首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we report an unusual pattern of activation by calmodulin on the (Ca2+ + Mg2+)-ATPase from basolateral membranes of kidney proximal tubule cells. The activity of the ATPase depleted of calmodulin is characterized by a high Ca2+ affinity (Km = 2.2-3.4 microM) and a biphasic dependence on ATP concentration. The preparation responded to the addition of calmodulin by giving rise to a new Ca2+ site of very high affinity (Km less than 0.05 microM). Calmodulin antagonists had diverse effects on ATPase activity. Compound 48/80 inhibited calmodulin-stimulated activity by 70%, whereas calmidazolium did not modify this component. In the absence of calmodulin, 48/80 still acted as an antagonist, increasing the Km for Ca2+ to 5.7 microM and reducing enzyme turnover by competing with ATP at the low affinity regulatory site. Calmidazolium did not affect Ca2+ affinity, but it did displace ATP from the regulatory site. At fixed Ca2+ (30 microM) and ATP (5 mM) concentrations, Pi protected against 48/80 and potentiated inhibition by calmidazolium. At 25 microM ATP, Pi protected against calmidazolium inhibition. We propose that the effects of ATP and Pi arise because binding of the drugs to the ATPase occurs mainly on the E2 forms.  相似文献   

2.
The two presumed calmodulin antagonists calmidazolium and compound 48/80 were compared for their effects on several calmodulin-dependent and calmodulin-independent enzyme systems. Compound 48/80 and calmidazolium were found to be about equipotent in antagonizing the calmodulin-dependent fraction of brain phosphodiesterase and erythrocyte Ca2+-transporting ATPase. Compound 48/80 combines high potency with high specificity in that: (1) the basal, calmodulin-independent, activity of calmodulin-regulated enzymes was not suppressed; (2) calmodulin-independent enzyme activities, such as Ca2+-transporting ATPases of sarcoplasmic reticulum, Mg2+-dependent ATPases of different tissues and Na+/K+-transporting ATPase of cardiac sarcolemma, were far less altered, or not altered at all, by compound 48/80 as compared with calmidazolium; and (3) antagonism of proteolysis-induced stimulation as opposed to calmodulin-induced activation of erythrocyte Ca2+-transporting ATPase required a 32 times higher concentration of compound 48/80. In all these aspects compound 48/80 was found to be a superior antagonist to calmidazolium since inhibition of calmodulin-independent events by the other agent occurred at considerably lower concentrations. Therefore compound 48/80 is proposed to be a much more specific and useful tool for studying the participation of calmodulin in biological processes than the presently used agents.  相似文献   

3.
The mechanism of Ca2+ transport by rat liver mitochondria was investigated with respect to the possible involvement of calmodulin in this process. We studied the action of exogenous calmodulin isolated from brain tissue on the Ca2+-transport system, as well as the effect of two types of calmodulin antagonists; the phenothiazine drugs trifluoperazine and chlorpromazine and the more specific substance compound 48/80. Our results show that Ca2+ transport by mitochondria and mitochondrial ATPase activity are insensitive to exogenous calmodulin, although they can be inhibited by the phenothiazines. Since no effect of compound 48/80 was observed, we believe that the phenothiazines act through a mechanism that does not involve calmodulin. This is in accord with our inability to locate significant quantities of calmodulin in mitochondria by radioimmunoassay analysis. Our results further show that trifluoperazine and chlorpromazine also inhibit the electron-carrier system of the respiratory chain, and this effect may mediate their inhibitory action on Ca2+ transport when it is energized by respiration instead of ATP hydrolysis.  相似文献   

4.
The anti-calmodulin drugs calmidazolium (CMZ) and trifluoperazine (TFP) were shown to have a number of effects on 45Ca transport by plasmalemmal vesicles from gastric smooth muscle. Although these compounds produced the expected dose-dependent inhibition of the plasmalemmal ATP-dependent Ca2+ transport system, they also evoked a Ca2+ release comparable to that observed in the presence of the Ca2+ ionophore, ionomycin. This increased transmembrane Ca2+ flux was so large that it accounted for much of the apparent decrease in 45Ca uptake produced by these agents. Thus, direct effects of CMZ and TFP on ATP-dependent 45Ca uptake could only be reliably assessed for brief (less than or equal to 30 seconds) drug exposures. The explanation for the observed effects of CMZ and TFP on membrane Ca2+ permeability is unclear. The increased transmembrane Ca2+ flux may reflect nonspecific effects on membrane permeability or it may reflect a specific interaction of the anticalmodulin drugs with a Ca2+ release channel or with the Ca2+ transport ATPase. In any case, these results suggest the need for caution in the design and interpretation of studies using both CMZ and TFP as anticalmodulin agents.  相似文献   

