首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modification of the assays for isocitrate and malate dehydrogenase, using phenazine methosulphate and 2,6-dichlorophenolindophenol, permits measurements on cell-free extracts. Phenazine methosulfate at concentrations higher than 30 nmoles/3 ml prevents the accumulation of NADPH or NADH and thus reduces errors due to endogenous oxidation of these compounds. The use of 2,6-dichlorophenolindophenol rather than a tetrazolium salt as the terminal electron acceptor allows continuous spectrophotometric measurement of enzyme activities.Assay for NADP-specific isocitrate dehydrogenase can be performed in aerobic or anaerobic conditions. Assays for malate dehydrogenase should be run under anaerobic conditions because of the interference by oxygen on the phenazine methosulfate mediated reduction of 2,6-dichlorophenolindophenol by NADH. Under anaerobic conditions, where NADH oxidase is inoperative, the phenazine methosulfate/dichlorophenolindophenol assay is more sensitive than the assay using direct measurement of NADH at 340 nm.  相似文献   

2.
The properties of the membrane-bound reduced nicotinamide adenine dinucleotide (NADH) oxidase of Acholeplasma laidlawii were compared with those of the corresponding cytoplasmic activity of Mycoplasma mycoides subsp. capri. The striking differences in pH optima, susceptibility to inhibitors and detergents, and heat inactivation between the NADH oxidase activity, with oxygen as an electron acceptor, and the NADH oxidoreductase activity, with dichlorophenol indophenol (DCPIP) as an alternate electron acceptor, support the presence of more than one catalytic protein in both the membrane-bound and soluble enzyme systems. The detection of more than one band positive for the NADH-nitroblue tetrazolium oxidoreductase reaction on electrophoresis of either the membranes of A. laidlawii or the cytoplasm of M mycoides subsp. capri also points in the same direction. The membrane-bound enzyme system differed, however, form the soluble one because it had a lower ratio of oxidase activity to oxidoreductase activity, and because it was less susceptible to heat inactivation and more readily incorporated incorporated into reaggregated membranes. In addition, the specific activity of the membrane-bound enzyme system increased as the culture aged, whereas that of the soluble system decreased as the culture aged. It is suggested that the different location in the cell could be responsible for some of the differences between the membrane-bound NADH oxidase activity of A. laidlawii and that found in the cytoplasm of M. mycoides subsp. capri.  相似文献   

3.
It was found that when Escherichia coli is grown in the presence of 0.2-0.3 mM menadione (2-methyl-1,4-naphthoquinone), an FMN-dependent NADH-quinone reductase increases more than 20-fold in the cytoplasmic fraction. The menadione-induced quinone reductase was isolated from the cytoplasmic fraction of induced cells. The purified enzyme had an Mr of 24 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme required flavin as a cofactor and a half-maximum activity was obtained with 0.54 microM FMN or 16.5 microM FAD. The enzyme had a broad pH optimum at pH 7.0-8.0 and reacted with NADH, but not with NADPH. The reaction followed a ping-pong mechanism and the intrinsic Km values for NADH and menadione were estimated to be 132 microM and 2.0 microM, respectively. Dicoumarol was a simple competitive inhibitor with respect to NADH with a Ki value of 0.22 microM. The electron acceptor specificity of this enzyme was very similar to that of NAD(P)H: (quinone acceptor) oxidoreductase (EC 1.6.99.2, DT-diaphorase) from rat liver. Since menadione is reduced by the two-electron reduction pathway to menadiol, the induction of this enzyme is likely to be an adaptive response of E. coli to partially alleviate the toxicity of menadione.  相似文献   

