首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleoside diphosphate kinases (NDPKs/Nm23), responsible for intracellular di- and tri-phosphonucleoside homeostasis, play multi-faceted roles in cellular energetic, signaling, proliferation, differentiation and tumor invasion. The mitochondrial NDPK-D, the NME4 gene product, is a peripheral protein of the inner membrane. Several new aspects of the interaction of NDPK-D with the inner mitochondrial membrane have been recently characterized. Surface plasmon resonance analysis using recombinant NDPK-D and different phospholipid liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin, a phospholipid located mostly in the mitochondrial inner membrane. Mutation of the central arginine (R90) in a surface exposed cationic RRK motif unique to NDPK-D strongly reduced phospholipid interaction in vitro and in vivo. Stable expression of NDPK-D proteins in HeLa cells naturally almost devoid of this isoform revealed a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on the membrane-bound state of the enzyme. Owing to its symmetrical hexameric structure exposing membrane binding motifs on two opposite sides, NDPK-D could bridge liposomes containing anionic phospholipids and promote lipid transfer between them. In vivo, NDPK-D could induce intermembrane contacts and facilitate lipid movements between mitochondrial membranes. Most of these properties are reminiscent to those of the mitochondrial creatine kinase. We review here the common properties of both kinases and we discuss their potential roles in mitochondrial functions such as energy production, apoptosis and mitochondrial dynamics.  相似文献   

2.
Nucleoside Diphosphate Kinases (NDPKs) have long been considered merely as housekeeping enzymes. The discovery of the NME1 gene, an anti-metastatic gene coding for NDPK-A, led the scientific community to re-evaluate their role in the cell. It is now well established that the NDPK family is more complex than what was first thought, and despite the increasing amount of evidence suggesting the multifunctional role of nm23/NDPKs, the specific functions of each family member are still elusive. Among these isoforms, NDPK-D is the only one to present a mitochondria-targeting sequence. It has recently been shown that this protein is able to bind and cross-link with mitochondrial membranes, suggesting that NDPK-D can mediate contact sites and contributes to the mitochondrial intermembrane space structuring. To better understand the influence of NDPK-D on mitochondrial lipid organisation, we analysed its behaviour in different lipid environments. We found that NDPK-D not only interacts with CL or anionic lipids, but is also able to bind in a non negligible manner to zwitterionic PC. NDPK-D alters membrane organisation in terms of fluidity, hydration and lipid clustering, effects which depend on lipid structure. Changes in the protein structure after lipid binding were evidenced, both by fluorescence and infrared spectroscopy, regardless of membrane composition. Taking into account all these elements, a putative mechanism of interaction between NDPK-D and zwitterionic or anionic lipids was proposed.  相似文献   

3.
Mitochondrial isoforms of creatine kinase (MtCK) and nucleoside diphosphate kinase (NDPK-D) are not phylogenetically related but share functionally important properties. They both use mitochondrially generated ATP with the ultimate goal of maintaining proper nucleotide pools, are located in the intermembrane/cristae space, have symmetrical oligomeric structures, and show high affinity binding to anionic phospholipids, in particular cardiolipin. The structural basis and functional consequences of the cardiolipin interaction have been studied and are discussed in detail in this review. They mainly result in a functional interaction of MtCK and NDPK-D with inner membrane adenylate translocator, probably by forming proteolipid complexes. These interactions allow for privileged exchange of metabolites (channeling) that ultimately regulate mitochondrial respiration. Further functions of the MtCK/membrane interaction include formation of cardiolipin membrane patches, stabilization of mitochondria and a role in apoptotic signaling, as well as in case of both kinases, a role in facilitating lipid transfer between two membranes. Finally, disturbed cardiolipin interactions of MtCK, NDPK-D and other proteins like cytochrome c and truncated Bid are discussed more generally in the context of apoptosis and necrosis.  相似文献   

