首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reproductive allocation at one age is predicted to reduce the probability of surviving to the next year or to lead to a decrease in future reproduction. This prediction assumes that reproduction involves fitness costs. However, few empirical studies have assessed whether such costs may vary with the age at primiparity or might be overridden by heterogeneities in individual quality. We used data from 35 years’ monitoring of individually marked semi-domestic reindeer females to investigate fitness costs of reproduction. Using multi-state statistical models, we compared age-specific survival and reproduction among four reproductive states (never reproduced, experienced non-breeders, reproduced but did not wean offspring, and reproduced and weaned offspring) and among contrasted age at primiparity. We assessed whether reproductive costs occurred, resulting in a trade-off between current reproduction and future reproduction or survival, and whether early maturation was costly or rather reflected differences in individual quality of survival and reproduction capabilities. We did not find any evidence for fitness costs of reproduction in female reindeer. We found no cost of gestation and lactation in terms of future reproduction and survival. Conversely, successful breeders had higher survival and subsequent reproductive success than experienced non-breeders and unsuccessful breeders, independently of the age at primiparity. Moreover, it was beneficial to mature earlier, especially for females that successfully weaned their first offspring. Successful females at early primiparity remained successful throughout their life, clearly supporting the existence of marked among-female differences in quality. The weaning success peaked for multiparous females and was lower for first-time breeders, indicating a positive effect of experience on reproductive performance. Our findings emphasize an overwhelming importance of individual quality and experience to account for observed variation in survival and reproductive patterns of female reindeer that override trade-offs between current reproduction and future performance, at least in the absence of harsh winters.  相似文献   

2.
An estimated 90% of reindeer females are mated in a 10- to 21-d interval and give birth in an equally synchronized manner. Reported gestation length in reindeer is highly variable (range, 203 to 240 d), almost twice the reindeer estrous cycle length. Previously, we identified a significant, negative relationship between gestation length and conception date in a small group of reindeer. In the current study, the negative relationship was investigated in a switchback design, where reindeer were divided into two groups synchronized for early and late mating over a 2-yr trial. Regression analysis of 11 paired observations produced a negative (P < 0.001) association between gestation length and conception date (slope = − 0.31). Dam weight at breeding and prior to parturition, calf birth weight, and calf sex were not significant variables in the regression. Regression analysis of a larger data set from two University of Alaska Fairbanks reindeer herds, where conception date (verified by systemic progesterone) and gestation length were recorded (historical data set), supported previous conclusions (n = 70; slope = −0.37; P < 0.001). Although the calf sex ratio did not differ with gestation length, there was a positive relationship (r2 = 0.19; P = 0.014) between male birth weight and gestation length in the larger data set. The negative relationship between conception date and gestation length enhanced calving synchrony, though the limits of gestation plasticity and underlying mechanisms are not clear. The potential role of photoperiod on early embryonic development is discussed.  相似文献   

3.
We present a simple mathematical model that describes how primary and secondary sex ratios of offspring may vary adaptively in order to maintain equal numbers of the sexes at the age of reproductive maturity. The model postulates that the sex of an offspring depends probabilistically on a weighted linear combination of maternal testosterone and male vulnerability. The model operates at population level, and is based on three physiological phenomena: first that maternal testosterone in follicular fluid is normally distributed, with levels above the mean more likely to be associated with the conception of males; secondly, that males are more vulnerable than females from conception onwards; and thirdly that under conditions of chronic stress, increased secretion of female testosterone coincides with increased male vulnerability. Thus during times of chronic stress, more males are conceived, but their number of live births is moderated by increased male loss. Variations in secondary sex ratios should therefore be related not only to the stressfulness of environmental conditions, but also to the timing of changes in stressfulness.  相似文献   

4.
1.  The Trivers–Willard model of optimal sex ratios predicts that in polygynous species mothers in better condition should produce more male than female offspring. However, empirical support for this hypothesis in mammals and especially ungulates has been equivocal. This may be because the fitness of mothers has been defined in different ways, reflecting morphological, physiological or behavioural measures of condition. In addition, factors other than maternal condition can influence a mother's fitness. Given that recent studies of wild ungulates have demonstrated the importance of the timing of conception and birth on offspring fitness, litters conceived at different stages of the rut might be expected to exhibit differences in types and embryonic sex ratio.
2.  Based on a 6-year survey of the reproductive tracts of female moose harvested in Estonia, we investigated the effect of conception date on the types of litters produced and on the foetal sex ratio.
3.  There was a clear relationship between conception date and litter characteristics. Overall, earlier conceived litters were more likely than those conceived late to contain multiple embryos and a high proportion of males. However, while foetal sex ratio varied nonlinearly with conception date in yearlings and subadults, no relationship was found in adults.
4.  We conclude that female moose adjust foetal sex ratio and litter type/size depending on their age and the date of conception, and that these adjustments are in accordance with the Trivers–Willard hypothesis if females that conceive earlier are in better condition.  相似文献   