4.
The NADH oxidase system of Vitreoscilla was localized in themembrane as shown by three assays of respiratory activity: NADHoxidation, oxygen consumption and NADH dehydrogenase activityusing p-iodonitrotetrazolium violet (INT) as electron acceptor.The purified metalloflavoprotein component of the NADH-cytochromeo reductase system catalyzes the aerobic reduction of impurecytochrome o but not of the pure cytochrome. The purified enzymeexhibited hyperbolic kinetics with NADH when impure cytochromeo was used as electron acceptor but sigmoid kinetics with TNTas electron acceptor. The kinetics of INT reduction became morehyperbolic when assayed in the presence of impure cytochromeo and the Hill coefficient decreased from 1.8 to 1.1. In contrast,both the NADH-INT reductase and NADH oxidase activities of membranevesicles showed hyperbolic kinetics with NADH. The NADH oxidaseactivity of membrane vesicles was subject to substrate inhibitionat NADH concentrations greater than 150 µM which was notobserved for the NADH-cytochrome o reductase activity of thepurfied enzyme under aerobic conditions. Respiratory inhibitorssuch as rotenone, cyanide, and salicylhydroxamic acid inhibitedthe oxidation of NADH by membrane vesicles with oxygen as electronacceptor but not with INT as electron acceptor. These comparativestudies of some catalytic properties of the purified and membranebound enzyme provided evidence that the NADH-cytochrome o oxidasesystem of Vitreoscilla consists of cytochrome o, the flavoproteinreductase, and at least one other component which may regulatethe catalytic properties of the reductase. 1 This work was supported by National Science Foundation GrantPCM77-15915 and Public Health Service Grant GM20006. This paperwas submitted by V.G.P. in partial fulfillment of the requirementsfor the Ph.D. degree of Illinois Institute of Technology. 2 Present address: Department of Biological Science, NorthwesternUniversity, Evanston, Illinois 60201, U.S.A. (Received July 28, 1981; Accepted November 9, 1981)  相似文献   

5.
The soluble NAD(P)H:(quinone-acceptor) oxidoreductase [NAD(P)H-QR, EC 1.6.99.2] of Nicotiana tabacum L. leaves and roots has been purified. NAD(P)H-QR contains noncovalently bound flavin mononucleotide. Pairs of subunits of 21.4 kD are linked together by disulfide bridges, but the active enzyme is a homotetramer of 94 to 100 kD showing an isoelectric point of 5.1. NAD(P)H-QR is a B-stereospecific dehydrogenase. NADH and NADPH are electron donors of similar efficiency with Kcat:Km ratios (with duroquinone) of 6.2 x 107 and 8.0 x 107 m-1 s-1, respectively. Hydrophilic quinones are good electron acceptors, although ferricyanide and dichlorophenolindophenol are also reduced. The quinones are converted to hydroquinones by an obligatory two-electron transfer. No spectral evidence for a flavin semiquinone was detected following anaerobic photoreduction. Cibacron blue and 7-iodo-acridone-4-carboxylic acid are inhibitory. Tobacco NAD(P)H-QR resembles animal DT-diaphorase in some respects (identical reaction mechanism with a two-electron transfer to quinones, unusually high catalytic capability, and donor and acceptor substrate specificity), but it differs from DT-diaphorase in molecular structure, flavin cofactor, stereospecificity, and sensitivity to inhibitors. As in the case with DT-diaphorase in animals, the main NAD(P)H-QR function in plant cells may be the reduction of quinones to quinols, which prevents the production of semiquinones and oxygen radicals. The enzyme appears to belong to a widespread group of plant and fungal flavoproteins found in different cell compartments that are able to reduce quinones.  相似文献   

6.
A new type of sulfite oxidase which utilizes ferric ion (Fe3+) as an electron acceptor was found in iron-grown Thiobacillus ferrooxidans. It was localized in the plasma membrane of the bacterium and had a pH optimum at 6.0. Under aerobic conditions, 1 mol of sulfite was oxidized by the enzyme to produce 1 mol of sulfate. Under anaerobic conditions in the presence of Fe3+, sulfite was oxidized by the enzyme as rapidly as it was under aerobic conditions. In the presence of o-phenanthroline or a chelator for Fe2+, the production of Fe2+ was observed during sulfite oxidation by this enzyme under not only anaerobic conditions but also aerobic conditions. No Fe2+ production was observed in the absence of o-phenanthroline, suggesting that the Fe2+ produced was rapidly reoxidized by molecular oxygen. Neither cytochrome c nor ferricyanide, both of which are electron acceptors for other sulfite oxidases, served as an electron acceptor for the sulfite oxidase of T. ferrooxidans. The enzyme was strongly inhibited by chelating agents for Fe3+. The physiological role of sulfite oxidase in sulfur oxidation of T. ferrooxidans is discussed.  相似文献   