4.
The nucleoside diphosphate kinase Nm23-H4/NDPK-D forms symmetrical hexameric complexes in the mitochondrial intermembrane space with phosphotransfer activity using mitochondrial ATP to regenerate nucleoside triphosphates. We demonstrate the complex formation between Nm23-H4 and mitochondrial GTPase OPA1 in rat liver, suggesting its involvement in local and direct GTP delivery. Similar to OPA1, Nm23-H4 is further known to strongly bind in vitro to anionic phospholipids, mainly cardiolipin, and in vivo to the inner mitochondrial membrane. We show here that such protein-lipid complexes inhibit nucleoside diphosphate kinase activity but are necessary for another function of Nm23-H4, selective intermembrane lipid transfer. Mitochondrial lipid distribution was analyzed by liquid chromatography-mass spectrometry using HeLa cells expressing either wild-type Nm23-H4 or a membrane binding-deficient mutant at a site predicted based on molecular modeling to be crucial for cardiolipin binding and transfer mechanism. We found that wild type, but not the mutant enzyme, selectively increased the content of cardiolipin in the outer mitochondrial membrane, but the distribution of other more abundant phospholipids (e.g. phosphatidylcholine) remained unchanged. HeLa cells expressing the wild-type enzyme showed increased accumulation of Bax in mitochondria and were sensitized to rotenone-induced apoptosis as revealed by stimulated release of cytochrome c into the cytosol, elevated caspase 3/7 activity, and increased annexin V binding. Based on these data and molecular modeling, we propose that Nm23-H4 acts as a lipid-dependent mitochondrial switch with dual function in phosphotransfer serving local GTP supply and cardiolipin transfer for apoptotic signaling and putative other functions.  相似文献   

5.
Nucleoside diphosphate kinases (NDPK) are ubiquitous enzymes that catalyze the reversible phosphotransfer of γ-phosphates between di- and triphosphonucleosides. NDPK-D (Nm23-H4) is the only member of the NDPK family with a mitochondrial targeting sequence. Despite the high expression of NDPK-D in the developing central nervous system, its function remains to be determined. In this study, we show that NDPK-D knockdown induces apoptosis in neuroblastoma cells as well as in mouse cortex, suggesting that NDPK-D is required for neuronal survival. We identified NDPK-D as a binding partner of NAD+-dependent histone deacetylase, SIRT1, by yeast two-hybrid screening. NDPK-D co-localized with SIRT1, and the association of these molecules was confirmed by co-immunoprecipitation. Inhibition of SIRT1 increases the acetylation of NDPK-D. Overexpression of NDPK-D along with SIRT1, or mutation in the acetylated lysine residues in NDPK-D, increases its nuclear accumulation. Furthermore, the NDPK-D acetylation-mimic mutant increased apoptosis in N1E-115 cells. Our data demonstrate that acetylation regulates the shuttling of NDPK-D between nucleus and cytoplasm, and increased acetylation of NDPK-D causes apoptosis.  相似文献   

6.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule.

The absorption and fluorescence excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca2+ strongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes.

With mitochondrial membranes an effect of Ca2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it.

From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholipid moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   


7.
The pH dependence of the binding of weakly acidic uncouplers of oxidative phosphorylation to rat-liver mitochondria and liposomes is mainly determined by the pKa of the uncoupler molecule. The absorption and fluorescene excitation spectra of the anionic form of weakly acidic uncouplers of oxidative phosphorylation are red-shifted upon interaction with liposomal or mitochondrial membranes. The affinity for the liposomes, as deduced from the red shift, is independent of the degree of saturation of the fatty acid chains of different lecithins. The intensity of the spectra at one pH value is strongly dependent upon the surface charge of the liposomes. With positively charged liposomes the results obtained can be almost quantitatively explained with the Gouy-Chapman theory, but with negatively charged ones deviations are observed. At a particular pH, the divalent ion Ca-2+ stongly influences the intensity of the spectra in the presence of negatively charged liposomes, but has no effect with neutral liposomes. With mitochondrial membranes an effect of Ca-2+ similar to that with negatively charged liposomes is observed. Depletion of the phospholipids of the mitochondria and subsequent restoration of the mitochrondrial membrane with lecithin, strongly diminishes this effect, but restoration with negatively charged phospholipids does not influence it. From these observations it is concluded that the anionic form of the uncoupler molecule when bound to mitochondria is located within the partly negatively charged phospholiped moiety of the membrane, with its anionic group pointing to the aqueous solution.  相似文献   