5.
The (Ca2+ + Mg2+) ATPase of dog heart sarcolemma (Caroni, P., and Carafoli, E. (1980) Nature 283, 765-767) has been characterized. The enzyme possesses an apparent Km (Ca2+) of 0.3 +/- 02 microM, a Vmax of Ca2+ transport of 31 nmol of Ca2+/mg of protein/min, and an apparent Km (ATP) of 30 microM. It is only slightly influenced by monovalent cations and is highly sensitive to orthovanadate (Ki = 0.5 +/- 0.1 microM). The high vanadate sensitivity has been used to distinguish the sarcolemmal and the contaminating sarcoplasmic reticulum Ca2+-dependent ATPase in heart microsomal fractions. Calmodulin has been shown to be present in heart sarcolemma. Its depletion results in the transition of the Ca2+-pumping ATPase to a low Ca2+ affinity; readdition of calmodulin reverses this effect. The Na+/Ca2+ exchange system was not affected by calmodulin. The results of calmodulin extraction can be duplicated by using the calmodulin antagonist trifluoperazine. The calmodulin-depleted Ca2+-ATPase has been solubilized from the sarcolemmal membrane and "purified" on a calmodulin affinity chromatography column. One major (Mr = 150,000) and 3 minor protein bands could be eluted from the column with ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). The major protein band (72%) has Ca2+-dependent ATPase activity and can be phosphorylated by [gamma]32P]ATP in a Ca2+-dependent reaction.  相似文献   

6.
Compound 48/80 (48/80), a mixture of polycationic compounds was fractionated using affinity chromatography on calmodulin-Sepharose. Unfractionated 48/80 and various fractions were tested for their potential inhibitory effects on ATPase activities of isolated human red blood cell membranes. ATPase activities tested included: Mg2+-ATPase, the Na+/K+-pump ATPase, and the Ca2+-pump ATPase in both its basal (calmodulin-independent) and calmodulin-activated state. Neither 48/80 nor its various fractions were very potent or efficacious inhibitors of the Mg2+-ATPase or the Na+/K+-pump ATPase. In agreement with previous reports, 48/80 was found to be an inhibitor of the calmodulin-activated Ca2+-pump ATPase. By contrast, we found that unfractionated, as well as some fractionated, material inhibited both the basal (calmodulin-independent) and calmodulin-activated Ca2+-pump ATPase activity. A fraction designated as Fraction III bound to calmodulin-Sepharose in the presence of Ca2+ and low salt and was eluted in the absence of Ca2+ and 0.15 M NaCl. By gel filtration, Fraction III had an apparent average molecular weight of 2064 (1320 for unfractionated material). Fraction III was the most potent inhibitor of the Ca2+-pump ATPase with IC50 values for the basal and calmodulin-activated forms of the enzyme of 0.6 and 1.2 micrograms/ml, respectively. Inhibition by Fraction III was cooperative with n apparent values of 2.4 and 5.7, respectively, for the basal and calmodulin-activated forms of the enzyme. Thus, binding of 48/80 constituents to calmodulin can not fully account for the observed data. Direct interaction of 48/80 constituent(s) with the enzyme and/or the lipid portion of the membrane is suggested.  相似文献   

7.
G Meissner 《Biochemistry》1986,25(1):244-251
The effect of calmodulin and calmodulin inhibitors on the "Ca2+ release channel" of "heavy" skeletal muscle sarcoplasmic reticulum (SR) vesicles was investigated. SR vesicles were passively loaded with 45Ca2+ in the presence of calmodulin and its inhibitors, followed by measurement of 45Ca2+ release rates by means of a rapid-quench-Millipore filtration method. Calmodulin at a concentration of 2-10 microM reduced 45Ca2+ efflux rates from passively loaded vesicles by a factor of 2-3 in media containing 10(-6)-10(-3) M Ca2+. At 10(-9) M Ca2+, calmodulin was without effect. 45Ca2+ release rates were varied 1000-fold (k1 approximately equal to 0.1-100 s-1) by using 10(-5) M Ca2+ with either Mg2+ or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) in the release medium. In all instances, a similar 2-3-fold reduction in release rates was observed. At 10(-5) M Ca2+, 45Ca2+ release was half-maximally inhibited by about 2 X 10(-7) M calmodulin, and this inhibition was reversible. Heavy SR vesicle fractions contained 0.1-02 micrograms of endogenous calmodulin/mg of vesicle protein. However, the calmodulin inhibitors trifluoperazine, calmidazolium, and compound 48/80 were without significant effect on 45Ca2+ release at concentrations which inhibit calmodulin-mediated reactions in other systems. Studies with actively loaded vesicles also suggested that heavy SR vesicles contain a Ca2+ permeation system that is inhibited by calmodulin.  相似文献   

