首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial permeability transition (MPT), which contributes substantially to the regulation of normal mitochondrial metabolism, also plays a crucial role in the initiation of cell death. It is known that MPT is regulated in a tissue-specific manner. The importance of MPT in the pancreatic beta-cell is heightened by the fact that mitochondrial bioenergetics serve as the main glucose-sensing regulator and energy source for insulin secretion. In the present study, using MIN6 and INS-1 beta-cells, we revealed that both Ca(2+)-phosphate- and oxidant-induced MPT is remarkably different from other tissues. Ca(2+)-phosphate-induced transition is accompanied by a decline in mitochondrial reactive oxygen species production related to a significant potential dependence of reactive oxygen species formation in beta-cell mitochondria. Hydroperoxides, which are indirect MPT co-inducers active in liver and heart mitochondria, are inefficient in beta-cell mitochondria, due to the low mitochondrial ability to metabolize them. Direct cross-linking of mitochondrial thiols in pancreatic beta-cells induces the opening of a low conductance ion permeability of the mitochondrial membrane instead of the full scale MPT opening typical for liver mitochondria. Low conductance MPT is independent of both endogenous and exogenous Ca(2+), suggesting a novel type of nonclassical MPT in beta-cells. It results in the conversion of electrical transmembrane potential into DeltapH instead of a decrease in total protonmotive force, thus mitochondrial respiration remains in a controlled state. Both Ca(2+)- and oxidant-induced MPTs are phosphate-dependent and, through the "phosphate flush" (associated with stimulation of insulin secretion), are expected to participate in the regulation in beta-cell glucose-sensing and secretory activity.  相似文献   

2.
Chronic exposure to elevated levels of glucose and free fatty acids impairs beta-cell function, leading to insulin secretion defects and eventually beta-cell failure. Using a semi-high throughput approach applied to INS-1E beta-cells, we tested multiple conditions of chronic exposure to basal, intermediate and high glucose, combined with saturated versus mono- and polyunsaturated fatty acids in order to assess cell integrity, lipid metabolism, mitochondrial function, glucose-stimulated calcium rise and secretory kinetics. INS-1E beta-cells were cultured for 3 days at different glucose concentrations (5.5, 11.1, 25 mM) without or with BSA-complexed 0.4 mM saturated (C16:0 palmitate), monounsaturated (C18:1 oleate) or polyunsaturated (C18:2 linoleate, C18:3 linolenate) fatty acids, resulting in 0.1–0.5 μM unbound fatty acids. Accumulation of triglycerides in cells exposed to fatty acids was glucose-dependent, oleate inducing the strongest lipid storage and protecting against glucose-induced cytotoxicity. The combined chronic exposure to both high glucose and either palmitate or oleate altered mitochondrial function as well as glucose-induced calcium rise. This pattern did not directly translate at the secretory level since palmitate and oleate exhibited distinct effects on the first and the second phases of glucose-stimulated exocytosis. Both fatty acids changed the activity of kinases, such as the MODY-associated BLK. Additionally, chronic exposure to fatty acids modified membrane physicochemical properties by increasing membrane fluidity, oleate exhibiting larger effects compared to palmitate. Chronic fatty acids differentially and specifically exacerbated some of the glucotoxic effects, without promoting cytotoxicity on their own. Each of the tested fatty acids functionally modified INS-1E beta-cell, oleate inducing the strongest effects.  相似文献   

3.
Excessive free fatty acid (FFA) exposure represents a potentially important diabetogenic condition that can impair insulin secretion from pancreatic beta-cells. Because mitochondrial oxidative phosphorylation is a main link between glucose metabolism and insulin secretion, in the present work we investigated the effects of the FFA oleate (OE) on mitochondrial function in the clonal pancreatic beta-cell line, MIN6. Both the long term (72 h) and short term (immediately after application) impact of OE exposure on beta-cells was investigated. After 72 h of exposure to OE (0.4 mm, 0.5% bovine serum albumin) cells were washed and permeabilized, and mitochondrial function (respiration, phosphorylation, membrane potential formation, production of reactive oxygen species) was measured in the absence or presence of OE. MIN6 cells exposed to OE for 72 h showed impaired glucose-stimulated insulin secretion and decreased cellular ATP. Mitochondria in OE-exposed cells retained normal functional characteristics in FFA-free medium; however, they were significantly more sensitive to the acute uncoupling effect of OE treatment. The mitochondria of OE-exposed cells displayed increased depolarization caused by acute OE treatment, which is attributable to the elevation in the FFA-transporting function of uncoupling protein 2 and the dicarboxylate carrier. These cells also had an increased production of reactive oxygen species in complex I of the mitochondrial respiratory chain that could be activated by FFA. A high level of reduction of respiratory complex I augmented acute FFA-induced uncoupling in a way compatible with activation of mitochondrial uncoupling protein by intramitochondrial superoxide. A stronger augmentation was observed in OE-exposed cells. Together, these events may underlie FFA-induced depression of the ATP/ADP ratio in beta-cells, which accounts for the defective glucose-stimulated insulin secretion associated with lipotoxicity.  相似文献   

