首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The trpS gene encoding Bacillus subtilis tryptophanyl-tRNA synthetase (TrpRS) was prepared from the pUC8-derived pTSQ2 plasmid, mutagenized to introduce an EcoRI site immediately in front of the ATG start codon, and inserted into the pKK223-3 vector downstream to the tac promoter to yield the pKSW1 plasmid. Upon induction with isopropyl-beta-D-thiogalactopyranoside, Escherichia coli JM109[pKSW1] cells synthesized TrpRS to a level corresponding to 45% of total cell proteins. This high level of gene expression facilitates large scale preparation of TrpRS for physical studies, detection of in vivo degradation of mutant forms of TrpRS, and comparative assays of TrpRS by [3H]Trp-tRNA formation and by Trp-hydroxamate formation for the purpose of mutant characterization. Finally, since pKSW1 could complement the temperature-sensitive TrpRS mutation on E. coli trpS 10343 cells, defective mutations of the trpS gene on pKSW1 would be deductible on the basis of complementation testing.  相似文献   

3.
The structural gene for glutamine synthetase (glnA) in Bacillus subtilis ( glnAB ) cloned in the lambda vector phage Charon 4A was used to transduce a lysogenic glutamine auxotrophic Escherichia coli strain to prototrophy. The defective E. coli gene ( glnAE ) was still present in the transductant since it could be transduced. In addition, curing of the prototroph resulted in the restoration of glutamine auxotrophy. Proteins in crude extracts of the transductant were examined by a "Western blotting" procedure for the presence of B. subtilis or E. coli glutamine synthetase antigen; only the former was detected. Growth of the strain in media without glutamine was not curtailed even when the bacteriophage lambda pL and pRM promoters were hyperrepressed . The specific activities and patterns of derepression of glutamine synthetase in the transductant were similar to those of B. subtilis, with no evidence for adenylylation. The information necessary for regulation of glnAB must be closely linked to the gene and appears to function in E. coli.  相似文献   

4.
The transport of several metabolites is decreased in mutant strains of Escherichia coli (Met K, E4 and E40), which contain decreased levels of S-adenosylmethionine synthetase. The rates and extents of uptake for lysine, leucine, methionine, and α-methylglucoside in both whole cells and membrane vesicles isolated from these mutants are 2- to 10-fold lower than in corresponding preparations from wild-type cells, although proline uptake is normal. The addition of S-adenosylmethionine to cultures of strain E40 can partially restore the rate and extent of lysine uptake. Lysine transport is lower in mutant vesicles in the presence of either d-lactate, succinate, α-hydroxylbutyrate, or NADH even though these substrates are oxidized at rates comparable to those in wild-type vesicles. This suggests that the defect is not related to the ability of vesicles to oxidize electron donors, but is very likely related to the ability of mutant vesicles to couple respiration to lysine transport. In addition, temperature-induced efflux of α-methylglucoside phosphate and dinitrophenol-induced efflux of lysine are similar in both the mutant and wild-type membranes, indicating that the barrier properties of the membrane and the activity of the lysine carrier are normal.  相似文献   

5.
The genes that encode the two subunits of Bacillus subtilis phenylalanyl-tRNA synthetase were cloned from alpha lambda library of chromosomal B. subtilis DNA by specific complementation of a thermosensitive Escherichia coli pheS mutation. Both genes (we named them pheS and pheT, analogous to the corresponding genes of E. coli) are carried by a 6.6-kilobase-pair PstI fragment which also complements E. coli pheT mutations. This fragment directs the synthesis of two proteins identical in size to the purified alpha and beta subunits of the phenylalanyl-tRNA synthetase of B. subtilis with Mrs of 42,000 and 97,000, respectively. A recombinant shuttle plasmid carrying the genes caused 10-fold overproduction of functional phenylalanyl-tRNA synthetase in B. subtilis.  相似文献   

6.
The metE gene, encoding S-adenosylmethionine synthetase (EC 2.5.1.6) from Bacillus subtilis, was cloned in two steps by normal and inverse PCR. The DNA sequence of the metE gene contains an open reading frame which encodes a 400-amino-acid sequence that is homologous to other known S-adenosylmethionine synthetases. The cloned gene complements the metE1 mutation and integrates at or near the chromosomal site of metE1. Expression of S-adenosylmethionine synthetase is reduced by only a factor of about 2 by exogenous methioinine. Overproduction of S-adenosylmethionine synthetase from a strong constitutive promoter leads to methionine auxotrophy in B. subtilis, suggesting that S-adenosylmethionine is a corepressor of methionine biosynthesis in B. subtilis, as others have already shown for Escherichia coli.  相似文献   

