomic islands (GEI), recognized as discrete DNA segments between closely related strains, transfer. The GEI contributes to the wide spread of microorganisms with an important effect on their genome plasticity and evolution. The GEI are also involve in the antibiotics resistance and virulence genes dissemination. In this review, we summarize the mobile genetic elements of S. aureus.  相似文献   

7.
The human gut microbiota is a dense microbial ecosystem with extensive opportunities for bacterial contact-dependent processes such as conjugation and Type VI secretion system (T6SS)-dependent antagonism. In the gut Bacteroidales, two distinct genetic architectures of T6SS loci, GA1 and GA2, are contained on Integrative and Conjugative Elements (ICE). Despite intense interest in the T6SSs of the gut Bacteroidales, there is only a superficial understanding of their evolutionary patterns, and of their dissemination among Bacteroidales species in human gut communities. Here, we combine extensive genomic and metagenomic analyses to better understand their ecological and evolutionary dynamics. We identify new genetic subtypes, document extensive intrapersonal transfer of these ICE to Bacteroidales species within human gut microbiomes, and most importantly, reveal frequent population fixation of these newly armed strains in multiple species within a person. We further show the distribution of each of the distinct T6SSs in human populations and show there is geographical clustering. We reveal that the GA1 T6SS ICE integrates at a minimal recombination site leading to their integration throughout genomes and their frequent interruption of genes, whereas the GA2 T6SS ICE integrate at one of three different tRNA genes. The exclusion of concurrent GA1 and GA2 T6SSs in individual strains is associated with intact T6SS loci and with an ICE-encoded gene. By performing a comprehensive analysis of mobile genetic elements (MGE) in co-resident Bacteroidales species in numerous human gut communities, we identify 74 MGE that transferred to multiple Bacteroidales species within individual gut microbiomes. We further show that only three other MGE demonstrate multi-species spread in human gut microbiomes to the degree demonstrated by the GA1 and GA2 ICE. These data underscore the ubiquity and dissemination of mobile T6SS loci within Bacteroidales communities and across human populations.  相似文献   

8.
Noncoding RNAs play essential roles in genetic regulation in all organisms. In eukaryotic cells, many small non-coding RNAs act in complex with Argonaute proteins and regulate gene expression by recognizing complementary RNA targets. The complexes of Argonaute proteins with small RNAs also play a key role in silencing of mobile genetic elements and, in some cases, viruses. These processes are collectively called RNA interference. RNA interference is a powerful tool for specific gene silencing in both basic research and therapeutic applications. Argonaute proteins are also found in prokaryotic organisms. Recent studies have shown that prokaryotic Argonautes can also cleave their target nucleic acids, in particular DNA. This activity of prokaryotic Argonautes might potentially be used to edit eukaryotic genomes. However, the molecular mechanisms of small nucleic acid biogenesis and the functions of Argonaute proteins, in particular in bacteria and archaea, remain largely unknown. Here we briefly review available data on the RNA interference processes and Argonaute proteins in eukaryotes and prokaryotes.  相似文献   

9.
As an essential and basic biological discipline, prokaryotic systematics is entering the era of genomics. This paradigmatic shift is significant not only for understanding molecular phylogeny at the whole genome level but also in revealing the genetic or epigenetic basis that accounts for the phenotypic criteria used to classify and identify species. These developments provide an opportunity and a challenge for systematists to reanalyze the molecular mechanisms underlying the taxonomic characteristics of prokaryotes by drawing the knowledge from studies of genomics and/or functional genomics employing platform technologies and related bioinformatics tools. It is expected that taxonomic books, such as Bergey’s Manual of Systematic Bacteriology may evolve into a systematics library indexed by phylogenomic information with an comprehensive understanding of prokaryotic speciation and associated increasing knowledge of biological phenomena.  相似文献   

10.
Xu J 《Molecular ecology》2006,15(7):1713-1731
Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic genomes, a result consistent with those from multilocus sequence typing and representational difference analyses. The integration of various levels of ecological analyses coupled to the application and further development of high throughput technologies are accelerating the pace of discovery in microbial ecology.  相似文献   

11.
Osborn AM  Böltner D 《Plasmid》2002,48(3):202-212
Plasmids and bacteriophage represent the classical vectors for gene transfer within the horizontal gene pool. However, the more recent discovery of an increasing array of other mobile genetic elements (MGE) including genomic islands (GIs), conjugative transposons (CTns), and mobilizable transposons (MTns) which each integrate within the chromosome, offer an increasingly diverse assemblage contributing to bacterial adaptation and evolution. Molecular characterisation of these elements has revealed that they are comprised of functional modules derived from phage, plasmids, and transposons, and further that these modules are combined to generate a continuum of mosaic MGE. In particular, they are comprised of any one of three distinct types of recombinase, together with plasmid-derived transfer and mobilisation gene functions. This review highlights both the similarities and distinctions between these integrating transferable elements resulting from combination of the MGE toolbox.  相似文献   