8.
Summary The Ca2+ channel blockers felodipine and bepridil are known to affect selectively functions of calmodulin. We studied their effects on calmodulin binding and ATPase activities of calmodulin-containing and calmodulin-depleted rabbit heart sarcolemma. Both drugs as well as the specific anti-calmodulin drug calmidazolium at a concentration of 50 µM, inhibited the Ca2+-stimulated calmodulin binding to calmodulin-depleted sarcolemma. Within the concentration range of 3 to 100 µM all three drugs also progressively inhibited Ca2+ pumping ATPase in calmodulin containing sarcolemma, although the enzyme was assayed at saturating Ca2+ (100 µM). The inhibitory potency of calmidazolium and bepridil, but not that of felodipine, increased when the membrane protein concentration in the ATPase assay was lowered. At low membrane protein concentration 30 µM calmidazolium completely blocked calmodulin-dependent Ca2+ pumping ATPase, whereas the inhibition caused by 30 µM felodipine or bepridil remained partially. A similar inhibition pattern of the drugs was found in the calmodulin binding experiments. Within a concentration range of 3 to 30 µM, all three drugs had negligible effects on the basal Ca2+ pumping ATPase which was measured in calmodulin-depleted sarcolemma. In conclusion, the characteristics of the anti-calmodulin action of felodipine on the rabbit heart sarcolemmal Ca2+ pumping ATPase are not different from those of bepridil. Both drugs may inhibit the enzyme by interference with the Ca2+-stimulated binding of calmodulin.Abbreviations Ca2+ pumping ATPase Ca2+ stimulated Mg2+-dependent ATP hydrolyzing activity - Na+ pumping ATPase Na+-stimulated K+- and Mg2+-dependent ATP hydrolyzing activity - Tris-maleate tris (hydroxymethyl) aminomethane hydrogen maleate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Mes 2-(N-morpholino) ethane sulfonic acid and Egta, ethylene glycol bis (p-amino ethylether)-N,N,N,N tetraacetic acid  相似文献   

9.
Rabbit brain actomyosin showed several fold stimulation of the MgATPase activity by Ca2+ alone and by Ca2+/calmodulin. The calmodulin-binding drug, fluphenazine, abolished the stimulated activity. In the presence of Ca2+, exogenous calmodulin had a biphasic effect on ATPase activity at low concentrations (less than 0.15 microM) and activated the ATPase activity by 60-70% at about 1 microM. Tropomyosin-troponin complex from skeletal muscle did not stimulate the ATPase activity of brain actomyosin, but conferred Ca2+ sensitivity to a skeletal muscle myosin/brain actomyosin mixture. These results indicate the presence of myosin-linked, calmodulin-dependent, Ca2+-regulatory system for brain actomyosin. Heavy and light chains of brain myosin were found to be rapidly phosphorylated by endogenous Ca2+-dependent protein kinase(s). Ca2+-independent phosphorylation of one of the light chains was also observed.  相似文献   

