首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RhBG is a nonerythroid member of the Rhesus (Rh) protein family, mainly expressed in the kidney and belonging to the Amt/Mep/Rh superfamily of ammonium transporters. The epithelial expression of renal RhBG is restricted to the basolateral membrane of the connecting tubule and collecting duct cells. We report here that sorting and anchoring of RhBG to the basolateral plasma membrane require a cis-tyrosine-based signal and an association with ankyrin-G, respectively. First, we show by using a model of polarized epithelial Madin-Darby canine kidney cells that the targeting of transfected RhBG depends on a YED motif localized in the cytoplasmic C terminus of the protein. Second, we reveal by yeast two-hybrid analysis a direct interaction between an FLD determinant in the cytoplasmic C-terminal tail of RhBG and the third and fourth repeat domains of ankyrin-G. The biological relevance of this interaction is supported by two observations. (i) RhBG and ankyrin-G were colocalized in vivo in the basolateral domain of epithelial cells from the distal nephron by immunohistochemistry on kidney sections. (ii) The disruption of the FLD-binding motif impaired the membrane expression of RhBG leading to retention on cytoplasmic structures in transfected Madin-Darby canine kidney cells. Mutation of both targeting signal and ankyrin-G-binding site resulted in the same cell surface but nonpolarized expression pattern as observed for the protein mutated on the targeting signal alone, suggesting the existence of a close relationship between sorting and anchoring of RhBG to the basolateral domain of epithelial cells.  相似文献   

2.
3.
Oligodendrocytes possess two distinct membrane compartments--uncompacted plasma membrane (cell body, processes) and compact myelin. Specific targeting mechanisms must exist to establish and maintain these membrane domains. Polarized epithelial cells have the best characterized system for targeting components to apical and basolateral compartments. Since oligodendrocytes arise from neuroepithelial cells, we investigated whether they might utilize targeting paradigms similar to polarized epithelial cells. Myelin/oligodendrocyte glycoprotein (MOG) is a transmembrane Ig-like molecule restricted to uncompacted oligodendroglial plasma membrane. We stably expressed MOG in Madin-Darby canine kidney (MDCK) Type II epithelial cells, which have been extensively used in protein-targeting studies. Data from surface biotinylation assays and confocal microscopy revealed that MOG sorts exclusively to the basolateral membrane of MDCK cells. Expression vectors containing progressive truncations of MOG from the cytoplasmic C-terminus were expressed in MDCK cells to localize basolateral sorting signals. A loss of only four C-terminal residues results in some MOG expression at the apical surface. More strikingly, removal of the C-terminal membrane associated hydrophobic domain from MOG results in complete loss of basolateral sorting and specific targeting to the apical membrane. These data suggest that myelinating oligodendrocytes may utilize a sorting mechanism similar to that of polarized epithelia.  相似文献   

4.
The ammonium permease Mep2p mediates ammonium uptake and also induces filamentous growth in the human-pathogenic yeast Candida albicans in response to nitrogen limitation. The C-terminal cytoplasmic tail of Mep2p contains a signaling domain that is not required for ammonium transport but is essential for Mep2p-dependent morphogenesis. Progressive C-terminal truncations showed Y433 to be the last amino acid that is essential for the induction of filamentous growth, thereby delimiting the Mep2p signaling domain. To understand in more detail how the signaling activity of Mep2p is regulated by ammonium availability and transport, we mutated conserved amino acid residues that have been implicated in ammonium binding or uptake. Mutation of D180, which has been proposed to mediate initial contact with extracellular ammonium, or the pore-lining residues H188 and H342 abolished Mep2p expression, indicating that these residues are important for protein stability. Mutation of F239, which together with F126 is thought to form an extracytosolic gate to the conductance channel, abolished both ammonium uptake and Mep2p-dependent filament formation, despite proper localization of the protein. On the other hand, mutation of W167, which is assumed to participate with Y122, F126, and S243 in the recruitment and coordination of the ammonium ion at the extracytosolic side of the cell membrane, also abolished filament formation without having a strong impact on ammonium transport, demonstrating that extracellular alterations in Mep2p can affect intracellular signaling. Mutation of Y122 reduced ammonium uptake much more strongly than mutation of W167 but still allowed efficient filament formation, indicating that the signaling activity of Mep2p is not directly correlated with its transport activity. These results provide important insights into ammonium transport and control of morphogenesis by Mep2p in C. albicans.  相似文献   