5.
When resources are limited, current maternal investment should reduce subsequent reproductive success or survival. We used longitudinal data on marked mountain goats Oreamnos americanus to assess if offspring mass at weaning affected maternal survival and future reproduction. Offspring mass was positively correlated with survival of old mothers, suggesting that mothers produced lighter kids, and hence reduced reproductive effort, in their last reproduction. Offspring mass at weaning did not affect survival of young and prime‐aged mothers, but females that had weaned heavy offspring had a reduced probability of subsequent reproduction in years of low population density. Because offspring survival is correlated with weaning mass, mothers’ allocation to reproduction involves a tradeoff between current and future fitness returns. We demonstrate for the first time that allocation to current offspring mass in an iteroparous mammal reduces the probability of subsequent reproduction.  相似文献   

6.
Offspring quality may benefit from genetic dissimilarity between parents. However, genetic dissimilarity may trade‐off with additive genetic benefits. We hypothesized that when sexual selection produces sex‐specific selective scenarios, the relative benefits of additive genetic vs. dissimilarity may differ for sons and daughters. Here we study a sample of 666 red deer (Cervus elaphus) microsatellite genotypes, including males, females and their foetuses, from 20 wild populations in Spain (the main analyses are based on 241 different foetuses and 190 mother‐foetus pairs). We found that parental lineages were more dissimilar in daughters than in sons. On average, every mother was less related to her mate than to the sample of fathers in the population when producing daughters not sons. Male foetuses conceived early in the rutting season were much more inbred than any other foetuses. These differences maintained through gestation length, ruling out intrauterine mortality as a cause for the results, and indicating that the potential mechanism producing the association between parents’ dissimilarity and offspring sex should operate close to mating or conception time. Our findings highlight the relevance of considering the sex of offspring when studying genetic similarity between parents.  相似文献   

7.
Selective harvest regimes that create female-biased sex ratios can potentially lead to delayed breeding, reduced breeding synchrony, reduced productivity, and a female-biased sex ratio of offspring. These resulting changes in breeding behavior and population dynamics have potential to adversely affect population growth. In 2002, Pennsylvania implemented harvest regulation changes that reduced deer density (increased harvest of antlerless deer) and increased the number and age of antlered deer (implemented antler point restriction regulations) that resulted in a less female-biased sex ratio. We monitored date of conception, productivity (embryos/female), and sex ratio of embryos during 1999–2006 to test if timing of breeding occurred earlier and with greater synchrony, if productivity of females increased, and if the sex ratio of offspring would shift towards more males. Deer density decreased 23% and the adult (≥1.5 yr old) sex ratio declined from 2.30 to 1.95 females/male. The ratio of ≥2.5-year-old to 1.5-year-old males shifted towards more older males (1:3.7 in 2002 to 1:1.59 in 2006) and the ≥2.5-year-old male population increased from 41,853 during 1999–2001 to 54,064 by 2006. We found no evidence of any change in the timing or variability of date of conception, productivity, or offspring sex ratio. We conclude that harvest regulation changes implemented in Pennsylvania, USA, were insufficient to affect timing of breeding or population dynamics and that efforts by managers to identify a desired sex ratio or manipulate sex ratios to achieve management goals on a statewide scale will be challenging. © 2019 The Wildlife Society.  相似文献   

8.
Extra-pair reproduction is widely hypothesized to allow females to avoid inbreeding with related socially paired males. Consequently, numerous field studies have tested the key predictions that extra-pair offspring are less inbred than females’ alternative within-pair offspring, and that the probability of extra-pair reproduction increases with a female's relatedness to her socially paired male. However, such studies rarely measure inbreeding or relatedness sufficiently precisely to detect subtle effects, or consider biases stemming from failure to observe inbred offspring that die during early development. Analyses of multigenerational song sparrow (Melospiza melodia) pedigree data showed that most females had opportunity to increase or decrease the coefficient of inbreeding of their offspring through extra-pair reproduction with neighboring males. In practice, observed extra-pair offspring had lower inbreeding coefficients than females’ within-pair offspring on average, while the probability of extra-pair reproduction increased substantially with the coefficient of kinship between a female and her socially paired male. However, simulations showed that such effects could simply reflect bias stemming from inbreeding depression in early offspring survival. The null hypothesis that extra-pair reproduction is random with respect to kinship therefore cannot be definitively rejected in song sparrows, and existing general evidence that females avoid inbreeding through extra-pair reproduction requires reevaluation given such biases.  相似文献   