8.
Data on localization of nucleoside diphosphate kinase (NDPK) in the outer mitochondrial compartment are contradictory. We have demonstrated that repeated quintuple wash of a mitochondrial pellet (protein concentration is about 2 mg/ml) solubilized only 60% of total NDPK activity. Since no release of adenylate kinase, the marker enzyme of the intermembrane space, was observed, it was concluded that the solubilized NDPK activity was associated with the outer surface of the outer mitochondrial membrane. Treatment of mitochondria with digitonin solutions in low (sucrose, mannitol) or high (KCl) ionic strength media revealed that solubilization of remaining NDPK activity basically coincided with the solubilization curve of monoamine oxidase, the marker enzyme of the outer mitochondrial membrane, but differed from solubilization behavior of adenylate kinase and malate dehydrogenase. We concluded that the remaining NDPK activity was also associated with the outer mitochondrial membrane and electrostatic interactions were not essential for NDPK binding to mitochondrial membranes. Results of polarographic determination of remaining adenylate kinase and NDPK activities of mitochondria incubated in ice for different time intervals and subjected to subsequent centrifugation suggest that all NDPK activity of the outer compartment of rat liver mitochondria is associated with the outer surface of the outer mitochondrial membrane. We suggest the existence of at least three NDPK fractions. They represent 70, 15, and 15% of total NDPK activity of the outer compartment and differ by tightness of membrane binding.  相似文献   

9.
Here, we present the characterization of a plant NDPK exhibiting nuclease activity. This is the first identification of a nuclease localised in the intermembrane space of plant mitochondria. The recombinant pea NDPK3 protein cleaves not only supercoiled plasmid DNA, but also highly structured RNA molecules such as tRNAs or the 3'UTR of the atp9 mRNA suggesting that the NDPK3 nuclease activity has a structural requirement. ATP inhibits this nuclease activity, while ADP has no effect. Furthermore, studies on NDPK mutant proteins indicate that the nuclease- and the kinase-mechanisms are separate.  相似文献   

10.
For the first time, to our knowledge, a nucleoside diphosphate kinase (NDPK) has been purified from plant mitochondria (Pisum sativum L.). In intact pea leaf mitochondria, a 17.4-kDa soluble protein was phosphorylated in the presence of EDTA when [gamma-32P]ATP was used as the phosphate donor. Cell fractionation demonstrated that the 17.4-kDa protein is a true mitochondrial protein, and the lack of accessibility to EDTA of the matrix compartment in intact mitochondria suggested it may have an intermembrane space localization. The 17.4-kDa protein was purified from mitochondrial soluble proteins using ATP-agarose and anion exchange chromatography. Amino-acid sequencing of two peptides, resulting from a trypsin digestion, revealed high similarity with the conserved catalytic phosphohistidine site and with the C-terminal of NDPKs. Acid and alkali treatments of [32P]-labelled pea mitochondrial NDPK indicated the presence of acid-stable as well as alkali-stable phosphogroups. Thin-layer chromatography experiments revealed serine as the acid-stable phosphogroup. The alkali-stable labelling probably reflects phosphorylation of the conserved catalytic histidine residue. In phosphorylation experiments, the purified pea mitochondrial NDPK was labelled more heavily on serine than histidine residues. Furthermore, kinetic studies showed a faster phosphorylation rate for serine compared to histidine. Both ATP and GTP could be used as phosphate donor for histidine as well as serine labelling of the pea mitochondrial NDPK.  相似文献   

