首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自噬和泛素-蛋白酶体系统作为细胞内最重要的两大降解途径,对细胞稳态及细胞正常生理功能的维持都具有十分重要的作用。目前,越来越多的证据显示,这两大降解途径之间存在多种交联方式。首先,自噬和泛素-蛋白酶体系统都能以泛素作为共同标签,从而将泛素化底物降解;其次,泛素化的蛋白酶体可以通过自噬被清除,自噬相关蛋白质也可以通过蛋白酶体系统被降解;再次,这两条途径在细胞内能协同降解同一种底物;最后,它们之间可以相互调节活性,任一条途径被干扰都将影响另一条途径的活性。自噬和泛素-蛋白酶体系统之间的交联对细胞稳态的维持至关重要。交联失调不仅导致细胞功能异常,还可引起多种疾病的发生。本文主要对自噬和泛素-蛋白酶体系统之间的交联方式及其分子机制进行阐述,有助于深入了解细胞的分解代谢过程,进一步理解细胞稳态的维持机制,继而加深对相关疾病病理机制的认识。  相似文献   

2.
Lysosomes are the site of degradation of obsolete intracellular material during autophagy and of extracellular macromolecules following endocytosis and phagocytosis. The membrane of lysosomes and late endosomes is enriched in highly glycosylated transmembrane proteins of largely unknown function. Significant progress has been made in recent years towards elucidating the pathways by which these lysosomal membrane proteins are delivered to late endosomes and lysosomes. While some lysosomal membrane proteins follow the constitutive secretory pathway and reach lysosomes indirectly via the cell surface and endocytosis, others exit the trans-Golgi network in clathrin-coated vesicles for direct delivery to endosomes and lysosomes. Sorting from the Golgi or the plasma membrane into the endosomal system is mediated by signals encoded by the short cytosolic domain of these proteins. This review will discuss the role of lysosomal membrane proteins in the biogenesis of the late endosomal and lysosomal membranes, with particular emphasis on the structural features and molecular mechanisms underlying the intracellular trafficking of these proteins.  相似文献   

3.
《Autophagy》2013,9(4):699-700
Despite the emergence of autophagy as a key process for mitochondrial quality control, the existence and persistence of pathogenic mtDNA mutations in human disease suggests that the degradation of dysfunctional mitochondria does not occur widely in vivo. During macroautophagy, a double-membraned cup-shaped structure engulfs cytosolic content. This autophagic vesicle then fuses with lysosomes, allowing hydrolytic enzymes to degrade the contents. Mitochondrial autophagy, or mitophagy, is thought to degrade damaged or nonfunctioning mitochondria specifically. The Parkinson disease-related proteins PINK1 (a mitochondrially localized kinase) and PARK2 (PARKIN, a cytosolically-localized E3 ubiquitin ligase) are essential for targeting mitochondria for mitophagy. Upon chemical uncoupling of the mitochondrial transmembrane potential (Δψm), PINK1 located in the mitochondrial outer membrane recruits PARK2 from the cytosol to the mitochondria, followed by delivery of the organelle to the autophagic machinery for degradation.  相似文献   

4.
Despite the emergence of autophagy as a key process for mitochondrial quality control, the existence and persistence of pathogenic mtDNA mutations in human disease suggests that the degradation of dysfunctional mitochondria does not occur widely in vivo. During macroautophagy, a double-membraned cup-shaped structure engulfs cytosolic content. This autophagic vesicle then fuses with lysosomes, allowing hydrolytic enzymes to degrade the contents. Mitochondrial autophagy, or mitophagy, is thought to degrade damaged or nonfunctioning mitochondria specifically. The Parkinson disease-related proteins PINK1 (a mitochondrially localized kinase) and PARK2 (PARKIN, a cytosolically-localized E3 ubiquitin ligase) are essential for targeting mitochondria for mitophagy. Upon chemical uncoupling of the mitochondrial transmembrane potential (Δψ(m)), PINK1 located in the mitochondrial outer membrane recruits PARK2 from the cytosol to the mitochondria, followed by delivery of the organelle to the autophagic machinery for degradation.  相似文献   