5.
Ammonia metabolism is important in multiple aspects of gastrointestinal physiology, but the mechanisms of ammonia transport in the gastrointestinal tract remain incompletely defined. The present study examines expression of the ammonia transporter family members Rh B glycoprotein (RhBG) and Rh C glycoprotein (RhCG) in the mouse gastrointestinal tract. Real-time RT-PCR amplification and immunoblot analysis identified mRNA and protein for both RhBG and RhCG were expressed in stomach, duodenum, jejunum, ileum, and colon. Immunohistochemistry showed organ and cell-specific expression of both RhBG and RhCG. In the stomach, both RhBG and RhCG were expressed in the fundus and forestomach, but not in the antrum. In the forestomach, RhBG was expressed by all nucleated squamous epithelial cells, whereas RhCG was expressed only in the stratum germinativum. In the fundus, RhBG and RhCG immunoreactivity was present in zymogenic cells but not in parietal or mucous cells. Furthermore, zymogenic cell RhBG and RhCG expression was polarized, with apical RhCG and basolateral RhBG immunoreactivity. In the duodenum, jejunum, ileum, and colon, RhBG and RhCG immunoreactivity was present in villous, but not in mucous or crypt cells. Similar to the fundic zymogenic cell, RhBG and RhCG expression in villous epithelial cells was polarized when apical RhCG and basolateral RhBG immunoreactivity was present. Thus the ammonia transporting proteins RhBG and RhCG exhibit cell-specific, axially heterogeneous, and polarized expression in the intestinal tract suggesting they function cooperatively to mediate gastrointestinal tract ammonia transport.  相似文献   

6.
Aquaporin 4 (AQP4) is the predominant water channel in the brain. It is targeted to specific membrane domains of astrocytes and plays a crucial role in cerebral water balance in response to brain edema formation. AQP4 is also specifically expressed in the basolateral membranes of epithelial cells. However, the molecular mechanisms involved in its polarized targeting and membrane trafficking remain largely unknown. Here, we show that two independent C-terminal signals determine AQP4 basolateral membrane targeting in epithelial MDCK cells. One signal involves a tyrosine-based motif; the other is encoded by a di-leucine-like motif. We found that the tyrosine-based basolateral sorting signal also determines AQP4 clathrin-dependent endocytosis through direct interaction with the mu subunit of AP2 adaptor complex. Once endocytosed, a regulated switch in mu subunit interaction changes AP2 adaptor association to AP3. We found that the stress-induced kinase casein kinase (CK)II phosphorylates the Ser276 immediately preceding the tyrosine motif, increasing AQP4-mu 3A interaction and enhancing AQP4-lysosomal targeting and degradation. AQP4 phosphorylation by CKII may thus provide a mechanism that regulates AQP4 cell surface expression.  相似文献   

7.
Lactase-phlorizin hydrolase (LPH) is an apical protein in intestinal cells. The location of sorting signals in LPH was investigated by preparing a series of mutants that lacked the LPH cytoplasmic domain or had the cytoplasmic domain of LPH replaced by sequences that comprised basolateral targeting signals and overlapping internalization signals of various potency. These signals are mutants of the cytoplasmic domain of the influenza hemagglutinin (HA), which have been shown to be dominant in targeting HA to the basolateral membrane. The LPH-HA chimeras were expressed in Madin-Darby canine kidney (MDCK) and colon carcinoma (Caco-2) cells, and their transport to the cell surface was analyzed. All of the LPH mutants were targeted correctly to the apical membrane. Furthermore, the LPH-HA chimeras were internalized, indicating that the HA tails were available to interact with the cytoplasmic components of clathrin-coated pits. The introduction of a strong basolateral sorting signal into LPH was not sufficient to override the strong apical signals of the LPH external domain or transmembrane domains. These results show that basolateral sorting signals are not always dominant over apical sorting signals in proteins that contain each and suggest that sorting of basolateral from apical proteins occurs within a common compartment where competition for sorting signals can occur.  相似文献   

