首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nair MS  Liu XS  Dean DH 《Biochemistry》2008,47(21):5814-5822
The umbrella and penknife models hypothesize that insecticidal Bacillus thuringiensis Cry toxins partition into the apical membrane of the insect midgut by insertion of only two alpha-helices from domain I of the protein, alpha-helices 4 and 5 in the case of the umbrella model and alpha-helices 5 and 6 in the case of the penknife model. Neither model envisages membrane partitioning by domains II and III. In this study, we present data suggesting that mutations in the domain II residue, F371, affect insertion of the whole toxin into Manduca sexta brush border membrane vesicles (BBMVs). Using steady state fluorescence measurements combined with a proteinase K protection assay, we show that mutants of F371 have lost their ability to insert into the BBMV, even though binding to cadherin is almost unaffected. The study also identifies a difference in partitioning of toxins into artificial lipid vesicles (SUVs) as opposed to native BBMVs. While the F371 mutations block insertion of domains I and II into BBMVs, they only block domain II insertion into SUVs. Bioassay and voltage clamping of midguts also confirm the fluorescence data that the noninserting mutants are nontoxic. Our study leads us to propose that, in contrast to previous models of individual free helices inserting into the membrane, the toxin enters into the membrane as a whole molecule or oligomers of the molecule, wherein the domain II residue F371 has a vital role to play in membrane insertion.  相似文献   

2.
Bacillus thuringiensis produces insecticidal proteins named Cry toxins, that are used commercially for the control of economical important insect pests. These are pore-forming toxins that interact with different receptors in the insect gut, forming pores in the apical membrane causing cell burst and insect death. Elucidation of the structure of the membrane-inserted toxin is important to fully understand its mechanism of action. One hypothesis proposed that the hairpin of α-helices 4-5 of domain I inserts into the phospholipid bilayer, whereas the rest of helices of domain I are spread on the membrane surface in an umbrella-like conformation. However, a second hypothesis proposed that the three domains of the Cry toxin insert into the bilayer without major conformational changes. In this work we constructed single Cys Cry1Ab mutants that remain active against Manduca sexta larvae and labeled them with different fluorescent probes that have different responses to solvent polarity. Different soluble quenchers as well as a membrane-bound quencher were used to compare the properties of the soluble and brush border membrane-inserted forms of Cry1Ab toxin. The fluorescence and quenching analysis presented here, revealed that domains II and III of the toxin remain in the surface of the membrane and only a discrete region of domain I is inserted into the lipid bilayer, supporting the umbrella model of toxin insertion.  相似文献   

3.
Bacillus thuringiensis delta-endotoxins insert into the brush border membranes of insect larval cells to form ion channels. A possible interaction of these toxins with a cytoplasmic component was examined by preloading vesicles from insect larval cells with protease K followed by incubation with toxin. There was no evidence for toxin antigens smaller than the intact toxin in extracts of solubilized vesicles, nor was there an effect of the inclusion of protease K on either of two functional properties, the formation of toxin aggregates or of ion pores. These toxins, physically and functionally, appear to be confined to the membrane.  相似文献   