9.
The influence of three different temperatures on developmental time and sex ratio was investigated in the bisexual Thysanoptera species Frankliniella occidentalis. Increasing temperatures decreased developmental time and induced a more female biased sex ratio. Remarkably, there are second instars with a prolonged developmental time requiring the same number of hours as the shortest developmental time from egg to adult. Arrhenotokous reproduction in this species is based on haplodiploidy, with virgin females producing male offspring exclusively. However, at all three temperatures tested, about 0.5% of offspring from unfertilized eggs were females. The presence of Wolbachia could not be detected in Western flower thrips and can be excluded as influencing reproduction in this species.  相似文献   

10.
Experimental studies have often been employed to study costs of reproduction, but rarely to study costs of gestation. Disentangling the relative importance of each stage of the reproductive cycle should help to assess the costs and benefits of different reproductive strategies. To that end, we experimentally reduced litter size during gestation in a viviparous lizard. We measured physiological and behavioural parameters during gestation and shortly after parturition, as well as survival and growth of females and their offspring. This study showed four major results. First, the experimental litter size reduction did not significantly affect the cellular immune response, the metabolism and the survival of adult females. Second, females with reduced litter size decreased their basking time. Third, these females also had an increased postpartum body condition. As postpartum body condition is positively related to future reproduction, this result indicates a gestation cost. Fourth, even though offspring from experimentally reduced litters had similar weight and size at birth as other offspring, their growth rate after birth was significantly increased. This shows the existence of a maternal effect during gestation with delayed consequences. This experimental study demonstrates that there are some costs to gestation, but it also suggests that some classical trade-offs associated with reproduction may not be explained by gestation costs.  相似文献   

11.
Human exploitation may skew adult sex ratios in vertebrate populations to the extent that males become limiting for normal reproduction. In polygynous ungulates, females delay breeding in heavily harvested populations, but effects are often fairly small. We would expect a stronger effect of male harvesting in species with a monogamous mating system, but no such study has been performed. We analysed the effect of harvesting males on the timing of reproduction in the obligate monogamous beaver (Castor fiber). We found a negative impact of harvesting of adult males on the timing of parturition in female beavers. The proportion of normal breeders sank from over 80%, when no males had been shot in the territories of pregnant females, to under 20%, when three males had been shot. Harvesting of males in monogamous mammals can apparently affect their normal reproductive cycle.  相似文献   

12.
Birth sex ratios relate to mare condition at conception in Kaimanawa horses   总被引:3,自引:3,他引:0  
Several hypotheses have been proposed to explain variation inbirth sex ratios, based on the premise that variation is expectedwhen the profitability of raising sons and daughters variesbetween individual parents. We tested the Trivers-Willard hypothesisthat mothers in better condition produce relatively more sonsand that mothers in poorer condition produce relatively more daughterswhen male reproductive success is more variable. We examinedbirth sex ratios in relation to mare body condition at conceptionin horses in which male reproductive success is differentiallyhelped by slight advantages in condition. Horses meet the assumptionsof the Trivers-Willard hypothesis better than many species onwhich it has been tested and in which sex ratio biases are notconfounded by sexual size dimorphism such that one sex is more likelyto die in utero in females in poor condition. Mares that hada female foal were in poorer condition at conception than thosethat had a male foal, and mares that had foals of differentsexes in different years were in significantly poorer conditionwhen they conceived their female foal. There was no relationshipbetween offspring sex and mid-gestation condition, and therewas no difference in foaling rates in relation to body conditionat conception. Consequently, sex ratio deviations are not explainedby fetal loss in utero. Furthermore, differential fetal lossof the less viable sex cannot explain the greater proportionof males produced by mares in better condition. Therefore, ourresults suggest that sex ratio modification occurs at conceptionin wild horses.  相似文献   