8.
A Gut  F Kappeler  N Hyka  M S Balda  H P Hauri    K Matter 《The EMBO journal》1998,17(7):1919-1929
Polarized expression of most epithelial plasma membrane proteins is achieved by selective transport from the Golgi apparatus or from endosomes to a specific cell surface domain. In Madin-Darby canine kidney (MDCK) cells, basolateral sorting generally depends on distinct cytoplasmic targeting determinants. Inactivation of these signals often resulted in apical expression, suggesting that apical transport of transmembrane proteins occurs either by default or is mediated by widely distributed characteristics of membrane glycoproteins. We tested the hypothesis of N-linked carbohydrates acting as apical targeting signals using three different membrane proteins. The first two are normally not glycosylated and the third one is a glycoprotein. In all three cases, N-linked carbohydrates were clearly able to mediate apical targeting and transport. Cell surface transport of proteins containing cytoplasmic basolateral targeting determinants was not significantly affected by N-linked sugars. In the absence of glycosylation and a basolateral sorting signal, the reporter proteins accumulated in the Golgi complex of MDCK as well as CHO cells, indicating that efficient transport from the Golgi apparatus to the cell surface is signal-mediated in polarized and non-polarized cells.  相似文献   

9.
CD1d is a member of the CD1 polypeptide family that represents a new arm of host defense against invading pathogens. In our previous work (Rodionov, D. G., Nordeng, T. W., Pedersen, K., Balk, S. P., and Bakke, O. (1999) J. Immunol. 162, 1488-1495) we have shown that CD1d contained a classic tyrosine-based internalization signal (YQGV) in its short cytoplasmic tail. CD1d is expressed in polarized epithelial cells, and we found that the cytoplasmic tail of CD1d also contained information for basolateral sorting. Interestingly, a mutation of the critical tyrosine residue of the endosomal sorting signal did not result in the loss of basolateral targeting of the mutant CD1d. To search for a basolateral sorting signal we have constructed a full set of alanine mutants, but no single alanine substitution inactivated the signal. However, deletions or mutations of either the C-terminal valine/leucine pair or the critical tyrosine residue from the internalization signal and either residue from the C-terminal valine/leucine pair inactivated basolateral sorting. Our data thus suggest that the cytoplasmic tail contains two overlapping basolateral signals, one tyrosine- and the other leucine-based, each being sufficient to direct CD1d to the basolateral membrane of polarized Madin-Darby canine kidney cells.  相似文献   

10.
E-cadherin is a major adherens junction protein of epithelial cells, with a central role in cell-cell adhesion and cell polarity. Newly synthesized E-cadherin is targeted to the basolateral cell surface. We analyzed targeting information in the cytoplasmic tail of E-cadherin by utilizing chimeras of E-cadherin fused to the ectodomain of the interleukin-2alpha (IL-2alpha) receptor expressed in Madin-Darby canine kidney and LLC-PK(1) epithelial cells. Chimeras containing the full-length or membrane-proximal half of the E-cadherin cytoplasmic tail were correctly targeted to the basolateral domain. Sequence analysis of the membrane-proximal tail region revealed the presence of a highly conserved dileucine motif, which was analyzed as a putative targeting signal by mutagenesis. Elimination of this motif resulted in the loss of Tac/E-cadherin basolateral localization, pinpointing this dileucine signal as being both necessary and sufficient for basolateral targeting of E-cadherin. Truncation mutants unable to bind beta-catenin were correctly targeted, showing, contrary to current understanding, that beta-catenin is not required for basolateral trafficking. Our results also provide evidence that dileucine-mediated targeting is maintained in LLC-PK(1) cells despite the altered polarity of basolateral proteins with tyrosine-based signals in this cell line. These results provide the first direct insights into how E-cadherin is targeted to the basolateral membrane.  相似文献   