4.
Membrane-insertion fragments of Bcl-xL, Bax, and Bid   总被引:8,自引:0,他引:8  
Apoptosis regulators of the Bcl-2 family associate with intracellular membranes from mitochondria and the endoplasmic reticulum, where they perform their function. The activity of these proteins is related to the release of apoptogenic factors, sequestered in the mitochondria, to the cytoplasm, probably through the formation of ion and/or protein transport channels. Most of these proteins contain a C-terminal putative transmembrane (TM) fragment and a pair of hydrophobic alpha helices (alpha5-alpha6) similar to the membrane insertion fragments of the ion-channel domain of diphtheria toxin and colicins. Here, we report on the membrane-insertion properties of different segments from antiapoptotic Bcl-x(L) and proapoptotic Bax and Bid, that correspond to defined alpha helices in the structure of their soluble forms. According to prediction methods, there are only two putative TM fragments in Bcl-x(L) and Bax (the C-terminal alpha helix and alpha-helix 5) and one in activated tBid (alpha-helix 6). The rest of their sequence, including the second helix of the pore-forming domain, displays only weak hydrophobic peaks, which are below the prediction threshold. Subsequent analysis by glycosylation mapping of single alpha-helix segments in a model chimeric system confirms the above predictions and allows finding an extra TM fragment made of helix alpha1 of Bax. Surprisingly, the amphipathic helices alpha6 of Bcl-x(L) and Bax and alpha7 of Bid do insert in membranes only as part of the alpha5-alpha6 (Bcl-x(L) and Bax) or alpha6-alpha7 (Bid) hairpins but not when assayed individually. This behavior suggests a synergistic insertion and folding of the two helices of the hairpin that could be due to charge complementarity and additional stability provided by turn-inducing residues present at the interhelical region. Although these data come from chimeric systems, they show direct potentiality for acquiring a membrane inserted state. Thus, the above fragments should be considered for the definition of plausible models of the active, membrane-bound species of Bcl-2 proteins.  相似文献   

5.
Bacillus thuringiensis δ-endotoxins insert into the brush border membranes of insect larval cells to form ion channels. A possible interaction of these toxins with a cytoplasmic component was examined by preloading vesicles from insect larval cells with protease K followed by incubation with toxin. There was no evidence for toxin antigens smaller than the intact toxin in extracts of solubilized vesicles, nor was there an effect of the inclusion of protease K on either of two functional properties, the formation of toxin aggregates or of ion pores. These toxins, physically and functionally, appear to be confined to the membrane.  相似文献   

6.
Zhao G  London E 《Biochemistry》2005,44(11):4488-4498
Diphtheria toxin T domain aids the translocation of toxin A chain across membranes. T domain has two hydrophobic layers/subdomains that can insert deeply into membranes: helices TH8 and 9, which form a transmembrane hairpin, and helices TH5-7, which form a nonclassical, nontransmembrane structure. Substitutions were made at Pro345, a residue located near the turn between TH8 and 9. P345 is critical for toxicity and pore formation by the T domain. Fluorescence methods showed that hairpin-disrupting Gly or Glu substitutions at 345 did not insert into lipid bilayers as deeply as the wild-type protein, and consistent with previous studies, these mutations reduced pore formation activity as assayed by a novel biotin-streptavidin-based influx assay. Introducing Pro at positions 347 or 353 not only failed to compensate for substitutions at P345, but also they further disrupted deep insertion and/or pore formation. Substitution of P345 with Asn, a residue that promotes helical hairpin formation almost as well as Pro, resulted in somewhat more normal insertion and pore formation than other substitutions. Importantly, a P345E substitution disrupted deep insertion of TH5-7. This suggests that TH8 and 9 and TH5-7 undergo some sort of coordinated insertion into the lipid bilayer and/or that the membrane-inserted T domain has a distinct tertiary structure in which TH5-7 interact with TH8 and 9 instead of consisting of noninteracting hydrophobic segments. Intriguingly, a L307R substitution in TH6, which disrupted deep insertion of TH7, had only a weak effect on pore formation and deep insertion of TH8 and 9. This suggests that the TH8 and 9 region can insert independently of TH5-7 to some degree and that TH8 and 9 insertion may occur early in T-domain insertion.  相似文献   