7.
A new type of sulfite oxidase which utilizes ferric ion (Fe3+) as an electron acceptor was found in iron-grown Thiobacillus ferrooxidans. It was localized in the plasma membrane of the bacterium and had a pH optimum at 6.0. Under aerobic conditions, 1 mol of sulfite was oxidized by the enzyme to produce 1 mol of sulfate. Under anaerobic conditions in the presence of Fe3+, sulfite was oxidized by the enzyme as rapidly as it was under aerobic conditions. In the presence of o-phenanthroline or a chelator for Fe2+, the production of Fe2+ was observed during sulfite oxidation by this enzyme under not only anaerobic conditions but also aerobic conditions. No Fe2+ production was observed in the absence of o-phenanthroline, suggesting that the Fe2+ produced was rapidly reoxidized by molecular oxygen. Neither cytochrome c nor ferricyanide, both of which are electron acceptors for other sulfite oxidases, served as an electron acceptor for the sulfite oxidase of T. ferrooxidans. The enzyme was strongly inhibited by chelating agents for Fe3+. The physiological role of sulfite oxidase in sulfur oxidation of T. ferrooxidans is discussed.  相似文献   

8.
The Amphibacillus xylanus NADH oxidase, which catalyzes the reduction of oxygen to hydrogen peroxide with beta-NADH, can also reduce hydrogen peroxide to water in the presence of free flavin adenine dinucleotide (FAD) or the small disulfide-containing Salmonella enterica AhpC protein. The enzyme has two disulfide bonds, Cys128-Cys131 and Cys337-Cys340, which can act as redox centers in addition to the enzyme-bound FAD (K. Ohnishi, Y. Niimura, M. Hidaka, H. Masaki, H. Suzuki, T. Uozumi, and T. Nishino, J. Biol. Chem. 270:5812-5817, 1995). The NADH-FAD reductase activity was directly dependent on the FAD concentration, with a second-order rate constant of approximately 2.0 x 10(6) M(-1) s(-1). Rapid-reaction studies showed that the reduction of free flavin occurred through enzyme-bound FAD, which was reduced by NADH. The peroxidase activity of NADH oxidase in the presence of FAD resulted from reduction of peroxide by free FADH(2) reduced via enzyme-bound FAD. This peroxidase activity was markedly decreased in the presence of oxygen, since the free FADH(2) is easily oxidized by oxygen, indicating that this enzyme system is unlikely to be functional in aerobic growing cells. The A. xylanus ahpC gene was cloned and overexpressed in Escherichia coli. When the NADH oxidase was coupled with A. xylanus AhpC, the peroxidase activity was not inhibited by oxygen. The V(max) values for hydrogen peroxide and cumene hydroperoxide reduction were both approximately 150 s(-1). The K(m) values for hydrogen peroxide and cumene hydroperoxide were too low to allow accurate determination of their values. Both AhpC and NADH oxidase were induced under aerobic conditions, a clear indication that these proteins are involved in the removal of peroxides under aerobic growing conditions.  相似文献   

9.
1. Paraquat and diquat produce only a slight increase in the oxygen uptake of rat liver mitochondria, and it is likely that they do not penetrate the mitochondrial membrane. 2. In mitochondrial fragments inhibited by antimycin A or by Amytal, both substances stimulate oxygen uptake with NADH or beta-hydroxybutyrate as substrate but not with succinate. The NADH dehydrogenase of the respiratory chain appears to be involved, at a site only partially inhibited by Amytal. 3. An NADPH oxidase activity is stimulated in rat liver microsomes by diquat, and to a smaller extent by paraquat; diquat also causes an NADH oxidase activity to develop. The effect is not inhibited by carbon monoxide or p-chloromercuribenzoate, and it is probable that a flavoprotein is involved by a mechanism not requiring thiol groups. 4. One molecule of oxygen can oxidize two molecules of NADPH in the stimulated microsomal system, the hydrogen peroxide produced being broken down by a catalase activity in the microsomes. 5. Diquat can stimulate NADH oxidase and NADPH oxidase activity in the postmicrosomal soluble fraction; the enzyme involved may be DT-diaphorase. 6. The mechanism of these reactions and their significance in relation to the toxicity of the dipyridilium compounds are discussed.  相似文献   

10.
Abstract 4-Hydroxy-3-methylbenzoate hydroxylase of Pseudomonas putida was found to be inducible, rather than constitutive, extremely unstable and requires an electron donor (NADH or NADPH) and molecular oxygen for activity, suggesting a mono-oxygenase type of enzyme. It was resolved into two protein components by ion-exchange chromatography. The first protein component was identified as an NADH: acceptor (DCIP) oxido-reductase, with the second catalysing the hydroxylation reaction. A mechanism illustrating the role of each reaction of this mono-oxygenase in the hydroxylation reaction is proposed.  相似文献   