10.
ATPase (ATP phosphohydrolase, EC 3.6.1.3) was detected in the membrane fraction of the strict anaerobic bacterium, Clostridium pasteurianum. About 70% of the total activity was found in the particulate fraction. The enzyme was Mg2+ dependent; Co2+ and Mn2+ but not Ca2+ could replace Mg2+ to some extent; the activation by Mg2+ was slightly antagonized by Ca2+. Even in the presence of Mg2+, Na+ or K+ had no stimulatory effect. The ATPase reaction was effectively inhibited by one of its products, ADP, and only slightly by the other product, inorganic phosphate. Of the nucleoside triphosphates tested ATP was hydrolyzed with highest affinity ([S]0.5 v = 1.3 mM) and maximal activity (120 U/g). The ATPase activity could be nearly completely solubilized by treatment of the membranes with 2 M LiCl in the absence of Mg2+. Solubilization, however, led to instability of the enzyme. The clostridial solubilized and membrane-bound ATPase showed different properties similar to the "allotopic" properties of mitochondrial and other bacterial ATPases. The membrane-bound ATPase in contrast to the soluble ATPase was sensitive to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). DCCD, at 10(-4) M, led to 80% inhibition of the membrane-bound enzyme; oligomycin ouabain, or NaN3 had no effect. The membrane-bound ATPase could not be stimulated by trypsin pretreatment. Since none of the mono- or divalent cations had any truly stimulatory effect, and since a pH gradient (interior alkaline), which was sensitive to the ATPase inhibitor DCCD, was maintained during growth of C. pasteurianum, it was concluded that the function of the clostridial ATPase was the same as that of the rather similar mitochondrial enzyme, namely H+ translocation. A H+-translocating, ATP-consuming ATPase appears to be intrinsic equipment of all prolaryotic cells and as such to be phylogenetically very old; in the course of evolution the enzyme might have been developed to a H+-(re)translocating, ATP-forming ATPase as probably realized in aerobic bacteria, mitochondria and chloroplasts.  相似文献   

11.
We will demonstrate the compound 48/80 and ruthenium red inhibit the smooth-muscle plasma-membrane Ca2+ pump by counteracting the stimulant effect of negatively charged phospholipids. Both substances did not affect the purified enzyme re-activated by pure phosphatidylcholine or phosphatidylinositol and measured in the absence of calmodulin, indicating that under these conditions they did not have a direct effect on the ATPase protein. Ruthenium red and compound 48/80 however inhibited the (Ca2(+) + Mg2+)-ATPase in the presence of phosphatidylinositol 4-phosphate and especially phosphatidylinositol 4,5-bisphosphate. The K0.5 for inhibition was 25 microM ruthenium red and 9 micrograms/ml of compound 48/80. The inhibition by ruthenium red developed slowly with half maximal inhibition occurring after about 75 s while that by compound 48/80 developed immediately within the time required for mixing. The efficacy of ruthenium red increased as the concentration of the acidic phospholipid increased, while no such cooperativity was observed for compound 48/80. Ruthenium red reduced the Vmax for Ca2+ without affecting the affinity for Ca2+, while compound 48/80 decreased both parameters. In conclusion, although ruthenium red and compound 48/80 affect the ATPase differently, both substances most likely inhibit the plasma-membrane Ca2+ pumping by counteracting the stimulation by negatively charged phospholipids.  相似文献   

12.
The interaction between Ca2+-ATPase molecules in the native sarcoplasmic reticulum membrane and in detergent solutions was analyzed by chemical crosslinking, high performance liquid chromatography (HPLC), and by the polarization of fluorescence of fluorescein 5'-isothiocyanate (FITC) covalently attached to the Ca2+-ATPase. Reaction of sarcoplasmic reticulum vesicles with glutaraldehyde causes the crosslinking of Ca2+-ATPase molecules with the formation of dimers, tetramers and higher oligomers. At moderate concentrations of glutaraldehyde solubilization of sarcoplasmic reticulum by C12 E8 or Brij 36T (approximately equal to 4 mg/mg protein) decreased the formation of higher oligomers without significant interference with the appearance of crosslinked ATPase dimers. These observations are consistent with the existence of Ca2+-ATPase dimers in detergent-solubilized sarcoplasmic reticulum. Ca2+ (2-20 mM) and glycerol (10-20%) increased the degree of crosslinking at pH 6.0 both in vesicular and in solubilized sarcoplasmic reticulum, presumably by promoting interactions between ATPase molecules; at pH 7.5 the effect of Ca2+ was less pronounced. In agreement with these observations, high performance liquid chromatography of sarcoplasmic reticulum proteins solubilized by Brij 36T or C12 E10 revealed the presence of components with the expected elution characteristics of Ca2+-ATPase oligomers. The polarization of fluorescence of FITC covalently attached to the Ca2+-ATPase is low in the native sarcoplasmic reticulum due to energy transfer, consistent with the existence of ATPase oligomers (Highsmith, S. and Cohen, J.A. (1987) Biochemistry 26, 154-161); upon solubilization of the sarcoplasmic reticulum by detergents, the polarization of fluorescence increased due to dissociation of ATPase oligomers. Based on its effects on the fluorescence of FITC-ATPase, Ca2+ promoted the interaction between ATPase molecules, both in the native membrane and in detergent solutions.  相似文献   