7.
8.
Bacterial glutamine synthetases (GSs) are complex dodecameric oligomers that play a critical role in nitrogen metabolism, converting ammonia and glutamate to glutamine. Recently published reports suggest that GS from Mycobacterium tuberculosis (MTb) may be a therapeutic target (Harth, G., and Horwitz, M. A. (2003) Infect. Immun. 71, 456-464). In some bacteria, GS is regulated via adenylylation of some or all of the subunits within the aggregate; catalytic activity is inversely proportional to the extent of adenylylation. The adenylylation and deadenylylation of GS are catalyzed by adenylyl transferase (ATase). Here, we demonstrate via electrospray ionization mass spectrometry that GS from pathogenic M. tuberculosis is adenylylated by the Escherichia coli ATase. The adenylyl group can be hydrolyzed by snake venom phosphodiesterase to afford the unmodified enzyme. The site of adenylylation of MTb GS by the E. coli ATase is Tyr-406, as indicated by the lack of adenylylation of the Y406F mutant, and, as expected, is based on amino acid sequence alignments. Using electrospray ionization mass spectroscopy methodology, we found that GS is not adenylylated when obtained directly from MTb cultures that are not supplemented with glutamine. Under these conditions, the highly related but non-pathogenic Mycobacterium bovis BCG yields partially ( approximately 25%) adenylylated enzyme. Upon the addition of glutamine to the cultures, the MTb GS becomes significantly adenylylated ( approximately 30%), whereas the adenylylation of M. bovis BCG GS does not change. Collectively, the results demonstrate that MTb GS is a substrate for E. coli ATase, but only low adenylylation states are accessible. This parallels the low adenylylation states observed for GS from mycobacteria and suggests the intriguing possibility that adenylylation in the pathogenic versus non-pathogenic mycobacteria is differentially regulated.  相似文献   

9.
10.
Here we report the first three-dimensional structure of a phosphoribosylpyrophosphate (PRPP) synthetase. PRPP is an essential intermediate in several biosynthetic pathways. Structures of the Bacillus subtilis PRPP synthetase in complex with analogs of the activator phosphate and the allosteric inhibitor ADP show that the functional form of the enzyme is a hexamer. The individual subunits fold into two domains, both of which resemble the type I phosphoribosyltransfereases. The active site is located between the two domains and includes residues from two subunits. Phosphate and ADP bind to the same regulatory site consisting of residues from three subunits of the hexamer. In addition to identifying residues important for binding substrates and effectors, the structures suggest a novel mode of allosteric regulation.  相似文献   

11.
Effect of Microwaves on Escherichia coli and Bacillus subtilis   总被引:1,自引:6,他引:1       下载免费PDF全文
Suspensions of Escherichia coli and Bacillus subtilis spores were exposed to conventional thermal and microwave energy at 2,450 MHz. The degrees of inactivation by the different energy sources were compared quantitatively. During the transient heating period by microwave energy, approximately a 6 log cycle reduction in viability was encountered for E. coli. This reduction was nearly identical to what is expected for the same time-temperature exposure to conventional heating. Heating of B. subtilis spores by conventional and microwave energy was also carried out at 100 C, in ice and for transient heating. The degree of inactivation by microwave energy was again identical to that by conventional heating. In conclusion, inactivation of E. coli and B. subtilis by exposure to microwaves is solely due to the thermal energy, and there is no per se effect of microwaves.  相似文献   

12.
E M Rubin  G A Wilson  F E Young 《Gene》1980,10(3):227-235
The gene from Escherichia coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid, pER2, was effective in transforming both E. coli and Bacillus subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine-requiring strains of B. subtilis to thymine independence. Linearization of the chimeric plasmid, pER2, with restriction enzymes markedly diminished its ability to transform B. subtilis auxotrophs. The Thy+ transformants derived from the transformation of B. subtilis with pER2 DNA did not contain detectable extrachromosomal DNA as demonstrated by Southern hybridization patterns and centrifugation in CsCl gradients of DNA isolated from B. subtilis colonies transformed with the chimeric plasmid. We conclude that the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis, demonstrating that extensive homology is not required for the integration of foreign DNA. This is the first reported case of a gene from a Gram-negative bacterium functioning in a Gram-positive organism.  相似文献   