5.
Regular protein synthesis is a needful and complex task for a healthy cell. Improper folding leads to the deposition of misfolded proteins in cells. Autophagy and ubiquitin–proteasome system (UPS) are the conserved intracellular degradation processes of eukaryotic cells. How exactly these two pathways cross talk to each other is unclear. We do not know how the impairment of autophagy or UPS leads to the disturbance in cellular homeostasis and contribute into cellular aging and neurodegeneration. Here in this review, we will focus on the functional interconnections of autophagy and UPS, and why their loss of function results in abnormal aggregation of misfolded proteotoxic species in cells. Finally, we enumerate and discuss the crucial inducers of autophagy pathways and elaborate their intersection steps, which have been considered to be advantageous in aging linked with the abnormal protein aggregation. The final goal of this review is to improve our current understanding about multifaceted properties and interactions of autophagy and UPS, which may provide new insights to identify novel therapeutic strategies for aging and neurodegenerative diseases.  相似文献   

6.
Jinghui Zhao 《Autophagy》2016,12(10):1967-1970
Proteins in eukaryotic cells are continually being degraded to amino acids either by the ubiquitin proteasome system (UPS) or by the autophagic-lysosomal pathway. The breakdown of proteins by these 2 degradative pathways involves totally different enzymes that function in distinct subcellular compartments. While most studies of the UPS have focused on the selective ubiquitination and breakdown of specific cell proteins, macroautophagy/autophagy is a more global nonselective process. Consequently, the UPS and autophagy were traditionally assumed to serve distinct physiological functions and to be regulated in quite different manners. However, recent findings indicate that protein breakdown by these 2 systems is coordinately regulated by important physiological stimuli. The activation of MTORC1 by nutrients and hormones rapidly suppresses proteolysis by both proteasomes and autophagy, which helps promote protein accumulation, whereas in nutrient-poor conditions, MTORC1 inactivation causes the simultaneous activation of these 2 degradative pathways to supply the deprived cells with a source of amino acids. Also this selective breakdown of key anabolic proteins by the UPS upon MTORC1 inhibition can help limit growth-related processes (e.g., cholesterol biosynthesis). Thus, the collaboration of these 2 degradative systems, together with the simultaneous control of protein translation by MTORC1, provide clear advantages to the organism in both growth and starvation conditions.  相似文献   

7.
The ubiquitin-proteasome system (UPS) is responsible for the degradation of most cellular proteins. Alterations in cardiac UPS, including changes in the degradation of regulatory proteins and proteasome functional insufficiency, are observed in many forms of heart disease and have been shown to play an important role in cardiac pathogenesis. In the past several years, remarkable progress in understanding the mechanisms that regulate UPS-mediated protein degradation has been achieved. A transgenic mouse model of benign enhancement of cardiac proteasome proteolytic function has been created. This has led to the first demonstration of the necessity of proteasome functional insufficiency in the genesis of important pathological processes. Cardiomyocyte-restricted enhancement of proteasome proteolytic function by overexpression of proteasome activator 28α protects against cardiac proteinopathy and myocardial ischemia-reperfusion injury. Additionally, exciting advances have recently been achieved in the search for a pharmacological agent to activate the proteasome. These breakthroughs are expected to serve as an impetus to further investigation into the involvement of UPS dysfunction in molecular pathogenesis and to the development of new therapeutic strategies for combating heart disease. An interplay between the UPS and macroautophagy is increasingly suggested in noncardiac systems but is not well understood in the cardiac system. Further investigations into the interplay are expected to provide a more comprehensive picture of cardiac protein quality control and degradation.  相似文献   

8.
Autophagy is a catabolic cellular process that targets cytosolic material, including mitochondria, to the vacuole or lysosomes for degradation. The selective degradation of mitochondria by autophagy is termed mitophagy. Dysfunctional mitophagy, which leads to the accumulation of damaged mitochondria, has been implicated in Parkinson’s disease, cancer, cardiac disease and metabolic disease. In Saccharomyces cerevisiae, mitophagy is initiated by the autophagy receptor Atg32, an outer mitochondrial membrane protein. A lack of structural information for Atg32 has hindered our understanding of the molecular mechanisms of mitophagy initiation. To gain new structural insight into Atg32, we have identified the location of a structured domain within the cytosolic region of Atg32 and completed the backbone and side chain resonance assignments for this domain.  相似文献   