11.
Abrupt changes in the Arrhenius activation energy of membrane-bound enzymes have often been correlated with changes in the physical state of membrane phospholipids. Similar changes in activation energy have also been found in soluble enzymes. The possibility exists, therefore, that in some of the membrane-bound enzymes the changes might reflect intrinsic changes of the proteins independent of changes in the membrane phospholipids. This hypothesis was investigated using Drosophila mitochondria isolated from wild type and the mutant Ocd ts-1. In this mutant it has been shown that succinate-cytochrome c reductase exhibits a change in Arrhenius activation energy at 18 degrees C which is not found in the wild type (Sondergaard, L., Nielsen, N.C. and Smillie, R.M. (1975) FEBS lett. 50, 126-129). A quantitative thin-layer chromatographic analysis of mitochondrial phospholipids showed sphingomyelin to be more abundant in the wild type than in the mutant (5.2% and 4.3% of the total phospholipids, respectively). Since it was shown that the succinate-cytochrome c reductase had a lipid requirement for full activity, reciprocal rebinding experiments were done. These experiments showed that the reconstituted membranes exhibited the change in activation energy at 18 degrees C only when the protein moiety came from mutant mitochondria, that is, the change was independent of the source of the phospholipids used.  相似文献   

12.
This study provides evidence of a novel function for mitochondrial creatine kinase (MtCK) and nucleoside diphosphate kinase (NDPK-D). Both are basic peripheral membrane proteins with symmetrical homo-oligomeric structure, which in the case of MtCK was already shown to allow crossbridging of lipid bilayers. Here, different lipid dilution assays clearly demonstrate that both kinases also facilitate lipid transfer from one bilayer to another. Lipid transfer occurs between liposomes mimicking the lipid composition of mitochondrial contact sites, containing 30 mol % cardiolipin, but transfer does not occur when cardiolipin is replaced by phosphatidylglycerol. Ubiquitous MtCK, but not NDPK-D, shows some specificity in the nature of the lipids transferred and it is not active with phosphatidylcholine alone. MtCK can undergo reversible oligomerization between dimeric and octameric forms, but only the octamer can bridge membranes and promote lipid transfer. Cytochrome c, another basic mitochondrial protein known to bind to anionic membranes but not crosslinking them, is also incapable of promoting lipid transfer. The lipid transfer process does not involve vesicle fusion or loss of the internal contents of the liposomes.  相似文献   

13.
The electrostatic interactions of cytochrome c with its redox partners and membrane lipids, as well as other protein interactions and biochemical reactions, may be modulated by the ionic strength of the intermembrane space of the mitochondrion. FITC-BSA was used to determine the relative value of the mitochondrial intermembrane ionic strength with respect to bulk medium external to the mitochondrial outer membrane. FITC-BSA exhibited an ionic strength-dependent fluorescence change with an affinity in the mM range as opposed to its pH sensitivity in the microM range. A controlled, low pH-induced membrane fusion procedure was developed to transfer FITC-BSA encapsulated in asolectin liposomes, to the intermembrane space of intact mitochondria. The fusion procedure did not significantly affect mitochondrial ultrastructure, electron transport, or respiratory control ratios. The extent of fusion of liposomes with the mitochondrial outer membrane was monitored by fluorescence dequenching assays using a membrane fluorescent probe (octadecylrhodamine B) and the soluble FITC-BSA fluorescent probe, which report membrane and contents mixing, respectively. Assays were consistent with a rapid, low pH-induced vesicle-outer membrane fusion and delivery of FITC-BSA into the intermembrane space. Similar affinities for the ionic strength-dependent change in fluorescence were found for bulk medium, soluble (9.8 +/- 0.8 mM) and intermembrane space-entrapped FITC-BSA (10.2 +/- 0.6 mM). FITC-BSA consistently reported an ionic strength in the intermembrane space of the functionally and structurally intact mitochondria within +/- 20% of the external bulk solution. These findings reveal that the intermembrane ionic strength changes as does the external ionic strength and suggest that cytochrome c interactions, as well as other protein interactions and biochemical reactions, proceed in the intermembrane space of mitochondria in the intact cell at physiological ionic strength, i.e., 100-150 mM.  相似文献   