13.
Dwarf seahorses, Hippocampus zosterae (Syngnathidae), are distinguished by extreme morphological specialization for paternal care, the formation of monogamous pair bonds and mating repeatedly over the course of a breeding season. To determine the potential reproductive rates of male and female dwarf seahorses, we measured (1) the maximum number of offspring produced per breeding cycle when sexually receptive mates were unlimited, and (2) the relative time each sex was unavailable for mating ('time out'). We paired sexually isolated males and females with sexually receptive partners and observed them from the day of introduction through to copulation, to determine the length of time it takes each sex to prepare to mate. We conducted additional experiments to determine the length of gestation, which when added to the time needed to prepare to mate and copulate gives an estimate of total reproductive cycle duration, T. We estimated potential reproductive rate by dividing the mean number of offspring produced per breeding cycle by the duration of the breeding cycle (T). We estimated reproductive 'time out' by identifying the period of time males and females were physiologically capable of mating ('time in', S) and subtracting time S from time T. When provided with sexually receptive partners, females took 2 days longer than males to complete courtship and copulation, but neither males nor females remated during gestation. Therefore, males could potentially produce 17% more offspring than females over the course of one breeding season. Females had reproductive 'times out' 1.2 times longer than did males, as they were only capable of mating during the 4 h directly preceding copulation. Thus, H. zosterae males have higher potential reproductive rates and shorter reproductive 'times out' compared with H. zosterae females. These results and previous work indicating that seahorses display traditional courtship roles support the prediction that the sex having the higher potential reproductive rate, or equivalently, the shorter 'time out', will compete more intensely for access to the opposite sex. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

14.
Presented are data on secondary sex ratio in a large population of semifree-ranging Barbary macaques (Macaca sylvanus) at Affenberg Salem. Examined were 569 births in five social groups with regard to demographic parameters, maternal age and rank. Significant differences were found between the secondary sex ratios of high ranking and low ranking females. A higher proportion of male offspring was born in the high ranking class, while both groups did not differ in fecundity rates. A detailed analysis of the reproductive cycles of 73 females showed a significant shorter interval between the end of conceptional estrus and birth in male infants and also a significantly earlier onset of deturgescence of anogenital swelling when males were conceived. These results strongly suggest that the differences in the secondary sex ratio are not due to differential abortions but rather to pre-conceptional control of sex via timing of mating in relation to ovulation.  相似文献   

15.
Maternal effects and early environmental conditions are important in shaping offspring developmental trajectories. For example, in laboratory mammals, the sex ratio during gestation has been shown to influence fitness-related traits via hormonal interaction between fetuses. Such effects have the potential to shape, or constrain, many important aspects of the organism's life, but their generality and importance in natural populations remain unknown. Using long-term data in a viviparous lizard, Lacerta vivipara, we investigated the relationship between prenatal sex ratio and offspring growth, survival, and reproductive traits as adults. Our results show that females from male-biased clutches grow faster, mature earlier, but have lower fecundity than females from female-biased clutches. Furthermore, male reproduction was also affected by the sex ratio during embryonic development, with males from male-biased clutches being more likely to successfully reproduce at age one than males from female-biased clutches. Thus, the sex ratio experienced during gestation can have profound and long-lasting effects on fitness in natural populations of viviparous animals, with important implications for life-history evolution and sex allocation.  相似文献   

16.
In many vertebrates, male offspring are affected more than female offspring by adverse conditions during growth, resulting in facultative adjustment of offspring sex ratio by parents in response to social and environmental conditions during breeding. The greater vulnerability of male offspring is generally attributed to their higher energy requirements associated with their larger size, although greater sensitivity to adverse conditions could be related to other factors such as negative effects of androgens on male physiology. To control for sexual differences in body size, we examined variation in offspring sex ratio in the Common Tern Sterna hirundo , a species with negligible sexual size dimorphism. In this species, the last-laid egg (termed the c-egg) is smaller than the first two and hatches last, so that the chick obtains relatively little food and hence has a low probability of survival to fledging. This species thus provides a powerful model for examining sex-linked mortality and sex ratio variation under natural conditions. We found that the sex ratio of c-eggs, but not of earlier laid eggs, was significantly biased in favour of females. Chicks hatched from c-eggs (termed c-chicks) had low survival but female c-chicks had significantly higher survival than male c-chicks. These data provide strong evidence that factors other than sexual size dimorphism are responsible for producing greater vulnerability of male offspring to adverse conditions during growth.  相似文献   