9.
Chaperone-mediated autophagy (CMA) is a selective form of autophagy whose distinctive feature is the fact that substrate proteins are translocated directly from the cytosol across the lysosomal membrane for degradation inside lysosomes. CMA substrates are cytosolic proteins bearing a pentapeptide motif in their sequence that, when recognized by the cytosolic chaperone HSPA8/HSC70, targets them to the surface of the lysosomes. Once there, substrate proteins bind to the lysosome-associated membrane protein type 2 isoform A (LAMP2A), inducing assembly of this receptor protein into a higher molecular weight protein complex that is used by the substrate proteins to reach the lysosomal lumen. CMA is constitutively active in most cells but it is maximally activated under conditions of stress.  相似文献   

10.
《Autophagy》2013,9(7):1152-1154
Chaperone-mediated autophagy (CMA) is a selective form of autophagy whose distinctive feature is the fact that substrate proteins are translocated directly from the cytosol across the lysosomal membrane for degradation inside lysosomes. CMA substrates are cytosolic proteins bearing a pentapeptide motif in their sequence that, when recognized by the cytosolic chaperone HSPA8/HSC70, targets them to the surface of the lysosomes. Once there, substrate proteins bind to the lysosome-associated membrane protein type 2 isoform A (LAMP2A), inducing assembly of this receptor protein into a higher molecular weight protein complex that is used by the substrate proteins to reach the lysosomal lumen. CMA is constitutively active in most cells but it is maximally activated under conditions of stress.  相似文献   

11.
Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins in lysosomes. The limiting step of this type of autophagy is the binding of substrates to the lysosome-associated membrane protein type 2A (LAMP-2A). In this work, we identify a dynamic subcompartmentalization of LAMP-2A in the lysosomal membrane, which underlies the molecular basis for the regulation of LAMP-2A function in CMA. A percentage of LAMP-2A localizes in discrete lysosomal membrane regions during resting conditions, but it exits these regions during CMA activation. Disruption of these regions by cholesterol-depleting agents or expression of a mutant LAMP-2A excluded from these regions enhances CMA activity, whereas loading of lysosomes with cholesterol significantly reduces CMA. Organization of LAMP-2A into multimeric complexes, required for translocation of substrates into lysosomes via CMA, only occurs outside the lipid-enriched membrane microdomains, whereas the LAMP-2A located within these regions is susceptible to proteolytic cleavage and degradation. Our results support that changes in the dynamic distribution of LAMP-2A into and out of discrete microdomains of the lysosomal membrane contribute to regulate CMA.  相似文献   

12.
Intracellular protein degradation rates decrease with age in many tissues and organs. In cultured cells, chaperone-mediated autophagy, which is responsible for the selective degradation of cytosolic proteins in lysosomes, decreases with age. In this work we use lysosomes isolated from rat liver to analyze age-related changes in the levels and activities of the main components of chaperone-mediated autophagy. Lysosomes from "old" (22-month-old) rats show lower rates of chaperone-mediated autophagy, and both substrate binding to the lysosomal membrane and transport into lysosomes decline with age. A progressive age-related decrease in the levels of the lysosome-associated membrane protein type 2a that acts as a receptor for chaperone-mediated autophagy was responsible for decreased substrate binding in lysosomes from old rats as well as from late passage human fibroblasts. The cytosolic levels and activity of the 73-kDa heat-shock cognate protein required for substrate targeting to lysosomes were unchanged with age. The levels of lysosome-associated hsc73 were increased only in the oldest rats. This increase may be an attempt to compensate for reduced activity of the pathway with age.  相似文献   