4.
Elevated plasma free fatty acids (FAs) are associated with increased risk of cardiovascular disease. This study investigates the effects of the saturated FA palmitate and unsaturated FA oleate on monocyte phenotype and function. Incubation of human U937 and THP-1 monocytes with palmitate for 24h increased cell surface expression of integrin CD11b and scavenger receptor CD36 in a concentration-dependent manner with some decrease in mitochondrial reducing capacity at high concentration (300μM). Monocytes incubated with palmitate, but not oleate, showed increased uptake of oxidized LDL and increased adhesion to rat aortic endothelium, particularly at bifurcations. The palmitate-induced increase in CD11b and CD36 expression was associated with increased cellular C16 ceramide and sphingomyelin, loss of reduced glutathione, and increased reactive oxygen species (ROS). Increased monocyte surface CD11b and CD36 was inhibited by fumonisin B1, an inhibitor of de novo ceramide synthesis, but not by the superoxide dismutase mimetic MnTBap. In contrast, MnTBap prevented the mitochondrial ROS increase and metabolic inhibition due to 300μM palmitate. This study demonstrates that in viable monocytes, palmitate but not oleate increases expression of surface CD11b and CD36. Palmitate increases monocyte adhesion to the aortic wall and promotes uptake of oxidized LDL and this involves de novo ceramide synthesis.  相似文献   

5.
Chronic exposure to elevated free fatty acids (lipotoxicity) induces uncoupling protein (UCP2) in the pancreatic beta-cell, and therefore a causal link between UCP2 and beta-cell defects associated with obesity may exist. Recently, we showed that lipid treatment in vivo and in vitro in UCP2(-/-) mice/islets does not result in any loss in beta-cell glucose sensitivity. We have now assessed the mechanism of maintained beta-cell function in UCP2(-/-) mice by exposing islets to 0.4 mM palmitate for 48 h. Palmitate treatment increased triglyceride concentrations in wild type (WT) but not UCP2(-/-) islets because of higher palmitate oxidation rates in the UCP2(-/-) islets. Dispersed beta-cells from the palmitate-exposed WT islets had reduced glucose-stimulated hyperpolarization of the mitochondrial membrane potential compared with both control WT and palmitate-exposed UCP2(-/-) beta-cells. The glucose-stimulated increases in the ATP/ADP ratio and cytosolic Ca2+ are attenuated in palmitate-treated WT but not UCP2(-/-) beta-cells. Exposure to palmitate reduced glucose-stimulated insulin secretion (GSIS) in WT islets, whereas UCP2(-/-) islets had enhanced GSIS. Overexpression of recombinant UCP2 but not enhanced green fluorescent protein in beta-cells resulted in a loss of glucose-stimulated hyperpolarization of the mitochondrial membrane potential and GSIS similar to that seen in WT islets exposed to palmitate. Reactive oxygen species (ROS) are known to increase the activity of UCP2. We showed that ROS levels were elevated in control UCP2(-/-) islets as compared with WT and UCP2(-/-) islets overexpressing UCP2 and that palmitate increased ROS in WT and UCP2(-/-) islets overexpressing UCP2 but not in UCP2(-/-) islets. Thus, UCP2(-/-) islets resisted the toxic effects of palmitate by maintaining glucose-dependent metabolism-secretion coupling. We propose that higher free fatty acid oxidation rates prevent accumulation of triglyceride in UCP2(-/-) islets, such accumulation being a phenomenon associated with lipotoxicity.  相似文献   

6.
Okuyama R  Fujiwara T  Ohsumi J 《FEBS letters》2003,545(2-3):219-223
Prolonged exposure to free fatty acids induces beta-cell cytotoxicity. We investigated whether this fatty-acid-induced cytotoxicity is affected by high glucose levels. In clonal beta-cell HIT-T15, palmitate-induced cytotoxicity was potentiated depending on elevated glucose concentrations due to increased apoptosis without cytotoxic effects of high glucose per se. This palmitate cytotoxicity was blocked by NO synthase inhibitors, and palmitate actually increased cellular NO production. The potentiation of palmitate cytotoxicity under high glucose was reversed by decreasing superoxide production, suggesting that superoxide overproduction under high glucose enhances NO-mediated cytotoxicity in beta-cells, which may explain the mechanism of synergistic deterioration of pancreatic beta-cells by free fatty acids and high glucose.  相似文献   