7.
The pore-forming domain of Bacillus thuringiensis Cry1Ac insecticidal protein comprises of a seven alpha-helix bundle (alpha1-alpha7). According to the "umbrella model," alpha4 and alpha5 helices form a hairpin structure thought to be inserted into the membrane upon binding. Here, we have synthesized and characterized the hairpin domain, alpha4-loop-alpha5, its alpha4 and alpha5 helices, as well as mutant alpha4 peptides based on mutations that increased or decreased toxin toxicity. Membrane permeation studies revealed that the alpha4-loop-alpha5 hairpin is extremely active compared with the isolated helices or their mixtures, indicating the complementary role of the two helices and the need for the loop for efficient insertion into membranes. Together with spectrofluorometric studies, we provide direct evidence for the role of alpha4-loop-alpha5 as the membrane-inserted pore-forming hairpin in which alpha4 and alpha5 line the lumen of the channel and alpha5 also participates in the oligomerization of the toxin. Strikingly, the addition of the active alpha4 mutant peptide completely inhibits alpha4-loop-alpha5 pore formation, thus providing, to our knowledge, the first example that a mutated helix within a pore can function as an "immunity protein" by directly interacting with the segments that form the pore. This presents a potential means of interfering with the assembly and function of other membrane proteins as well.  相似文献   

8.
Bacillus thuringiensis Cry toxins form pores in the apical membrane of insect larval midgut cells. To investigate their mechanism of membrane insertion, mutants in which cysteine replaced individual amino acids located within the pore-forming domain of Cry1Aa were chemically modified with sulfhydryl-specific reagents. The thiol group of cysteine was highly susceptible to oxidation and its reactivity was significantly increased when the toxins were purified under reducing conditions. Addition of a biotin group to the cysteine had little effect on the ability of the toxins to permeabilize Manduca sexta brush border membrane vesicles except for a slight reduction in activity for S252C and a large increase in activity for Y153C. The activity of Y153C was also significantly increased after modification by reagents that added an aromatic or a charged group to the cysteine. When permeability assays were performed in the presence of streptavidin, a large biotin-binding protein, the pore-forming activity of several mutants, including Y153C, where the altered residue is located within the hairpin comprising helices α4 and α5, or in adjacent loops, was significantly reduced. These results support the umbrella model of toxin insertion.  相似文献   

9.
The crystal insecticidal proteins from Bacillus thuringiensis are modular proteins comprised of three domains connected by single linkers. Domain I is a seven alpha-helix bundle, which has been involved in membrane insertion and pore formation activity. Site-directed mutagenesis has contributed to identify regions that might play an important role in the structure of the pore-forming domain within the membrane. There are several evidences that support that the hairpin alpha4-alpha5 inserts into the membrane in an antiparallel manner, while other helices lie on the membrane surface. We hypothesized that highly conserved residues of alpha5 could play an important role in toxin insertion, oligomerization and/or pore formation. A total of 15 Cry1Ab mutants located in six conserved residues of Cry1Ab, Y153, Y161, H168, R173, W182 and G183, were isolated. Eleven mutants were located within helix alpha5, one mutant was located in the loop alpha4-alpha5 and three mutants, W182P, W182I and G183C, were located in the loop alpha5-alpha6. Their effect on binding, K(+) permeability and toxicity against Manduca sexta larvae was analyzed and compared. The results provide direct evidence that some residues located within alpha5 have an important role in stability of the toxin within the insect gut, while some others also have an important role in pore formation. The results also provide evidence that conserved residues within helix alpha5 are not involved in oligomer formation since mutations in these residues are able to make pores in vitro.  相似文献   

10.
Cry toxins form lytic pores in the insect midgut cells. The role of receptor interaction in the process of protoxin activation was analyzed. Incubation of Cry1Ab protoxin with a single chain antibody that mimics the cadherin-like receptor and treatment with Manduca sexta midgut juice or trypsin, resulted in toxin preparations with high pore-forming activity in vitro. This activity correlates with the formation of a 250 kDa oligomer that lacks the helix alpha-1 of domain I. The oligomer, in contrast with the 60 kDa monomer, was capable of membrane insertion as judged by 8-anilino-1-naphthalenesulfonate binding. Cry1Ab protoxin was also activated to a 250 kDa oligomer by incubation with brush border membrane vesicles, presumably by the action of a membrane-associated protease. Finally, a model where receptor binding allows the efficient cleavage of alpha-1 and formation of a pre-pore oligomeric structure that is efficient in pore formation, is presented.  相似文献   