11.
A note on the inhibition of DT-diaphorase by dicoumarol.   总被引:1,自引:0,他引:1  
The participation of DT-diaphorase or NAD(P)H:(quinone acceptor) oxidoreductase (E.C. 1.6.99.2) in metabolism or in events leading to toxicity is often implied on the basis of the inhibitory effects of dicoumarol. DT-diaphorase functions via a ping pong bi-bi kinetic mechanism involving oxidized and reduced flavin forms of the free enzyme. Dicoumarol, a potent (Ki = 10 nM) inhibitor, binds to the oxidized form of the enzyme, competitively versus reduced pyridine nucleotide. Inhibition is effectively complete at 1 microM dicoumarol in typical studies using DCPIP, one of the best known substrates for the enzyme, as electron acceptor. The antitumor quinone Diaziquone (AZQ) is a poor substrate for DT-diaphorase relative to DCPIP, but effective inhibition of its reduction requires ten-fold higher concentrations of dicoumarol than for inhibition of DCPIP reduction under otherwise similar conditions. The variable inhibition of DT-diaphorase by dicoumarol dependent on the efficiency of the electron acceptor can be explained on the basis of the complete rate equation describing its ping pong type kinetic mechanism. Thus, the concentration of dicoumarol used to inhibit DT-diaphorase must be chosen carefully and consideration should be given to the efficiency of the electron acceptor. The absence of an inhibitory effect using low doses of dicoumarol cannot rule out a reaction mediated by DT-diaphorase. Although higher doses of dicoumarol may be required to inhibit DT-diaphorase mediated metabolism of less efficient electron acceptors, the use of such doses in cells may also affect biochemical processes other than DT-diaphorase and should be approached with caution.  相似文献   

12.
An aldehyde oxidase, which oxidizes various aliphatic and aromatic aldehydes using O(2) as an electron acceptor, was purified from the cell-free extracts of Pseudomonas sp. KY 4690, a soil isolate, to an electrophoretically homogeneous state. The purified enzyme had a molecular mass of 132 kDa and consisted of three non-identical subunits with molecular masses of 88, 39, and 18 kDa. The absorption spectrum of the purified enzyme showed characteristics of an enzyme belonging to the xanthine oxidase family. The enzyme contained 0.89 mol of flavin adenine dinucleotide, 1.0 mol of molybdenum, 3.6 mol of acid-labile sulfur, and 0.90 mol of 5'-CMP per mol of enzyme protein, on the basis of its molecular mass of 145 kDa. Molecular oxygen served as the sole electron acceptor. These results suggest that aldehyde oxidase from Pseudomonas sp. KY 4690 is a new member of the xanthine oxidase family and might contain 1 mol of molybdenum-molybdpterin-cytosine dinucleotide, 1 mol of flavin adenine dinucleotide, and 2 mol of [2Fe-2S] clusters per mol of enzyme protein. The enzyme showed high reaction rates toward various aliphatic and aromatic aldehydes and high thermostability.  相似文献   

13.
AIMS: The characterization of global aerobic metabolism of Lactobacillus plantarum LP652 under different aeration levels, in order to optimize acetate production kinetics and to suppress H2O2 toxicity. METHODS AND RESULTS: Cultures of L. plantarum were grown on different aeration conditions. After sugar exhaustion and in the presence of oxygen, lactate was converted to acetate, H2O2 and carbon dioxide with concomitant ATP production. Physiological assays were performed at selected intervals in order to assess enzyme activity and vitality of the strain during lactic acid conversion. The maximal aerated condition led to fast lactate-to-acetate conversion kinetics between 8 and 12 h, but H2O2 immediately accumulated, thus affecting cell metabolism. Pyruvate oxidase activity was highly enhanced by oxygen tension and was responsible for H2O2 production after 12 h of culture, whereas lactate oxidase and NADH-dependent lactate dehydrogenase activities were not correlated to metabolite production. Limited NADH oxidase (NOX) and NADH peroxidase (NPR) activities were probably responsible for toxic H2O2 levels in over-aerated cultures. CONCLUSION: Modulating initial airflow led to the maximal specific activity of NOX and NPR observed after 24 h of culture, thus promoting H2O2 destruction and strain vitality at the end of the process. SIGNIFICANCE AND IMPACT OF THE STUDY: Optimal aeration conditions were determined to minimize H2O2 concentration level during growth on lactate.  相似文献   