11.
E-cadherin is a ubiquitous component of lateral membranes in epithelial tissues and is required to form the first lateral membrane domains in development. Here, we identify ankyrin-G as a molecular partner of E-cadherin and demonstrate that ankyrin-G and beta-2-spectrin are required for accumulation of E-cadherin at the lateral membrane in both epithelial cells and early embryos. Ankyrin-G binds to the cytoplasmic domain of E-cadherin at a conserved site distinct from that of beta-catenin. Ankyrin-G also recruits beta-2-spectrin to E-cadherin-beta-catenin complexes, thus providing a direct connection between E-cadherin and the spectrin/actin skeleton. In addition to restricting the membrane mobility of E-cadherin, ankyrin-G and beta-2-spectrin also are required for exit of E-cadherin from the trans-Golgi network in a microtubule-dependent pathway. Ankyrin-G and beta-2-spectrin co-localize with E-cadherin in preimplantation mouse embryos. Moreover, knockdown of either ankyrin-G or beta-2-spectrin in one cell of a two-cell embryo blocks accumulation of E-cadherin at sites of cell-cell contact. E-cadherin thus requires both ankyrin-G and beta-2-spectrin for its cellular localization in early embryos as well as cultured epithelial cells. We have recently reported that ankyrin-G and beta-2-spectrin collaborate in biogenesis of the lateral membrane ( Kizhatil, K., Yoon, W., Mohler, P. J., Davis, L. H., Hoffman, J. A., and Bennett, V. (2007) J. Biol. Chem. 282, 2029-2037 ). Together with the current findings, these data suggest a ankyrin/spectrin-based mechanism for coordinating membrane assembly with extracellular interactions of E-cadherin at sites of cell-cell contact.  相似文献   

12.
The Na+-HCO3- cotransporter NBC1 is located exclusively on the basolateral membrane and mediates vectorial transport of bicarbonate in a number of epithelia, including kidney and pancreas. To identify the motifs that direct the targeting of kidney NBC1 to basolateral membrane, wild type and various carboxyl-terminally truncated kidney NBC1 mutants were generated, fused translationally in-frame to GFP, and transiently expressed in kidney epithelial cells. GFP was linked to the NH2 terminus of NBC1, and labeling was examined by confocal microscopy. Full-length (1035 aa) and mutants with the deletion of 3 or 20 amino acids from the COOH-terminal end of NBC1 (lengths 1032 and 1015 aa, respectively) showed strong and exclusive targeting on the basolateral membrane. However, the deletion of 26 amino acid residues from the COOH-terminal end (length 1010 aa) resulted in retargeting of NBC1 to the apical membrane. Expression studies in oocytes demonstrated that the NBC1 mutant with the deletion of 26 amino acid residues from the COOH-terminal end is functional. Additionally, the deletion of the last 23 amino acids or mutation in the conserved residue Phe at position 1013 on the COOH-terminal end demonstrated retargeting to the apical membrane. We propose that a carboxyl-terminal motif with the sequence QQPFLS, which spans amino acid residues 1010-1015, and specifically the amino acid residue Phe (position 1013) are essential for the exclusive targeting of NBC1 to the basolateral membrane.  相似文献   