13.
The sole biosynthetic route to S-adenosylmethionine, the primary biological alkylating agent, is catalysed by S-adenosylmethionine synthetase (ATP: L -methionine S-adenosyltransferase). In Escherichia coli and Sal-monella typhimunum numerous studies have located a structural gene (metK) for this enzyme at 63min on the chromosomal map. We have now identified a second structural gene for S-adenosylmethionine synthetase in E. coli by DNA hybridization experiments with metK as the probe; we denote this gene as metX. The metX gene is located adjacent to metK with the gene order speA metK metX speC. The metK and metX genes are separated by ~0.8kb. The metK and the metX genes are oriented convergently as indicated by DNA hybridization experiments using sequences from the 5′ and 3′ ends of metK. The metK gene product is detected immunochemically only in cells growing in minimal media, whereas the metX gene product is detected immunochemically in cells grown in rich media at all growth phases and in stationary phase in minimal media. Mutants in metK or metX were obtained by insertion of a kanamycin resistance element into the coding region of the cloned metK gene (metK:: kan), followed by use of homologous recombination to disrupt the chromosomal metK or metX gene. The metK::kan mutant thus prepared does not grow on minimal media but does grow normally on rich media, while the corresponding metX::kan mutant does not grow on rich media although it grows normally on minimal media. These results indicate that metK expression is essential for growth of E. coli on minimal media and metX expression is essential for growth on rich media. Our results demonstrate that Ado Met synthetase has an essential cellular and/or metabolic function. Furthermore, the growth phenotypes, as well as immunochemical studies, demonstrate that the two genes that encode S-adenosylmethionine synthetase isozymes are differentially regulated. The mutations in metK and metX are highly unstable and readily yield kanamycin-resistant cells in which the chromosomal location of the kanamycin-resistance element has changed.  相似文献   

14.
Modified prepenicillinase was accumulated in both Escherichia coli and Bacillus subtilis treated with globomycin. Although the inhibitions of processings of prepenicillinase and prolipoprotein by globomycin in E. coli are qualitatively similar, they differ in the degree of inhibition at given concentrations of globomycin. The processing of prepenicillinase proceeds much more rapidly in E. coli than in B. subtilis.  相似文献   

15.
16.
17.
18.
Procedures are described for the preparation of highly purified thymidylate synthases from Escherichia coli and Bacillus subtilis. The yields in each case are quite high with about 350 mg of pure protein obtained from 1 liter of cells. Basically all that is required to obtain pure enzyme is an induction step from a high-expression vector, followed by a DE-52 column elution. Both enzymes appeared to be fairly stable in that incubation at 43 degrees C for 10 min resulted in the loss of 50% of the E. coli thymidylate synthase activity, while 50 degrees C for 10 min was required to obtain the same effect with the B. subtilis enzyme. In the presence of the substrate, dUMP, each protein was stabilized further by 6 to 7 degrees C, which was increased to 9 to 10 degrees C on addition of dihydrofolate. It was shown also that the E. coli thymidylate synthase could be maintained at 4 degrees C for at least 4 months with little or no loss in activity provided that mercaptoethanol was not present. The presence of the latter led to a progressive loss in activity until little activity could be detected after 18 weeks, which was due, in part, to the formation of a disulfide bond with the active site cysteine. Addition of dithiothreitol restored the enzyme activity to its original state.  相似文献   

19.
Immobilized keratinase can improve stability while retaining its proteolytic and keratinolytic properties. Conventional purification followed by chemical immobilization is a laborious and costly process. A new genetic construct was developed to produce the keratinase-streptavidin fusion protein. Consequently, the purification and immobilization of the fusion protein onto a biotinylated matrix can be accomplished in a single step. The method was tested in both the Bacillus subtilis and Escherichia coli systems. In B. subtilis, the fusion protein was produced extracellularly and readily immobilized from the medium. In E. coli, the fusion protein was produced intracellularly in inclusion bodies; additional separation and renaturation processes were required prior to immobilization from the cell extract. The overall efficiencies were approximately the same, 24-28%, using both systems.  相似文献   

20.
A procedure is described for the purification of bacterial flagella in the form of a filament-hook-basal body complex (intact flagella) free from detectable cell wall, membrane, or cytoplasmic material. Spheroplasts produced with lysozyme and ethylenediaminetetraacetic acid were lysed with Triton X-100, and the flagella were purified by (NH(4))(2)SO(4) precipitation, differential centrifugation, and CsCl gradient centrifugation. As much as 40% of the flagella were recovered, and they contained about one basal body per 4 to 6 mum of flagella. The same procedure developed for Escherichia coli was also successful for purifying intact flagella from Bacillus subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号