14.
DT-diaphorase, also referred to as NQO1 or NAD(P)H: quinone acceptor oxidoreductase, is a flavoprotein that catalyzes the two-electron reduction of quinones and quinonoid compounds to hydroquinones, using either NADH or NADPH as the electron donor. NRH (dihydronicotinamide riboside): quinone oxidoreductase, also referred to as NQO2, has a high nucleotide sequence identity to DT-diaphorase and is considered to be an isozyme of DT-diaphorase. These enzymes transfer two electrons to a quinone, resulting in the formation of a hydroquinone product without the accumulation of a dissociated semiquinone. Steady and rapid-reaction kinetic experiments have been performed to determine the reaction mechanism of DT-diaphorase. Furthermore, chimeric and site-directed mutagenesis experiments have been performed to determine the molecular basis of the catalytic differences between the two isozymes and to identify the critical amino acid residues that interact with various inhibitors of the enzymes. In addition, functional studies of a natural occurring mutant Pro-187 to Ser (P187S) have been carried out. Results obtained from these investigations are summarized and discussed.  相似文献   

15.
NADH oxidase (EC 1.6.99.3) was purified from cell lysates of Serpulina (Treponema) hyodysenteriae B204 by differential ultracentrifugation, ammonium sulfate precipitation, and chromatography on anion-exchange, dye-ligand-affinity, and size-exclusion columns. Purified NADH oxidase had a specific activity 119-fold higher than that of cell lysates and migrated as a single band during denaturing gel electrophoresis (sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE]). The enzyme was a monomeric protein with an estimated molecular mass of 47 to 48 kDa, as determined by SDS-PAGE and size-exclusion chromatography. Optimum enzyme activity occurred in buffers with a pH between 5.5 and 7.0. In the presence of oxygen, beta-NADH but not alpha-NADH, alpha-NADPH, or beta-NADPH was rapidly oxidized by the enzyme (Km = 10 microM beta-NADH; Vmax = 110 mumol beta-NADH min-1 mg of protein-1). Oxygen was the only identified electron acceptor for the enzyme. On isoelectric focusing gels, the enzyme separated into three subforms, with isoelectric pH values of 5.25, 5.35, and 5.45. Purified NADH oxidase had a typical flavoprotein absorption spectrum, with peak absorbances at wavelengths of 274, 376, and 448 nm. Flavin adenine dinucleotide was identified as a cofactor and was noncovalently associated with the enzyme at a molar ratio of 1:1. Assays of the enzyme after various chemical treatments indicated that a flavin cofactor and a sulfhydryl group(s), but not a metal cofactor, were essential for activity. Hydrogen peroxide and superoxide were not yielded in significant amounts by the S. hyodysenteriae NADH oxidase, indirect evidence that the enzyme produces water from reduction of oxygen with NADH. The N-terminal amino acid sequence of the NADH oxidase was determined to be MKVIVIGCHGAGTWAAK. In its biochemical properties, the NADH oxidase of S. hyodysenteriae resembles the NADH oxidase of another intestinal bacterium, Enterococcus faecalis.  相似文献   

16.
The rate of NADH oxidation with oxygen as the acceptor is very low in mouse liver plasma membrane and erythrocyte membrane. When vanadate is added, this rate is stimulated 10- to 20-fold. The absorption spectrum of vanadate does not change with the disappearance of NADH. The reaction is inhibited by superoxide dismutase, and there is no activity under an argon atmosphere. This indicates that oxygen is the electron acceptor and the reaction is mediated by superoxide. The vanadate stimulation is not limited to plasma membrane. Golgi apparatus and endoplasmic reticulum show similar increase in NADH oxidase activity when vanadate is added. The endomembranes have significant vanadate-stimulated activity with both NADH and NADPH. The vanadate-stimulated NADH oxidase in plasma membrane is inhibited by compounds, which inhibit NADH dehydrogenase activity: catechols, anthracycline drugs and manganese. This activity is stimulated by high phosphate and sulfate anion concentrations.  相似文献   