11.
Rosconi MP  Zhao G  London E 《Biochemistry》2004,43(28):9127-9139
Low pH-induced membrane insertion by diphtheria toxin T domain is crucial for A chain translocation into the cytoplasm. To define the membrane topography of the T domain, the exposure of biotinylated Cys residues to the cis and trans bilayer surfaces was examined using model membrane vesicles containing a deeply inserted T domain. To do this, the reactivity of biotin with external and vesicle-entrapped BODIPY-labeled streptavidin was measured. The T domain was found to insert with roughly 70-80% of the molecules in the physiologically relevant orientation. In this orientation, residue 349, located in the loop between hydrophobic helices 8 and 9, was exposed to the trans side of the bilayer, while other solution-exposed residues along the hydrophobic helices 5-9 region of the T domain located near the cis surface. A protocol developed to detect the movement of residues back and forth across the membranes demonstrated that T domain sequences did not rapidly equilibrate between the cis and the trans sides of the bilayer. Binding streptavidin to biotinylated residues prior to membrane insertion only inhibited T domain pore formation for residues in the loop between helices 8 and 9. Pore formation experiments used an approach avoiding interference from transient membrane defects/leakage that may occur upon the initial insertion of protein. Combined, these results indicate that at low pH hydrophobic helices 8 and 9 form a transmembrane hairpin, while hydrophobic helices 5-7 form a nonclassical deeply inserted nontransmembraneous state. We propose that this represents a novel pre-translocation state that is distinct from a previously defined post-translocation state.  相似文献   

12.
The Bordetella pertussis adenylate cyclase toxin-hemolysin (ACT or CyaA) is a multifunctional protein. It forms small cation-selective channels in target cell and lipid bilayer membranes and it delivers into cell cytosol the amino-terminal adenylate cyclase (AC) domain, which catalyzes uncontrolled conversion of ATP to cAMP and causes cell intoxication. Here, we demonstrate that membrane translocation of the AC domain into cells is selectively dissociated from ACT membrane insertion and channel formation when a helix-breaking proline residue is substituted for glutamate 509 (Glu-509) within a predicted transmembrane amphipathic alpha-helix. Neutral substitutions of Glu-509 had little effect on toxin activities. In contrast, charge reversal by lysine substitutions of the Glu-509 or of the adjacent Glu-516 residue reduced the capacity of the toxin to translocate the AC domain across membrane and enhanced significantly its specific hemolytic activity and channel forming capacity in lipid bilayer membranes. Combination of the E509K and E516K mutations in a single molecule further exacerbated hemolytic and channel forming activity and ablated translocation of the AC domain into cells. The lysine substitutions strongly decreased the cation selectivity of the channels, indicating that Glu-509 and Glu-516 are located within or close to the membrane channel. These results suggest that the structure including glutamate residues 509 and 516 is critical for AC membrane translocation and channel forming activity of ACT.  相似文献   

13.
During sporulation, Bacillus thuringiensis produces crystalline inclusions comprised of a mixture of δ-endotoxins. Following ingestion by insect larvae, these inclusion proteins are solubilized, and the protoxins are converted to toxins. These bind specifically to receptors on the surfaces of midgut apical cells and are then incorporated into the membrane to form ion channels. The steps required for toxin insertion into the membrane and possible oligomerization to form a channel have been examined. When bound to vesicles from the midguts of Manduca sexta larvae, the Cry1Ac toxin was largely resistant to digestion with protease K. Only about 60 amino acids were removed from the Cry1Ac amino terminus, which included primarily helix α1. Following incubation of the Cry1Ab or Cry1Ac toxins with vesicles, the preparations were solubilized by relatively mild conditions, and the toxin antigens were analyzed by immunoblotting. In both cases, most of the toxin formed a large, antigenic aggregate of ca. 200 kDa. These toxin aggregates did not include the toxin receptor aminopeptidase N, but interactions with other vesicle components were not excluded. No oligomerization occurred when inactive toxins with mutations in amphipathic helices (α5) and known to insert into the membrane were tested. Active toxins with other mutations in this helix did form oligomers. There was one exception; a very active helix α5 mutant toxin bound very well to membranes, but no oligomers were detected. Toxins with mutations in the loop connecting helices α2 and α3, which affected the irreversible binding to vesicles, also did not oligomerize. There was a greater extent of oligomerization of the Cry1Ac toxin with vesicles from the Heliothis virescens midgut than with those from the M. sexta midgut, which correlated with observed differences in toxicity. Tight binding of virtually the entire toxin molecule to the membrane and the subsequent oligomerization are both important steps in toxicity.  相似文献   

