首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly of amyloid-beta peptide (Aβ) into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD) and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP) IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates.  相似文献   

2.
We have previously shown that overexpressing subunits of the iron-binding protein ferritin can rescue the toxicity of the amyloid β (Aβ) peptide in our Drosophila model system. These data point to an important pathogenic role for iron in Alzheimer disease. In this study, we have used an iron-selective chelating compound and RNAi-mediated knockdown of endogenous ferritin to further manipulate iron in the brain. We confirm that chelation of iron protects the fly from the harmful effects of Aβ. To understand the pathogenic mechanisms, we have used biophysical techniques to see how iron affects Aβ aggregation. We find that iron slows the progression of the Aβ peptide from an unstructured conformation to the ordered cross-β fibrils that are characteristic of amyloid. Finally, using mammalian cell culture systems, we have shown that iron specifically enhances Aβ toxicity but only if the metal is present throughout the aggregation process. These data support the hypothesis that iron delays the formation of well ordered aggregates of Aβ and so promotes its toxicity in Alzheimer disease.  相似文献   

3.
The amyloid A4 or beta peptide is a major component of extracellular amyloid deposits that are a characteristic feature of Alzheimer's disease. We synthesized a series of peptide analogs of the A4/beta peptide which are progressively longer at their carboxyl termini, including 42- and 39-residue peptides which represent the major forms of the A4/beta peptide in senile plaque and the hereditary cerebral hemorrhage with amyloidosis form, respectively. All peptides tested, beta 1-28 through beta 1-42, formed amyloid-like fibrils and previously unreported thin sheet-like structures which stained with thioflavin T and Congo Red. The solubility of beta 1-42 and shorter peptides was pH and concentration dependent, with a broad insolubility profile in the pH range of 3.5-6.5 and at concentrations above 0.75 mg/ml. Only peptides of 42 residues or longer were significantly insoluble at pH 7.4. beta 1-47 and beta 1-52 peptides are highly insoluble in aqueous media but are soluble at 40 mg/ml in the alpha helix-promoting solvent, 1,1,1,3,3,3-hexafluoro-2-propanol. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the beta 1-42 peptide migrates as a series of higher molecular mass aggregates whereas shorter peptides migrate as monomers. Aggregation is also dependent on pH, peptide concentration, and time of incubation in aqueous medium. These results indicate that the length of the hydrophobic carboxyl terminus of the A4/beta peptide is important in determining the solubility and aggregation properties of the A4/beta peptide and that acid pH environment, high peptide concentration, and long incubation time would be predicted to be important factors in promoting amyloid deposition.  相似文献   

4.
There is strong experimental evidence of the influence of surfactants (e.g., fatty acids) on the kinetics of amyloid fibril formation. However, the structures of mixed assemblies and interactions between surfactants and fibril-forming peptides are still not clear. Here, coarse-grained simulations are employed to study the aggregation kinetics of amyloidogenic peptides in the presence of amphiphilic lipids. The simulations show that the lower the fibril formation propensity of the peptides, the higher the influence of the surfactants on the peptide self-assembly kinetics. In particular, the lag phase of weakly aggregating peptides increases because of the formation of mixed oligomers, which are promoted by hydrophobic interactions and favorable entropy of mixing. A transient peak in the number of surfactants attached to the growing fibril is observed before reaching the mature fibril in some of the simulations. This peak originates from transient fibrillar defects consisting of exposed hydrophobic patches on the fibril surface, which provide a possible explanation for the temporary maximum of fluorescence observed sometimes in kinetic traces of the binding of small-molecule dyes to amyloid fibrils.  相似文献   