13.
The effects of the condensation product of N-methyl-p-methoxyphenethylamine with formaldehyde (compound 48/80) and ruthenium red on the partial reactions of the catalytic cycle of the sarcoplasmic reticulum Ca2+-ATPase of skeletal muscle were studied. The ATPase activity and both Ca2+ and Sr2+ uptake were inhibited by compound 48/80 when oxalate was used as a precipitating agent. The degree of inhibition decreased when oxalate was replaced by orthophosphate as the precipitating anion. Both the fast Ca2+ efflux and the synthesis of ATP observed during reversal of the Ca2+ pump were inhibited by compound 48/80. Inhibition of the reversal of the Ca2+ pump was caused by a competition between compound 48/80 and orthophosphate for the phosphorylation site of the enzyme. The fast Ca2+ release promoted by arsenate was impaired by compound 48/80. Ruthenium red competes with Ca2+ for the high affinity binding site of the Ca2+-ATPase, but did not interfere with the binding of Ca2+ to the low affinity binding site of the enzyme. In presence of Ca2+ concentrations higher than 5 microM, ruthenium red in concentrations up to 200 microM had no effect on both ATPase activity and Ca2+ uptake. However, the fast Ca2+ efflux promoted by arsenate and the fast Ca2+ efflux coupled with the synthesis of ATP observed during the reversal of the Ca2+ pump were inhibited by ruthenium red, half-maximal inhibition being attained in presence of 10-20 microM ruthenium red. In contrast to the effect of compound 48/80, ruthenium red did not inhibit the phosphorylation of the enzyme by orthophosphate. The ATP in equilibrium with Pi exchange catalyzed by the Ca2+-ATPase in the absence of transmembrane Ca2+ gradient was also inhibited by ruthenium red.  相似文献   

14.
The erythrocyte Ca2+-ATPase shifts reversibly between two states, the calmodulin-deficient A-state and the calmodulin-saturated B-state, dependent on calcium and calmodulin. The effects on this system of the four drugs, trifluoperazine, compound 48/80, TMB-8 and verapamil were studied. All four drugs inhibited the maximum activity of the B -state Ca2+-ATPase and, in addition, trifluoperazine and compound 48/80 in higher doses inhibited the A-state. Furthermore, the four drugs decreased the calmodulin sensitivity of the Ca2+-ATPase in the order of decreasing effect: trifluoperazine greater than compound 48/80 greater than TMB-8 greater than verapamil. In the same order of decreasing effect the drugs increased the time required for full calmodulin activation of the A-state of Ca2+-ATPase, whereas the drugs had only small effects on the rate of deactivation of the B-state, caused by dissociation of calmodulin from the enzyme. It is discussed whether the effects on calmodulin activation were caused by a reduction of free calmodulin due to the formation of drug-calmodulin complexes or whether the drugs, especially trifluoperazine, compound 48/80 and TMB-8, by binding to the Ca2+-ATPase, decreased the rate constants for association of calmodulin and enzyme.  相似文献   

15.
We report the purification of a CaATPase of high specific activity from Paramecium tetraurelia. The enzyme is preferentially released into solution upon deciliation of cells by a Ca2+ shock procedure. Purification by ion exchange and gel filtration chromatography yields major peptides of 68 and 53 kDa and a minor peptide of 58 kDa, as determined by electrophoresis on sodium dodecyl sulfate polyacrylamide gels. These three peptides yield similar proteolytic peptide maps. Rabbit antisera to the purified enzyme inhibit enzyme activity and specifically label 68- and 53-kDa bands on nitrocellulose blots of the deciliation supernatant from which the enzyme is isolated. Concanavalin A-Sepharose precipitates about 60% of ATPase activity; only the 53-kDa band binds concanavalin A on nitrocellulose blots. The purified enzyme has a specific activity of 620 +/- 70 mumol/min/mg with ATP as substrate in the presence of Ca2+, which is required for enzyme activity. As substrates, ATP and GTP are strongly preferred to UTP and CTP. The Km for ATP in the presence of 3 mM Ca2+ is approximately 20 microM. Enzyme activity is strongly inhibited by the calmodulin antagonists trifluoperazine, fluphenazine, W7, and calmidazolium. However, calmodulin is not associated with the purified enzyme, based on the enzyme's inability to bind anti-calmodulin antibodies or to stimulate brain phosphodiesterase. The intracellular origin of this ATPase, its possible function, and its relationship to several other ATPases of Paramecium are discussed.  相似文献   