14.
Bacillus thuringiensis produces insecticidal proteins (Cry protoxins) during the sporulation phase as parasporal crystals. During intoxication, the Cry protoxins must change from insoluble crystals into membrane-inserted toxins which form ionic pores. The structural changes of Cry toxins during oligomerization and insertion into the membrane are still unknown. The Cry1Ab toxin has nine tryptophan residues; seven are located in domain I, the pore-forming domain, and two are located in domain II, which is involved in receptor recognition. Eight Trp residues are highly conserved within the whole family of three-domain Cry proteins, suggesting an essential role for these residues in the structural folding and function of the toxin. In this work, we analyzed the role of Trp residues in the structure and function of Cry1Ab toxin. We replaced the Trp residues with phenylalanine or cysteine using site-directed mutagenesis. Our results show that W65 and W316 are important for insecticidal activity of the toxin since their replacement by Phe reduced the toxicity against Manduca sexta. The presence of hydrophobic residue is important at positions 117, 219, 226, and 455 since replacement by Cys affected either the crystal formation or the insecticidal activity of the toxin in contrast to replacement by Phe in these positions. Additionally, some mutants in positions 219, 316, and 455 were also affected in binding to brush border membrane vesicles (BBMV). This is the first report that studies the role of Trp residues in the activity of Cry toxins.  相似文献   

15.
Diphtheria toxin (DT) is a disulfide linked AB-toxin consisting of a catalytic domain (C), a membrane-inserting domain (T), and a receptor-binding domain (R). It gains entry into cells by receptor-mediated endocytosis. The low pH ( approximately 5.5) inside the endosomes induces a conformational change in the toxin leading to insertion of the toxin in the membrane and subsequent translocation of the C domain into the cell, where it inactivates protein synthesis ultimately leading to cell death. We have used a highly reactive hydrophobic photoactivable reagent, DAF, to identify the segments of DT that interact with the membrane at pH 5.2. This reagent readily partitions into membranes and, on photolysis, indiscriminately inserts into lipids and membrane-inserted domains of proteins. Subsequent chemical and/or enzymatic fragmentation followed by peptide sequencing allows for identification of the modified residues. Using this approach it was observed that T domain helices, TH1, TH8, and TH9 insert into the membrane. Furthermore, the disulfide link was found on the trans side leaving part of the C domain on the trans side. This domain then comes out to the cis side via a highly hydrophobic patch corresponding to residues 134-141, originally corresponding to a beta-strand in the solution structure of DT. It appears that the three helices of the T domain could participate in the formation of a channel from a DT-oligomer, thus providing the transport route to the C domain after the disulfide reductase separates the two chains.  相似文献   

16.
Exposure to low endosomal pH during internalization of Pseudomonas exotoxin A (PE) triggers membrane insertion of its translocation domain. This process is a prerequisite for PE translocation to the cytosol where it inactivates protein synthesis. Although hydrophobic helices enable membrane insertion of related bacterial toxins such as diphtheria toxin, the PE translocation domain is devoid of hydrophobic stretches and the structural features triggering acid-induced membrane insertion of PE are not known. Here we have identified a molecular device that enables PE membrane insertion. This process is promoted by exposure of a key tryptophan residue. At neutral pH, this Trp is buried in a hydrophobic pocket closed by the smallest alpha-helix of the translocation domain. Upon acidification, protonation of the Asp that is the N-cap residue of the helix leads to its destabilization, enabling Trp side chain insertion into the endosome membrane. This tryptophan-based membrane insertion system is surprisingly similar to the membrane-anchoring mechanism of human annexin-V and could be used by other proteins as well.  相似文献   