14.
Caspases are cysteine proteases that play a central role in the execution of apoptosis. Recent evidence indicates that caspase-2 is activated early in response to genotoxic stress and can function as an upstream modulator of the mitochondrial apoptotic pathway. In particular, we have shown previously that fully processed caspase-2 can permeabilize the outer mitochondrial membrane and cause cytochrome c and Smac/DIABLO release from these organelles. Using permeabilized cells, isolated mitochondria, and protein-free liposomes, we now report that this effect is direct and depends neither on the presence or cleavage of other proteins nor on a specific phospholipid composition of the liposomal membrane. Interestingly, caspase-2 was also shown to disrupt the interaction of cytochrome c with anionic phospholipids, notably cardiolipin, and thereby enhance the release of the hemoprotein caused by treatment of mitochondria with digitonin or the proapoptotic protein Bax. Combined, our data suggest that caspase-2 possesses an unparalleled ability to engage the mitochondrial apoptotic pathway by permeabilizing the outer mitochondrial membrane and/or by breaching the association of cytochrome c with the inner mitochondrial membrane.  相似文献   

15.
Abrupt changes in the Arrhenius activation energy of membrane-bound enzymes have often been correlated with changes in the physical state of membrane phospholipids. Similar changes in activation energy have also been found in soluble enzymes. The possibility exists, therefore, that in some of the membrane-bound enzymes the changes might reflect intrinsic changes of the proteins independent of changes in the membrane phospholipids. This hypothesis was investigated using Drosophila mitochondria isolated from wild type and the mutant Ocdts-1. In this mutant it has been shown that succinate-cytochrome c reductase exhibits a change in Arrhenius activation energy at 18°C which is not found in the wild type (Sondergaard, L., Nielsen, N.C. and Smillie, R.M. (1975) FEBS lett. 50, 126–129). A quantitative thin-layer chromatographic analysis of mitochondrial phospholipids showed sphingomyelin to be more abundant in the wild type than in the mutant (5.2% and 4.3% of the total phospholipids, respectively). Since it was shown that the succinate-cytochrome c reductase had a lipid requirement for full activity, reciprocal rebinding experiments were done. These experiments showed that the reconstituted membranes exhibited the change in activation energy at 18°C only when the protein moiety came from mutant mitochondria, that is, the change was independent of the source of the phospholipids used.  相似文献   

16.
Ceramides are known to have a regulatory function in apoptosis, including the release of cytochrome c and other proapoptotic factors from the mitochondrial intermembrane space. Ceramides can form large, stable channels in the outer mitochondrial membrane, leading to the proposal that ceramide channels are the pathway through which these proteins are released. Here, we report that sphingosine, a product of ceramide hydrolysis by ceramidase, is capable of destabilizing ceramide channels, leading to their disassembly. Sphingosine is directly responsible for the disassembly of ceramide channels in planar membrane experiments and markedly reduces the ability of ceramide to induce the release of intermembrane space proteins from mitochondria in vitro. Low concentrations of both L and D sphingosine potentiate the release of intermembrane space proteins by long-chain ceramide and channel formation in liposomes. These results provide evidence for a mechanism by which the disassembly of ceramide channels, as initiated by ceramidase, could be accelerated by the direct interaction of the hydrolysis product with the ceramide channels themselves. This mechanism therefore could form a positive feedback loop for rapid shut-down of ceramide channels. However, potentiation of ceramide channel formation is also possible and thus both effects could influence the propensity for mitochondria-mediated apoptosis.  相似文献   