13.
In the heart, autophagy has been implicated in cardioprotection and ischemia-reperfusion tolerance, and the dysregulation of autophagy is associated with the development of heart failure. Mitochondrial dynamic proteins are profoundly involved in autophagic processes, especially the initiation and formation of autophagosomes, but it is not clear whether they play any role in cardiac autophagy. We previously reported that mitofusin 2 (MFN2), a mitochondrial outer membrane protein, serves as a major determinant of cardiomyocyte apoptosis mediated by oxidative stress. Here, we reveal a novel and essential role of MFN2 in mediating cardiac autophagy. We found that specific deletion of MFN2 in cardiomyocytes caused extensive accumulation of autophagosomes. In particular, the fusion of autophagosomes with lysosomes, a critical step in autophagic degradation, was markedly retarded without altering the formation of autophagosomes and lysosomes in response to ischemia-reperfusion stress. Importantly, MFN2 co-immunoprecipitated with RAB7 in the heart, and starvation further increased it. Knockdown of MFN2 by shRNA prevented, whereas re-expression of MFN2 restored, the autophagosome-lysosome fusion in neonatal cardiomyocytes. Hearts from cardiac-specific MFN2 knock-out mice had abnormal mitochondrial and cellular metabolism and were vulnerable to ischemia-reperfusion challenge. Our study defined a novel and essential role of MFN2 in the cardiac autophagic process by mediating the maturation of autophagy at the phase of autophagosome-lysosome fusion; deficiency of MFN2 caused multiple molecular and functional defects that undermined cardiac reserve and gradually led to cardiac vulnerability and dysfunction.  相似文献   

14.
自噬(Autophagy)是真核生物细胞中一类高度保守的、依赖于溶酶体或液泡途径对胞质蛋白和细胞器进行降解的生物学过程。细胞自噬除维持细胞稳态外,在细胞响应各种外界胁迫中也发挥重要作用。近年来,陆续发现浮游植物能够通过细胞自噬应答众多环境胁迫,并在浮游植物细胞中鉴定出了类似于哺乳动物细胞中的核心自噬功能单位。自噬作为一种独特的程序性细胞死亡(PCD)形式,对浮游植物遭受胁迫后的个体存活及种群延续具有至关重要的作用。因此,细胞自噬也将成为浮游植物研究领域的一个新的着力点。主要综述了浮游植物细胞中自噬的保守性、诱导因素、调控机制、自噬与凋亡的交互作用以及浮游植物自噬研究方法等研究进展。  相似文献   

15.
Among the four proteolytic systems in the cell, autophagy and the ubiquitin-proteasome system (UPS) are the main proteolytic events that allow for the removal of cell debris and proteins to maintain cellular homeostasis. Previous studies have revealed that these systems perform their functions independently of each other. However, recent studies indicate the existence of regulatory interactions between these proteolytic systems via ubiquitinated tags and a reciprocal regulation mechanism with several crosstalk points. UPS plays an important role in the elimination of short-lived/soluble misfolded proteins, whereas autophagy eliminates defective organelles and persistent insoluble protein aggregates. Both of these systems seem to act independently; however, disruption of one pathway affects the activity of the other pathway and contributes to different pathological conditions. This review summarizes the recent findings on direct and indirect dependencies of autophagy and UPS and their execution at the molecular level along with the important drug targets in skeletal muscle atrophy.  相似文献   

16.
Upon starvation cells undergo autophagy, a cellular degradation pathway important in the turnover of whole organelles and long lived proteins. Starvation-induced protein degradation has been regarded as an unspecific bulk degradation process. We studied global protein dynamics during amino acid starvation-induced autophagy by quantitative mass spectrometry and were able to record nearly 1500 protein profiles during 36 h of starvation. Cluster analysis of the recorded protein profiles revealed that cytosolic proteins were degraded rapidly, whereas proteins annotated to various complexes and organelles were degraded later at different time periods. Inhibition of protein degradation pathways identified the lysosomal/autophagosomal system as the main degradative route. Thus, starvation induces degradation via autophagy, which appears to be selective and to degrade proteins in an ordered fashion and not completely arbitrarily as anticipated so far.  相似文献   