13.
Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.  相似文献   

14.
K Matter  W Hunziker  I Mellman 《Cell》1992,71(5):741-753
In MDCK cells, transport of membrane proteins to the basolateral plasma membrane has been shown to require a distinct cytoplasmic domain determinant. Although the determinant is often related to signals used for localization in clathrin-coated pits, inactivation of the coated pit domain in the human LDL receptor did not affect basolateral targeting. By expressing mutant and chimeric LDL receptors, we have now identified two independently acting signals that are individually sufficient for basolateral targeting. The two determinants mediate basolateral sorting with different efficiencies, but both contain tyrosine residues critical for activity. The first determinant was colinear with, but distinct from, the coated pit domain of the receptor. The second was found in the C-terminal region of the cytoplasmic domain of the receptor and, although tyrosine-dependent, did not mediate endocytosis. The results suggest that membrane proteins can have functionally redundant signals for basolateral transport and that a tyrosine-containing motif may be a common feature of multiple intracellular sorting events.  相似文献   

15.
The plasma membrane of polarized epithelial cells is divided into apical and basolateral surfaces, with different compositions. Proteins can be sent directly from the trans-Golgi network (TGN) to either surface, or can be sent first to one surface and then transcytosed to the other. The glycosyl phosphatidylinositol anchor is a signal for apical targeting. Signals in the cytoplasmic domain containing a β-turn determine basolateral targeting and retrieval, and are related to other sorting signals. Transcytosed proteins, such as the polymeric immunoglobulin receptor (plgR), are endocytosed from the basolateral surface and then accumulate in a tubular compartment concentrated underneath the apical surface. This compartment, tentatively termed the apical recycling compartment, may be a central sorting station, as it apparently receives material from both surfaces and sorts them for delivery to the correct surface. Delivery to the apical surface from both the TGN and the apical recycling compartment appears to be regulated by protein kinases A and C, and endocytosis from the apical surface is also regulated by kinases. Transcytosis of the plgR is additionally regulated by phosphorylation of the plgR and by ligand binding to the plgR. Regulation of traffic in polarized epithelial cells plays a central role in cellular homeostasis, response to external signals and differentiation.  相似文献   

16.
NgCAM is a cell adhesion molecule that is largely axonal in neurons and apical in epithelia. In Madin-Darby canine kidney cells, NgCAM is targeted to the apical surface by transcytosis, being first inserted into the basolateral domain from which it is internalized and transported to the apical domain. Initial basolateral transport is mediated by a sequence motif (Y(33)RSL) decoded by the AP-1B clathrin adaptor complex. This motif is a substrate in vitro for tyrosine phosphorylation by p60src, a modification that disrupts NgCAM's ability to interact with clathrin adaptors. Based on the behavior of various NgCAM mutants, it appears that after arrival at the basolateral surface, the AP-1B interaction site is silenced by phosphorylation of Tyr(33). This slows endocytosis and inhibits basolateral recycling from endosomes, resulting in NgCAM transcytosis due to a cryptic apical targeting signal in its extracellular domain. Thus, transcytosis of NgCAM and perhaps other membrane proteins may reflect the spatial regulation of recognition by adaptors such as AP-1B.  相似文献   

17.
B Aroeti  K E Mostov 《The EMBO journal》1994,13(10):2297-2304
Polarized epithelial cells can sort plasma membrane proteins to the apical or basolateral domain either by direct targeting from the trans-Golgi network (TGN) or by targeting to one surface, followed by endocytosis and transcytosis to the opposite surface. In Madin-Darby canine kidney (MDCK) cells, targeting of the polymeric immunoglobulin receptor (pIgR) to the basolateral surface is controlled by a sorting signal residing in the membrane proximal 17 amino acids of the cytoplasmic domain of this receptor. We have recently found that individual mutations at any of three residues in this signal, His656, Arg657 and Val660, substantially decrease targeting from the TGN to the basolateral surface and correspondingly increase targeting from the TGN to the apical surface. Here we report that these mutations decrease the recycling of basolaterally endocytosed pIgR to that surface, and correspondingly increase its transcytosis to the apical surface. This effect occurred in mutant pIgRs that either contained the full-length cytoplasmic domain or were truncated to contain only the 17-residue basolateral targeting signal, and was independent of phosphorylation of pIgR at Ser664. Our results indicate that polarized sorting of the pIgR in the endocytotic and exocytotic pathways are controlled by the same amino acids.  相似文献   