5.
We describe IgM class human autoantibodies that hydrolyze amyloid beta peptide 1-40 (Abeta40). A monoclonal IgM from a patient with Waldenstr?m's macroglobulinemia hydrolyzed Abeta40 at the Lys-28-Gly-29 bond and Lys-16-Ala-17 bonds. The catalytic activity was inhibited stoichiometrically by an electrophilic serine protease inhibitor. Treatment with the catalytic IgM blocked the aggregation and toxicity of Abeta40 in neuronal cell cultures. IgMs purified from the sera of patients with Alzheimer disease (AD) hydrolyzed Abeta40 at rates superior to IgMs from age-matched humans without dementia. IgMs from non-elderly humans expressed the least catalytic activity. The reaction rate was sufficient to afford appreciable degradation at physiological Abeta and IgM concentrations found in peripheral circulation. Increased Abeta concentrations in the AD brain are thought to induce neurodegenerative effects. Peripheral administration of Abeta binding antibodies has been suggested as a potential treatment of AD. Our results suggest that catalytic IgM autoantibodies can help clear Abeta, and they open the possibility of using catalytic Abs for AD immunotherapy.  相似文献   

6.
Amyloid-β oligomers (Aβo) are the most pathologically relevant Aβ species in Alzheimer's disease (AD), because they induce early synaptic dysfunction that leads to learning and memory impairments. In contrast, increasing VEGF (Vascular Endothelial Growth Factor) brain levels have been shown to improve learning and memory processes, and to alleviate Aβ-mediated synapse dysfunction. Here, we designed a new peptide, the blocking peptide (BP), which is derived from an Aβo-targeted domain of the VEGF protein, and investigated its effect on Aβ-associated toxicity. Using a combination of biochemical, 3D and ultrastructural imaging, and electrophysiological approaches, we demonstrated that BP strongly interacts with Aβo and blocks Aβ fibrillar aggregation process, leading to the formation of Aβ amorphous aggregates. BP further impedes the formation of structured Aβo and prevents their pathogenic binding to synapses. Importantly, acute BP treatment successfully rescues long-term potentiation (LTP) in the APP/PS1 mouse model of AD, at an age when LTP is highly impaired in hippocampal slices. Moreover, BP is also able to block the interaction between Aβo and VEGF, which suggests a dual mechanism aimed at both trapping Aβo and releasing VEGF to alleviate Aβo-induced synaptic damage. Our findings provide evidence for a neutralizing effect of the BP on Aβ aggregation process and pathogenic action, highlighting a potential new therapeutic strategy.  相似文献   

7.
A colostral proline-rich polypeptide complex (PRP) consisting of over 30 peptides shows beneficial effects in Alzheimer’s disease (AD) patients when administered in the form of sublinqual tablets called Colostrinin. The aim of the present studies was to investigate whether nanopeptide fragment of PRP (NP) - one of the PRP complex components can affect aggregation of amyloid β (Aβ1-42). The effect of NP on Aβ aggregation was studied using Thioflavin T (ThT) binding, atomic force microscopy, and analyzing circular dichroism spectra. Results presented suggest that NP can directly interact with amyloid beta, inhibit its aggregation and disrupt existing aggregates acting as a β sheet breaker and reduce toxicity induced by aggregated forms of Aβ.  相似文献   

8.
Alzheimer’s disease is the most common neurodegenerative disease and is one of the main causes of death in developed countries. Consumption of foods rich in polyphenolics is strongly correlated with reduced incidence of Alzheimer’s disease. Our study has investigated the biological activity of previously untested polyphenolic compounds in preventing amyloid β aggregation. The anti-aggregatory potential of these compounds was assessed using the Thioflavin-T assay, transmission electron microscopy, dynamic light scattering and size exclusion chromatography. Two structurally related compounds, luteolin and transilitin were identified as potent inhibitors of Aβ fibril formation. Computational docking studies with an X-ray derived oligomeric structure offer a rationale for the inhibitory activity observed and may facilitate development of improved inhibitors of Aβ aggregation and toxicity.  相似文献   

9.
A series of isaindigotone derivatives and analogues were designed, synthesized and evaluated as dual inhibitors of cholinesterases (ChEs) and self-induced β-amyloid (Aβ) aggregation. The synthetic compounds had IC(50) values at micro or nano molar range for cholinesterase inhibition, and some compounds exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE, which were much better than the isaindigotone derivatives previously reported by our group. Most of these compounds showed higher self-induced Aβ aggregation inhibitory activity than a reference compound curcumin. The structure-activity relationship studies revealed that the derivatives with higher inhibition activity on AChE also showed higher selectivity for AChE over BuChE. Compound 6c exhibiting excellent inhibition for both AChE and self-induced Aβ aggregation was further studied using CD, EM, molecular docking and kinetics.  相似文献   