17.
《Autophagy》2013,9(5):663-675
The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are the two most important components of cellular mechanisms for protein degradation. In the present study we investigated the functional relationship of the two systems and the interactional role of p53 in vitro. Our study showed that the proteasome inhibitor lactacystin induced an increase in p53 level and autophagy activity, whereas inhibition of p53 by pifithrin-α or small interference RNA (siRNA) of p53 attenuated the autophagy induction and increased protein aggregation. Furthermore, we found that the pretreatment with the autophagy inhibitor 3-methyladenine or Beclin 1 siRNA further activated p53 and its downstream apoptotic pathways, while the autophagy inducer rapamycin showed the opposite effects. Moreover, we demonstrated that rapamycin pretreatment increased tyrosine hydroxylase (TH) protein level in dopamine (DA) neurons, which was associated with its induction of autophagy to degrade aggregated proteins. Our results suggest that p53 can mediate proteasomal inhibition-induced autophagy enhancement which in turn can partially block p53 or its downstream mitochondria-dependent apoptotic pathways. Further autophagy induction with rapamycin protects DA neurons from lactacystin-mediated cell death by downregulating p53 and its related apoptotic pathways and by inducing autophagy to degrade aggregated proteins. Therefore, rapamycin may be a promising drug for protection against neuronal injury relevant to Parkinson’s disease (PD). Our studies thus provide a mechanistic insight into the functional link between the two protein degradation systems.  相似文献   

18.
《Autophagy》2013,9(7):1144-1145
A growing body of research has connected autophagy to neurodegenerative diseases such as Alzheimer disease (AD). In autopsied AD brain, large multivesicular bodies accumulate in neurons. Knockout mice deficient for key autophagy genes demonstrate age-dependent neurodegeneration. Most neurodegenerative diseases are characterized by accumulation of insoluble protein species; the type of protein and the location of aggregates within the nervous system help to define the type of disorder. It has been hypothesized that the inability to degrade such aggregates is a major causative factor in neuronal dysfunction and eventual neuronal death. As neurons are postmitotic and thus cannot regenerate themselves, mechanisms of protein clearance have received much attention in the field. The function of the ubiquitin-proteasome system (UPS) is impaired in models of neurodegeneration, and overexpression of chaperone proteins, such as those in the HSP70 family, leads to beneficial effects in many models of proteinopathies. Recently, studies of the effects of autophagy as a clearance mechanism have uncovered compelling evidence that inducing autophagy can alleviate many pathogenic and behavioral symptoms in animal and cellular models of neurodegeneration.  相似文献   

19.
It has recently become clear that lysosomes have more complex functions than simply being the end-point on a degradative pathway. Similarly, it is now emerging that there are interesting functions for the limiting membranes around these organelles and their associated proteins. Although it has been known for several decades that the lysosomal membrane contains several highly N-glycosylated proteins, including the lysosome-associated membrane proteins LAMP-1 and LAMP-2 and lysosomal integral membrane protein-2/lysosomal membrane glycoprotein-85 (LIMP-2/LGP85), specific functions of these proteins have only recently begun to be recognized. Although the normal functions of LAMP-1 can be substituted by the structurally related LAMP-2, LAMP-2 itself has more specific tasks. Knockout of LAMP-2 in mice has revealed roles for LAMP-2 in lysosomal enzyme targeting, autophagy and lysosomal biogenesis. LAMP-2 deficiency in humans leads to Danon disease, a fatal cardiomyopathy and myopathy. Furthermore, there is evidence that LAMP-2 functions in chaperone-mediated autophagy. LIMP-2/LGP85 also seems to have specific functions in maintaining endosomal transport and lysosomal biogenesis. The pivotal function of lysosomal membrane proteins is also highlighted by the recent identification of disease-causing mutations in cystine and sialic acid transporter proteins, leading to nephropathic cystinosis and Salla disease.  相似文献   

20.
Autophagy is a survival mechanism necessary for eukaryotic cells to overcome nutritionally challenged environments. When autophagy is triggered, cells degrade nonselectively engulfed cytosolic proteins and free ribosomes that are evenly distributed throughout the cytoplasm. The resulting pool of free amino acids is used to sustain processes crucial for survival. Here we characterize an autophagic degradation of the endoplasmic reticulum (ER) under starvation conditions in addition to cytosolic protein degradation. Golgi membrane protein was not engulfed by the autophagosome under the same conditions, indicating that the uptake of ER by autophagosome was the specific event. Although the ER exists in a network structure that is mutually connected and resides predominantly around the nucleus and beneath the plasma membrane, most of autophagosome engulfed ER. The extent of the ER uptake by autophagy was nearly identical to that of the soluble cytosolic proteins. This phenomenon was explained by the appearance of fragmented ER membrane structures in almost all autophagosomes. Furthermore, ER dynamism is required for this process: ER uptake by autophagosomes occurs in an actin-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号