16.
Adenosine triphosphatase activity which is Mg2+-dependent and stimulated by submicromolar concentrations of Ca2+ (as Ca . ATP) was identified in the total particulate fraction of rat pancreatic acini. Half-maximal activity (V0.5) is obtained at 100.1 +/- 6 nM Ca . ATP with a Hill coefficient of 2.2 +/- 0.1 (mean +/- S.E.; n = 4). Maximal activity was 75 +/- 19 pmol of Pi released from ATP minute-1 microgram of membrane protein-1 (mean +/- S.E.; n = 7). High affinity Ca2+-ATPase activity was unaffected by ouabain, Na+, K+, La3+, and added calmodulin. Activity was slightly reduced by ruthenium red (0.1 mM) and by oligomycin (80 micrograms/ml) but was reduced almost 50% by the phenothiazine derivative fluphenazine in a dose-related and Ca2+-dependent manner. Hydrolysis of p-nitrophenyl phosphate was 9% of the rate of ATP hydrolysis and was independent of Ca2+ concentration. However, ADP, GTP, UTP, and ITP were hydrolyzed at 76-93% the rate that ATP was hydrolyzed with V0.5 values and Hill coefficients similar to those of Ca . ATP. We conclude that rat pancreatic acini contain an enzyme for active Ca2+ translocation: ATPase activity that is Mg2+-dependent and stimulated by submicromolar concentrations of Ca . ATP. Substrate hydrolysis appears to involve positive cooperative interactions of multiple ligand-binding sites and may be regulated in part by calmodulin.  相似文献   

17.
The stimulation of the (Ca2+ + Mg2+)ATPase of erythrocyte ghosts by calmodulin was observed not only in intact ghosts, but also in the solubilized (Triton X-100) and partially purified, reconstituted (phosphatidylserine liposomes) forms. Since the solubilized form of the enzyme migrated on Sepharose 6B at a position corresponding to a molecular weight of about 150,000, these results show that calmodulin stimulates by direct interaction with the ATPase complex. Additionally, the effects of calmodulin on erythrocyte ghosts prepared by the Dodge-EDTA method (hypotonic ghosts) and by the method of Ronner et al. (involving lysis followed by an isotonic wash repeated several times) were compared (P. Ronner, P. Gazzotti, and E. Carafoli, 1977, Arch. Biochem. Biophys. 179, 578–583). The (Ca2+ + Mg2+)ATPase of the hypotonic ghosts was low and was stimulated by added calmodulin while that of the isotonic ghosts was high and changed only slightly upon calmodulin addition; this difference in response to calmodulin persisted in the solubilized and reconstituted forms. Hypotonic ghosts bound 125I-labeled calmodulin, while isotonic ghosts did not. This comparison of two types of ghosts showed that isotonic ghosts possess an intact calmodulin-(Ca2+ + Mg2+)ATPase complex, and that the calmodulin remained with the ATPase during solubilization and reconstitution. The isotonic preparation is a particularly useful method of preparing ghosts with an intact calmodulin-ATPase complex, since it requires no special equipment and produces an enzyme activity which is stable to freezing.  相似文献   

18.
The Ca2+-transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum was site-specifically labeled with either N-(1-anilinonaphth-4-yl)maleimide (ANM) or 5-[[(iodoacetamido)-ethyl]amino]naphthalene-1-sulfonate (IAEDANS), and the segmental motion of submolecular domains of the ATPase molecule was examined by means of time-resolved and steady-state fluorescence anisotropy measurements. The ANM-binding domain showed wobbling with a rotational relaxation time phi = 69 ns in the absence of free Ca2+ without any independent wobbling of the ANM moiety. The IAEDANS-binding domain showed a significantly slower wobbling with phi = 190 ns in the absence of Ca2+. The present results demonstrated for the first time that the ATPase molecule is composed of distinct domains whose mobilities are considerably different from each other. The binding of Ca2+ to the transport site increased the segmental motion of ANM-labeled domain, leading to a phi value of 65 ns. Solubilization of the ANM-labeled SR membranes by deoxycholate led to a further increase in the segmental flexibility (phi = 48 ns in the absence of free Ca2+), indicating that the mobility of the ANM-binding domain was considerably restricted through interaction with the membrane. The mobility of the ANM-binding domain of solubilized ATPase was also increased to some extent upon binding of Ca2+.  相似文献   