10.
11.
Sheikh AM  Nagai A 《The FEBS journal》2011,278(4):634-642
Phospholipids are known to influence fibril formation of amyloid beta (Aβ) peptide. Here, we show that lysophosphatidylcholine (LPC), a polar phospholipid, enhances Aβ(1-42) fibril formation, by decreasing the lag time and the critical peptide concentration required for fibril formation, and increasing the fibril elongation rate. Conversely, LPC did not have an enhancing effect on Aβ(1-40) fibril formation, and appeared to be inhibitory. Tyrosine fluorescence spectroscopy showed that LPC altered the fluorescence spectra of Aβ(1-40) and Aβ(1-42) in opposite ways. Further, 8-anilino-1-naphthalene sulfonic acid fluorescence spectroscopy showed that LPC significantly increased the hydrophobicity of Aβ(1-42), but not of Aβ(1-40). Tris-tricine gradient SDS/PAGE revealed that LPC increased the formation of higher-molecular-weight species of Aβ(1-42), including trimers and tetramers. LPC had no such effect on Aβ(1-40), and thus may specifically influence the oligomerization and nucleation processes of Aβ(1-42) in a manner dependent on its native structure. Dot-blot assays confirmed that LPC induced Aβ(1-42) oligomer formation at an early time point. Thus our results indicate that LPC specifically enhances the formation of Aβ(1-42) fibrils, the main component of senile plaques in Alzheimer's disease patients, and may be involved in Alzheimer's disease pathology.  相似文献   

12.
The effects of phenol derivatives on aggregation of bovine platelets induced by ADP, thrombin, platelet activating factor, collagen and A23187 were investigated. The phenol derivatives inhibited all these induced aggregations except that by the calcium ionophore. The derivatives each inhibited the aggregations induced by ADP, thrombin, platelet activating factor and collagen, respectively, within a similar concentration range. A linear relation was found between the inhibitory potencies of the phenol derivatives and their partition coefficients between n-octanol and water (Poct values), suggesting that their interaction with hydrophobic regions of the cell was important for inhibition. Fluorescence analyses with fura-2-loaded platelets showed that in the concentration ranges in which the phenol derivatives inhibited aggregation, they also inhibited agonist-induced increases in Ca2+ both in the presence and absence of extracellular Ca2+. Moreover, a high correlation was found between the inhibitory effects of the derivatives on aggregation and their effects on Ca2+ mobilization. These results suggest that inhibition of platelet aggregation by phenol derivatives is mainly due to inhibition of the increase in cytoplasmic Ca2+ by inhibition of both intracellular Ca2+ mobilization and Ca2+ uptake.  相似文献   

13.
Although metal ions such as Cu(2+), Zn(2+), and Fe(3+) are implicated to play a key role in Alzheimer disease, their role is rather complex, and comprehensive understanding is not yet obtained. We show that Cu(2+) and Zn(2+) but not Fe(3+) renders the amyloid beta peptide, Abeta(1-40), nonfibrillogenic in nature. However, preformed fibrils of Abeta(1-40) were stable when treated with these metal ions. Consequently, fibril growth of Abeta(1-40) could be switched on/off by switching the molecule between its apo- and holo-forms. Clioquinol, a potential drug for Alzheimer disease, induced resumption of the Cu(2+)-suppressed but not the Zn(2+)-suppressed fibril growth of Abeta(1-40). The observed synergistic effect of clioquinol and Zn(2+) suggests that Zn(2+)-clioquinol complex effectively retards fibril growth. Thus, clioquinol has dual effects; although it disaggregates the metal ion-induced aggregates of Abeta(1-40) through metal chelation, it further retards the fibril growth along with Zn(2+). These results indicate the mechanism of metal ions in suppressing Abeta amyloid formation, as well as providing information toward the use of metal ion chelators, particularly clioquinol, as potential drugs for Alzheimer disease.  相似文献   