18.
Ammonium transport across plant plasma membranes is facilitated by AMT/Rh-type ammonium transporters (AMTs), which also have homologs in most organisms. In the roots of the plant Arabidopsis (Arabidopsis thaliana), AMTs have been identified that function directly in the high-affinity NH4+ acquisition from soil. Here, we show that AtAMT1;2 has a distinct role, as it is located in the plasma membrane of the root endodermis. AtAMT1;2 functions as a comparatively low-affinity NH4+ transporter. Mutations at the highly conserved carboxyl terminus (C terminus) of AMTs, including one that mimics phosphorylation at a putative phosphorylation site, impair NH4+ transport activity. Coexpressing these mutants along with wild-type AtAMT1;2 substantially reduced the activity of the wild-type transporter. A molecular model of AtAMT1;2 provides a plausible explanation for the dominant inhibition, as the C terminus of one monomer directly contacts the neighboring subunit. It is suggested that part of the cytoplasmic C terminus of a single monomer can gate the AMT trimer. This regulatory mechanism for rapid and efficient inactivation of NH4+ transporters may apply to several AMT members to prevent excess influx of cytotoxic ammonium.  相似文献   

19.
Epithelial polarization involves the segregation of apical and basolateral membrane domains, which are stabilized and maintained by tight junctions and membrane traffic. We report that unlike most apical and basolateral proteins in MDCK cells, which separate only after junctions have formed, the apical marker gp135 signifies an early level of polarized membrane organization established already in single cells. We identified gp135 as the dog orthologue of podocalyxin. With a series of domain mutants we show that the COOH-terminal PSD-95/Dlg/ZO-1 (PDZ)-binding motif is targeting podocalyxin to the free surface of single cells as well as to a subdomain of the terminally polarized apical membrane. This special localization of podocalyxin is shared by the cytoplasmic PDZ-protein Na+/H+ exchanger regulatory factor (NHERF)-2. Depleting podocalyxin by RNA interference caused defects in epithelial polarization. Together, our data suggest that podocalyxin and NHERF-2 function in epithelial polarization by contributing to an early apical scaffold based on PDZ domain-mediated interactions.  相似文献   

20.
The sodium-bicarbonate cotransporter NBC1 is targeted exclusively at the basolateral membrane. Mutagenesis of a dihydrophobic FL motif (residues 1013–1014) in the C-terminal domain disrupts the targeting of NBC1. In the present study, we determined the precise constraints of the FL motif required for basolateral targeting of NBC1 by expressing epitope-tagged wild-type and mutant NBC1 in MDCK cells and RNA-injected Xenopus oocytes and examining their subcellular localization. We assayed the functional activity of the mutants by measuring bicarbonate-induced currents in oocytes. Wild-type NBC1 (containing PFLS) was expressed exclusively on the basolateral membrane in MDCK cells. Reversal of the FL motif (PLFS) had no effect on basolateral targeting or activity. Shifting the FL motif one residue upstream (FLPS) resulted in mistargeting of the apical membrane but the FLPS mutant retained its functional activity in oocytes. Shifting the FL motif one residue downstream resulted in a mutant (PSFL) that did not efficiently translocate to the plasma membrane and was instead colocalized with the ER marker, protein disulfide isomerase (PDI). Analysis of circular dichroism (CD) revealed that a short peptide, 20 amino acid residues, of wild-type NBC1 contained a significant α-helical structure, whereas peptides in which the FL motif was reversed or C-terminally shifted were disordered. We therefore propose that the specific orientation and the precise location of the FL motif in the primary sequence of NBC1 are strict requirements for the α-helical structure of the C-terminal cytoplasmic domain and for targeting of NBC1 to the basolateral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号