17.
Bacillus thuringiensis produces insecticidal proteins (Cry protoxins) during the sporulation phase as parasporal crystals. During intoxication, the Cry protoxins must change from insoluble crystals into membrane-inserted toxins which form ionic pores. The structural changes of Cry toxins during oligomerization and insertion into the membrane are still unknown. The Cry1Ab toxin has nine tryptophan residues; seven are located in domain I, the pore-forming domain, and two are located in domain II, which is involved in receptor recognition. Eight Trp residues are highly conserved within the whole family of three-domain Cry proteins, suggesting an essential role for these residues in the structural folding and function of the toxin. In this work, we analyzed the role of Trp residues in the structure and function of Cry1Ab toxin. We replaced the Trp residues with phenylalanine or cysteine using site-directed mutagenesis. Our results show that W65 and W316 are important for insecticidal activity of the toxin since their replacement by Phe reduced the toxicity against Manduca sexta. The presence of hydrophobic residue is important at positions 117, 219, 226, and 455 since replacement by Cys affected either the crystal formation or the insecticidal activity of the toxin in contrast to replacement by Phe in these positions. Additionally, some mutants in positions 219, 316, and 455 were also affected in binding to brush border membrane vesicles (BBMV). This is the first report that studies the role of Trp residues in the activity of Cry toxins.  相似文献   

18.
Exchangeable serum apolipoproteins and amphipathic alpha-helical peptides are effective inhibitors of sterol (free and esterified cholesterol) uptake at the small-intestinal brush border membrane. The minimal structural requirement of an inhibitor is an amphipathic alpha-helix of 18 amino acids. The inhibition is competitive, indicating that the inhibitor binds to scavenger receptor class B type I (SR-BI) present in the brush border membrane and responsible for sterol uptake. Binding of apolipoprotein A-I to SR-BI of rabbit brush border membrane is cooperative, characterized by a dissociation constant K(d) = 0.45 microM and a Hill coefficient of n = 2.8. The cooperativity of the interaction is due to binding of the inhibitor molecule to a dimeric or oligomeric form of SR-BI held together by disulfide bridges. Consistent with the competitive nature of the inhibition, the K(d) value agrees within experimental error with the IC(50) value of inhibition and with the inhibition constant K(I). After proteinase K treatment of brush border membrane vesicles, the affinity of the interaction of apolipoprotein A-I expressed as K(d) is reduced by a factor of 20, and the cooperativity is lost. The interaction of proteinase K-treated brush border membrane vesicles with apolipoprotein A-I is nonspecific partitioning of the apolipoprotein into the lipid bilayer of brush border membrane vesicles.  相似文献   

19.
The BCL-2 family proteins constitute a critical control point in apoptosis. BCL-2 family proteins display structural homology to channel-forming bacterial toxins, such as colicins, transmembrane domain of diphtheria toxin, and the N-terminal domain of delta-endotoxin. By analogy, it has been hypothesized the BCL-2 family proteins would unfold and insert into the lipid bilayer upon membrane association. We applied the site-directed spin labeling method of electron paramagnetic resonance spectroscopy to the pro-apoptotic member BID. Here we show that helices 6-8 maintain an alpha-helical conformation in membranes with a lipid composition resembling mitochondrial outer membrane contact sites. However, unlike colicins and the transmembrane domain of diphtheria toxin, these helices of BID are bound to the lipid bilayer without adopting a transmembrane orientation. Our study presents a more detailed model for the reorganization of the structure of tBID on membranes.  相似文献   

20.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号