14.
Quantitative studies were carried out of the in vitro and ex vivo effects of phenylbutazone and 3-oxoalkyl substituted diphenyldioxopyrazolidines (kebuzone, tribuzone, benzopyrazone) on platelet aggregation. The specified pyrazolidine derivatives exhibited in vitro inhibitory effects on secondary platelet aggregation (induced by adrenaline and collagen), commensurable with the effects of sulfinpyrazone. The ex vivo efficacy was markedly influenced by the height of the drug level in blood and by differences in the elimination kinetics of the pyrazolidine derivatives in human organism. Inhibitory activities against primary aggregation (induced by ADP and thrombin) were found in vitro mainly in the phenyloxoalkyl derivative of diphenyldioxopyrazolidine (benzopyrazone) and its analogues. By substitution on the phenyl attached to its alkyl side chain (for example, by a halogen in the meta position), compounds were obtained which also possessed higher activities inhibiting secondary platelet aggregation.  相似文献   

15.
16.
In Alzheimer's disease, amyloid beta (Abeta) peptide is deposited in neuritic plaques in the brain. The Abeta peptide 1-42 or the fragment 25-35 are neurotoxic. We here review our recent explorations of the mechanisms of Abeta toxicity in hippocampal cultures. Abeta had no effect on intracellular calcium in neurons but caused striking changes in nearby astrocytes. The [Ca(2+)](c) signals started approximately 5-15 min after Abeta application and consisted of sporadic [Ca(2+)](c) pulses. These were entirely dependent on extracellular Ca(2+), independent of ER Ca(2+) stores and resulted from Ca(2+) influx, probably through Abeta-induced membrane channels. The Ca(2+) signals were closely associated with transient, episodic acidification which may reflect displacement of protons from binding sites or Ca(2+)/2H(+) exchange. Abeta caused an increased rate of generation of reactive oxygen species (ROS), also seen in astrocytes and not in neurons. The increased ROS generation was blocked by inhibitors of the NADPH oxidase, strongly suggesting that this enzyme, normally associated with immune cells, is expressed in astrocytes. ROS generation was also Ca(2+)-dependent, suggesting that Abeta activation of the enzyme may be secondary to the increase in [Ca(2+)](c). Abeta caused delayed neuronal death despite the fact that all responses were seen only in astrocytes. Neurons could not be protected by glutamate receptor antagonists, but were rescued by inhibition of the NADPH oxidase, by antioxidants and by increasing glutathione. These data suggest that Abeta causes Ca(2+)-dependent oxidative stress by activating an astrocytic NADPH oxidase, and that neuronal death follows through a failure of antioxidant support.  相似文献   

17.
Abeta(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular beta-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the Abeta(1-40) fibril formation process. A unique sample containing 90microM peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar beta-structures. The number of oligomers and the amount of non-fibrillar beta-structures grows throughout the lag phase and during the elongation phase these non-fibrillar beta-structures are transformed into fibrillar (amyloid) beta-structures, formed by association of high molecular weight intermediates.  相似文献   

18.
Jang  Soyoung  Jang  Woo Young  Choi  Minjee  Lee  Jinhee  Kwon  Wookbong  Yi  Junkoo  Park  Si Jun  Yoon  Duhak  Lee  Sanggyu  Kim  Myoung Ok  Ryoo  Zae Young 《Transgenic research》2019,28(5-6):499-508
Transgenic Research - Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by cognitive impairment, progressive neurodegeneration, and amyloid-β (Aβ) lesion. In the...  相似文献   

19.
20.
Oxidized cholesterol has been widely reported to contribute to the pathogenesis of Alzheimer's disease (AD). However, the mechanism by which they affect the disease is not fully understood. Herein, we aimed to investigate the effect of 7-ketocholesterol (7keto) on membrane-mediated aggregation of amyloid beta (Aβ-42), one of the critical pathogenic events in AD. We have shown that when cholesterol is present in lipid vesicles, kinetics of Aβ nuclei formation is moderately hindered while that of fibril growth was considerably accelerated. The partial substitution of cholesterol with 7keto slightly enhanced the formation of Aβ-42 nuclei and remarkably decreased fibril elongation, thus maintaining the peptide in protofibrillar aggregates, which are reportedly the most toxic species. These findings add in understanding of how cholesterol and its oxidation can affect Aβ-induced cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号