17.
Cyclohexylamine oxidase was purified 90-fold from cell-free extracts of Pseudomonas sp. capable of assimilating sodium cyclamate. The purified enzyme was homogeneous in disc electrophoresis, and the molecular weight was found to be approximately 80,000 by gel filtration. The enzyme catalyzed the following reaction: cyclohexylamine+O2+H2O leads to cyclohexanone+NH3+H2O2. The enzyme thus can be classified as an amine oxidase; it utilized oxygen as the ultimate electron acceptor. The pH optimum of the reaction was 6.8 and the apparent Km value for cyclohexylamine was 2.5 X 10(-4) M. The enzyme was highly specific for the deamination of alicyclic primary amines such as cyclohexylamine, but was found to be inactive toward ordinary amines used as substrates for amine oxidases. The enzyme solution was yellow in color and showed a typical flavoprotein spectrum; the addition of cyclohexylamine under anaerobic conditions caused reduction of the flavin in the native enzyme. The flavin of the prosthetic group was identified as FAD by thin layer chromatography. The participation of sulfhydryl groups in the enzymic action was also suggested by the observation that the enzyme activity was inhibited in the presence of PCMB and could be recovered by the addition of glutathione.  相似文献   

18.
H A Dailey  Jr 《Journal of bacteriology》1976,127(3):1286-1291
The membrane-bound respiratory system of the gram-negative bacterium Spirillum itersonii was investigated. It contains cytochromes b (558), c (550), and o (558) and beta-dihydro-nicotinamide adenine dinucleotide (NADH) and succinate oxidase activities under all growth conditions. It is also capable of producing D-lactate and alpha-glycerophosphate dehydrogenases when grown with lactate or glycerol as sole carbon source. Membrane-bound malate dehydrogenase was not detectable under any conditions, although there is high activity of soluble nicotinamide adenine dinucleotide: malate dehydrogenase. When grown with oxygen as the sole terminal electron acceptor, approximately 60% of the total b-type cytochrome is present as cytochrome o, whereas only 40% is present as cytochrome o in cells grown with nitrate in the presence of oxygen. Both NADH and succinate oxidase are inhibited by azide, cyanide, antimycin A, and 2-n-heptyl-4-hydroxyquinoline-N-oxidase at low concentrations. The ability of these inhibitors to completely inhibit oxidase activity at low concentrations and their effects upon the aerobic steady-state reduction levels of b- and c-type cytochromes as well as the aerobic steady-state reduction levels obtained with NADH, succinate, and ascorbate-dichlorophenolindophenol suggest that presence of an unbranched respiratory chain in S. itersonii with the order ubiquinone leads to b leads to c leads to c leads to oxygen.  相似文献   

19.
L Kato  M Ishaque 《Cytobios》1975,12(45):31-43
Particles from Mycobacterium lepraemurium catalysed the oxidation of NADH with oxygen as the terminal electron acceptor. The preparations contained cytochromes of the a + a3'b and c types, as well as CO-binding pigments. The NADH oxidase activity was sensitive to inhibitors of the flavoprotein system as well as to HQNO and antimycin A. In addition, a cytochrome oxidase sensitive to cyanide was also present. The system was inhibited by the thiol-binding agent, PCMB, and thus indicated the involvement of sulphydryl group in the enzymatic oxidation of NADH. The sensitivity of the NADH oxidase system to all the inhibitors of the respiratory chain and the effect of these inhibitors on the absorption spectra suggested that cytochromes of the b, c, a + a3 types are involved in the transfer of electrons in NADH oxidation.  相似文献   

20.
The cytochrome d complex is a component of the aerobic respiratory system of Escherichia coli. The enzyme functions as a terminal oxidase, oxidizing ubiquinol-8 within the cytoplasmic membrane and reducing oxygen to water. The enzyme is of particular interest because it is a coupling site in the electron transfer chain. The electron transfer reaction catalyzed by this enzyme is coupled to the translocations of protons across the membrane (H+/e-approximately equal to 1). The oxidase contains two subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, with molecular weights of 58,000 and 43,000. In this paper, the question of the quaternary structure is addressed. Quantitative N-terminal analysis of the isolated enzyme and relative mass quantitation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicate the subunits are present in equimolar amounts. Sedimentation velocity and sedimentation equilibrium studies were used to characterize the hydrodynamic properties of the purified enzyme solubilized in Triton X-100, under conditions where the enzyme is active. It is concluded that the active enzyme in Triton X-100 is a heterodimer, containing one copy of each subunit. This is likely the structure of the enzyme in the E. coli membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号