17.
Sex allocation theory predicts that females should bias their reproductive investment towards the sex generating the greatest fitness returns. The fitness of male offspring is often more dependent upon maternal investment, and therefore, high‐quality mothers should invest in sons. However, the local resource competition hypothesis postulates that when offspring quality is determined by maternal quality or when nest site and maternal quality are related, high‐quality females should invest in the philopatric sex. Waterfowl – showing male‐biased size dimorphism but female‐biased philopatry – are ideal for differentiating between these alternatives. We utilized molecular sexing methods and high‐resolution maternity tests to study the occurrence and fitness consequences of facultative sex allocation in Barrow's goldeneyes (Bucephala islandica). We determined how female structural size, body condition, nest‐site safety and timing of reproduction affected sex allocation and offspring survival. We found that the overall sex ratio was unbiased, but in line with the local resource competition hypothesis, larger females produced female‐biased broods and their broods survived better than those of smaller females. This bias occurred despite male offspring being larger and tending to have lower post‐hatching survival. The species shows strong female breeding territoriality, so the benefit of inheriting maternal quality by philopatric daughters may exceed the potential mating benefit for sons of high‐quality females.  相似文献   

18.
In Daphnia (Cladocera, Crustacea), parthenogenetic reproduction alternates with sexual reproduction. Individuals of both sexes that belong to the same parthenogenetic line are genetically identical, and their sex is determined by the environment. Previously, non-male producing (NMP) genotypes have been described in species of the Daphnia pulex group. Such genotypes can only persist through phases of sexual reproduction if they co-occur with normal (MP) genotypes that produce both males and females, and thus the breeding system polymorphism is similar to gynodioecy (coexistence of females with hermaphrodites), which is well known in plants. Here we show that the same breeding system polymorphism also occurs in Daphnia magna, a species that has diverged from D. pulex more than 100 MY ago. Depending on the population, between 0% and 40% of D. magna females do not produce males when experimentally exposed to a concentration of the putative sex hormone methyl farnesoate that normally leads to male-only clutches. Natural broods of these NMP females never contained males, contrasting with high proportions of male offspring in MP females from the same populations. The results from a series of crossing experiments suggest that NMP is determined by a dominant allele at a single nuclear locus (or a several closely linked loci): NMP × MP crosses always yielded 50% NMP and 50% MP offspring, whereas MP × MP crosses always yielded 100% MP offspring. Based on cytochrome c oxidase subunit I-sequences, we found that NMP genotypes from different populations belong to three highly divergent mitochondrial lineages, potentially representing three independent evolutionary origins of NMP in D. magna. Thus, the evolution of NMP genotypes in cyclical parthenogens may be more common than previously thought. Moreover, MP genotypes that coexist with NMP genotypes may have responded to the presence of the latter by partially specializing on male production. Hence, these populations of D. magna may be a model for an evolutionary transition from a purely environmental to a partially genetic sex determination system.  相似文献   

19.
Evolutionary models of sex ratio adjustment applied to mammals have ignored that females may gain indirect genetic benefits from their mates. The differential allocation hypothesis (DAH) predicts that females bias the sex ratio of their offspring towards (more costly) males when breeding with an attractive male. We manipulated the number of available males during rut in a polygynous ungulate species, the reindeer (Rangifer tarandus), and found that a doubling of average male mass (and thus male attractiveness) in the breeding herd increased the proportion of male offspring from approximately 40 to 60%. Paternity analysis revealed indeed that males of high phenotypic quality sired more males, consistent with the DAH. This insight has consequences for proper management of large mammal populations. Our study suggests that harvesting, by generating a high proportion of young, small and unattractive mates, affects the secondary sex ratio due to differential allocation effects in females. Sustainable management needs to consider not only the direct demographic changes due to harvest mortality and selection, but also the components related to behavioural ecology and opportunities for female choice.  相似文献   

20.
Phenological events such as conception or parturition dates may have profound impact on several key life-history traits of ungulates at the individual as well as the population level. However, relatively little is known about the causes of variation in the timing of reproduction. Based on a 17-year survey of reproductive tracts, we investigated the effect of climate, population density, and age on the conception date of female moose (Alces alces) harvested in Estonia. Ninety-five percent of studied moose cows were conceived within a period of 9 weeks (29 August–30 October), while more than 45 % of all moose cows were conceived from 19 September to 2 October. Conception date was negatively related to population density and nonlinearly to the regional measure of winter climate reflecting the maximal extent of ice on the Baltic Sea (MIE) in the previous winter. High air temperatures during rut (in September) delayed the conception date. The timing of conception also depended on female age. Yearlings conceived significantly later as compared to females of all other age groups. Our findings corroborate the importance of density-dependent as well density-independent processes on the timing of conception of this ungulate. We also propose that the effect of population density on conception date may be mediated by increasing ecological carrying capacity concurrent with increasing population abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号