12.
Approaches to prokaryotic biodiversity: a population genetics perspective   总被引:1,自引:0,他引:1  
The study of prokaryotic diversity has blossomed during the last 10-15 years as a result of the introduction of molecular identification, mostly based on direct 16S rRNA gene polymerase chain reaction (PCR) amplification and sequencing from natural samples. A large amount of information exists about the diversity of this specific gene. However, data from the field of bacterial population genetics and genomics make questionable the value of information regarding just one gene. Even if we accept 16S rRNA genes as useful for species identification, intraspecific variation in bacteria is so high that species catalogues are often of little value. The gene pools represented by an operational species are yet impossible to predict. On the other hand, adaptive features in prokaryotes are often coded in gene clusters (genomic islands) that can be cloned directly from the environment, sequenced and even expressed in a surrogate host. Thus, the study of the environmental genome or metagenome appears as an alternative that could eventually lead to a more realistic understanding of prokaryotic biodiversity, provide biotechnology with new tools and maybe even contribute to develop a model of prokaryotic evolution.  相似文献   

13.
Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.  相似文献   

14.
CRISPR-Cas的基因编辑能力引发了人们对该系统的研究热潮。除了实现基因的敲除和插入,CRISPR-Cas系统还可以被应用于基因簇重组、单碱基编辑和基因转录调控,推动了生物工程领域的发展。然而,有限的同源重组效率使CRISPR-Cas系统的应用受到了一定的限制。与CRISPR-Cas系统相比,移动遗传元件(mobile genetic elements,MGE)在转座酶的调控下,不需要依赖同源重组即可将指定DNA片段定向插入到细胞染色体中。近几年,人们发现了具有转座机制的CRISPR相关的转座元件,它可以介导DNA靶向整合,同时其出色的重编程能力为该领域的研究带来了新的发展。本文主要介绍近年来CRISPR-Cas系统相关转座元件的研究方向和应用进展,以及人工融合的dCas9-transposase系统的应用策略。文中还提出了CRISPR相关转座元件未来的应用前景和潜在挑战,为基因编辑工具的发展方向提供了参考意见。  相似文献   

15.
16.
CRISPR-Cas are prokaryotic defence systems that provide protection against invasion by mobile genetic elements (MGE), including bacteriophages. MGE can overcome CRISPR-Cas defences by encoding anti-CRISPR (Acr) proteins. These proteins are produced in the early stages of the infection and inhibit the CRISPR-Cas machinery to allow phage replication. While research on Acr has mainly focused on their discovery, structure and mode of action, and their applications in biotechnology, the impact of Acr on the ecology of MGE as well as on the coevolution with their bacterial hosts only begins to be unravelled. In this review, we summarise our current understanding on the distribution of anti-CRISPR genes in MGE, the ecology of phages encoding Acr, and their coevolution with bacterial defence mechanisms. We highlight the need to use more diverse and complex experimental models to better understand the impact of anti-CRISPR in MGE-host interactions.  相似文献   

17.
18.
Olfactory sensitivity and locomotor activity was assayed in Drosophila melanogaster strains carrying a mutation of the flamenco gene, which controls transposition of the mobile genetic element 4 (MGE4) retrotransposon the gypsy mobile element. A change in olfactory sensitivity was detected. The reaction to the odor of acetic acid was inverted in flies of the mutator strain (MS), which carried the flam mutation and active MGE4 copies and were characterized by genetic instability. Flies of the genetically unstable strains displayed a lower locomotor activity. The behavioral changes in MS flies can be explained by the pleiotropic effect of the flam mutation or by insertion mutations which arise in behavior genes as a result of genome destabilization by MGE4.  相似文献   

19.
20.
Automated DNA sequencing technology is so rapid that analysis has become the rate-limiting step. Hundreds of prokaryotic genome sequences are publicly available, with new genomes uploaded at the rate of approximately 20 per month. As a result, this growing body of genome sequences will include microorganisms not previously identified, isolated, or observed. We hypothesize that evolutionary pressure exerted by an ecological niche selects for a similar genetic repertoire in those prokaryotes that occupy the same niche, and that this is due to both vertical and horizontal transmission. To test this, we have developed a novel method to classify prokaryotes, by calculating their Pfam protein domain distributions and clustering them with all other sequenced prokaryotic species. Clusters of organisms are visualized in two dimensions as 'mountains' on a topological map. When compared to a phylogenetic map constructed using 16S rRNA, this map more accurately clusters prokaryotes according to functional and environmental attributes. We demonstrate the ability of this map, which we term a "niche map", to cluster according to ecological niche both quantitatively and qualitatively, and propose that this method be used to associate uncharacterized prokaryotes with their ecological niche as a means of predicting their functional role directly from their genome sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号