17.
Galig, a gene embedded within the galectin-3 gene, induces cell death when transfected in human cells. This death is associated with cell shrinkage, nuclei condensation, and aggregation of mitochondria. Galig contains two different overlapping open reading frames encoding two unrelated proteins. Previous observations have shown that one of these proteins, named mitogaligin, binds to mitochondria and promotes the release of cytochrome c. However, the mechanism of action of this cytotoxic protein remains still obscure. The present study provides evidence that synthetic peptides enclosing the mitochondrial localization signal of mitogaligin bind to anionic biological membranes leading to membrane destabilization, aggregation, and content leakage of mitochondria or liposomes. This binding to anionic phospholipids is the most efficient when cardiolipin, a specific phospholipid of mitochondria, is inserted in the membranes. Thus, cardiolipin may constitute a target of choice for mitogaligin sorting and membrane destabilization activity.  相似文献   

18.
The release of proapoptotic proteins from the intermembrane space of mitochondria is an early critical step in many pathways to apoptosis. Induction of the mitochondrial permeability transition pore (PTP) was suggested to be the mechanism of the release of soluble mitochondrial intermembrane proteins (SIMP) in apoptosis. However, several studies suggested that proapoptotic proteins (e.g. Bax and Bid) can induce the release of SIMP (e.g. cytochrome c (cyt c) and adenylate kinase 2 (AK2)) in vivo and in vitro independent of PTP. We have found that a number of structurally diverse polycations, such as aliphatic polyamines (e.g. spermine and to a lesser extent spermidine), aminoglycosides (e.g. streptomycin, gentamicin and neomycin), and cytotoxic peptides (e.g. melittin), induce the release of SIMP from liver mitochondria, in vitro. All the polycations released AK2 together with cyt c, suggesting that rupture of the outer membrane is a common mechanism of cyt c release by these polycations. Several polycations (e.g. spermine, spermidine and neomycin) induced SIMP release without inducing significant swelling, and this release was not inhibited significantly by the PTP inhibitor cyclosporin. In contrast, under the same conditions, streptomycin and melittin induced swelling and SIMP release that was inhibited strongly by cyclosporin. Gentamicin-induced swelling and release of SIMP were partially inhibited by cyclosporin. The affinity of polyamines to the anionic phospholipids of the mitochondrial membranes (spermine=neomycin>gentamicin>streptomycin=spermidine) correlated roughly with their ability to induce PTP-independent release of SIMP, which suggests that the binding of polycations to the anionic phospholipids of the outer mitochondrial membrane facilitates the rupture of this membrane. However, some polycations facilitated the induction of PTP, possibly by binding to cardiolipin on the inner membrane. This dual mechanism may be relevant to the induction of SIMP release in apoptosis.  相似文献   

19.
The binding of different uncouplers of oxidative phosphorylation to rat-liver mitochondria was measured. At pH 7.2 and about 0.7 mg mitochondrial protein/ml the percentage bound of the uncoupler added was 84% for 2,3,4,5,6-pentachlorophenol (PCP), 40% for carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), 35% for 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB), 4% for α′,α′-bis (hexafluoroacetonyl)acetone (1799), and less than 4% for 2,4-dinitrophenol. These percentages are constant up to amounts of uncoupler added several times the one needed for maximal uncoupling. The values found for FCCP and TTFB are in contradiction to the proposed stoichiometric interaction of uncouplers with the coupling sites of the mitochondrial membrane.From titration experiments of the rate of O2 uptake by rat-liver mitochondria in State 4 as a function of the uncoupler concentration in the presence of albumin or of different types of liposomes the conclusion is drawn that the negative surface charge of the mitochondrial phospholipids may be an important parameter in determining the binding of anionic uncouplers to rat-liver mitochondria.  相似文献   

20.
Tim23 mediates protein translocation into mitochondria. Although inserted into the inner membrane, the dynamic association of its intermembrane space (IMS) domain with the outer membrane promotes protein import. However, little is known about the molecular basis of this interaction. Here, we demonstrate that the IMS domain of Tim23 tightly associates with both inner and outer mitochondrial membrane-like membranes through a hydrophobic anchor at its N terminus. The structure of membrane-bound Tim23IMS is highly dynamic, allowing recognition of both the incoming presequence and other translocase components at the translocation contact. Cardiolipin enhances Tim23 membrane attachment, suggesting that cardiolipin can influence preprotein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号