19.
ATPase activity in highly purified rat liver lysosome preparations was evaluated in the presence of other membrane cellular ATPase inhibitors, and compared with lysosome ATP-driven proton translocating activity. Replacement of 5 mM Mg2+ with equimolar Ca2+ brought about a 50% inhibition in divalent cation-dependent ATPase activity, and an 80% inactivation of ATP-linked lysosomal H+ pump activity. In the presence of optimal concentrations of Ca2+ and Mg2+, ATPase activity was similar to that seen in an Mg2+ medium. Mg2+-dependent ATPase activity was greatly inhibited (from 70 to 80%) by the platinum complexes; cis-didimethylsulfoxide dichloroplatinum(II) (CDDP) at approximately 90 microM and cis-diaminedichloroplatinum(II) at twofold higher concentrations. Less inhibition, about 30 and 45%, was obtained with N,N'-dicyclohexylcarbodiimide and N-ethylmaleimide, and the maximal effect occurred in the 50-100 microM and 0.1-1.5 mM ranges, respectively. The concentration dependence of inhibition by the above drugs was determined for both proton pumping and ATPase activities, and half-maximal inhibition concentration of each activity was found at nearly similar values. A micromolar concentration of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) prevented ATP from setting up a pH gradient across the lysosomal membranes, but stimulated Mg2+-ATPase activity significantly. ATPase activity in Ca2+ medium was also inhibited by CDDP and stimulated by FCCP, but both effects were two- to threefold less than those observed in Mg2+ medium. FCCP failed to stimulate ATPase activity in a CDDP-supplemented medium, thus suggesting that the same ATPase activity fraction was sensitive to both CDDP and FCCP. Mg2+-ATPase activity, like the proton pump, was anion dependent. The lowest activity was recorded in a F-medium, and increased in the order of F- less than SO2-4 less than Cl- approximately equal to Br-. The CDDP-sensitive ATPase activity observed, supported by Mg2+ and less so by Ca2+, may be related to lysosome proton pump activity.  相似文献   

20.
The influence of isoquinolinesulfonamides (H-7 and H-8), phenothiazines(trifluoperazine and fluphenazine), and a naphthalenesulfonamide (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) on stimulated superoxide anion production and phosphatidyl inositol (PI) cycle activity was investigated in the guinea pig alveolar macrophage. All five drugs were able to inhibit superoxide anion production stimulated by n-formyl-nel-leu-phe (FNLP), leukotriene B4 (LTB4), and phorbol-12,13-dibutyrate (PDB). The order of potency was trifluoperazine greater than or equal to fluphenazine greater than H-7 = W-7 greater than H-8. The dose response curves could be shifted to less efficacy by increasing extracellular calcium. By itself, W-7 markedly stimulated 45Ca+2 efflux, fluphenazine and trifluoperazine slightly stimulated 45Ca+2 efflux, while H-7 and H-8 had no effect on 45Ca+2 efflux from macrophages preloaded with 45Ca+2. Consistent with these results, W-7 markedly stimulated PI cycle activity, fluphenazine and trifluoperazine slightly stimulated PI cycle activity, while H-7 and H-8 had no significant effects on PI cycle activity. In addition, W-7 by itself was able to stimulate a weak and short-lived "burst" of superoxide anion production. In order to evaluate whether a site of action of the inhibitors was at protein kinase C and whether protein kinase C was involved in terminating the normally short-lived FNLP- and LTB4-stimulated macrophage activation, fluphenazine and H-7 were used to evaluate the duration of FNLP- and LTB4-stimulated PI cycle activity, at concentrations of the inhibitors that significantly blocked stimulated superoxide anion production. In all cases, FNLP and LTB4 still stimulated PI cycle activity, which still terminated even though protein kinase C was inhibited. These results suggest that all five drugs block protein kinase C, but H-7 was the most specific in its action at protein kinase C, while the phenothiazines and W-7 have multiple sites of action. In addition, these results suggest that protein kinase C may not function to cause the termination of FNLP- and LTB4-stimulated PI cycle activity and subsequent superoxide anion production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号