7.
Diabetes mellitus, obesity, and dyslipidemia increase risk for cardiovascular disease, and expose the heart to high plasma fatty acid (FA) levels. Recent studies suggest that distinct FA species are cardiotoxic (e.g., palmitate), while others are cardioprotective (e.g., oleate), although the molecular mechanisms mediating these observations are unclear. The purpose of the present study was to investigate the differential effects of distinct FA species (varying carbon length and degree of saturation) on adult rat cardiomyocyte (ARC) gene expression. ARCs were initially challenged with 0.4 mM octanoate (8:0), palmitate (16:0), stearate (18:0), oleate (18:1), or linoleate (18:2) for 24 h. Microarray analysis revealed differential regulation of gene expression by the distinct FAs; the order regarding the number of genes whose expression was influenced by a specific FA was octanoate (1,188) > stearate (740) > palmitate (590) > oleate (83) > linoleate (65). In general, cardioprotective FAs (e.g., oleate) increased expression of genes promoting FA oxidation to a greater extent than cardiotoxic FAs (e.g., palmitate), whereas the latter induced markers of endoplasmic reticulum and oxidative stress. Subsequent RT-PCR analysis revealed distinct time- and concentration-dependent effects of these FA species, in a gene-specific manner. For example, stearate- and palmitate-mediated ucp3 induction tended to be transient (i.e., initial high induction, followed by subsequent repression), whereas oleate-mediated induction was sustained. These findings may provide insight into why diets high in unsaturated FAs (e.g., oleate) are cardioprotective, whereas diets rich in saturated FAs (e.g., palmitate) are not.  相似文献   

8.
Opening of high conductance permeability transition pores in mitochondria initiates onset of the mitochondrial permeability transition (MPT). The MPT is a causative event, leading to necrosis and apoptosis in hepatocytes after oxidative stress, Ca(2+) toxicity, and ischemia/reperfusion. CsA blocks opening of permeability transition pores and protects cell death after these stresses. In contrast to necrotic cell death which is a consequence of ATP depletion, ATP is required for the development of apoptosis. Reperfusion and the return of normal pH after ischemia initiate the MPT, but the balance between ATP depletion after the MPT and ATP generation by glycolysis determines whether the fate of cells will be apoptotic or necrotic death. Thus, the MPT is a common pathway leading to both necrotic and apoptotic cell death after ischemia/reperfusion.  相似文献   

9.
The mitochondrial role opening (MPT) induced by Ca2+ has been studied in isolated rat heart mitochondria. MPT was characterized as cyclosporine A-inhibited swelling accompanied by the loss of membrane potential (deltapsim) and Ca2+ efflux after the Ca2+ -loading which was followed spectrophotometrically after the Ca2+ -arsenaso-III complex formation. It has been shown that in suspension of isolated mitochondria MPT was activated by low (with maximum at about 20 microM Ca2+) and high concentrations of Ca2+ (the concentration curve shows a saturation at about 1.0-1.5 mM). In all the cases an access of Ca2+ ions to the matrix space of the mitochondria was necessary for MPT induction. MPT activated by low concentrations of Ca2+ was accompanied by slow decrease of deltapsim and slow release of Ca2+, enhanced by ruthenium red (RR), and was independent of the substrate used (glutamate or succinate). It had not been observed if the respiratory chain was inhibited, even if the Ca2+ access to the inner mitochondrial membrane was provided by Ca2+ -ionophore A23187. At high Ca2+ concentrations rapid Ca2+ -uptake and release via Ca2+ -uniporter (inhibited by ruthenium red) followed by extensive swelling (pore formation) have been observed. It had been supposed that rapid MPT at high concentrations of Ca2+ was the result of Ca2+ entrance to the mitochondrial matrix and depolarisation of the mitochondrial membrane. The data obtained show two different mechanisms of Ca2+ -induced MPT. The one is sensitive to the redox-state of the electron transport chain and is abolished if the respiration is inhibited. The other is independent of mitochondrial respiration and needs only Ca2+ access to the inner mitochondrial membrane and Ca2+ binding to some specific sites leading to MPT opening.  相似文献   

10.
11.
The increased availability of saturated lipids has been correlated with development of insulin resistance, although the basis for this impairment is not defined. This work examined the interaction of saturated and unsaturated fatty acids (FA) with insulin stimulation of glucose uptake and its relation to the FA incorporation into different lipid pools in cultured human muscle. It is shown that basal or insulin-stimulated 2-deoxyglucose uptake was unaltered in cells preincubated with oleate, whereas basal glucose uptake was increased and insulin response was impaired in palmitate- and stearate-loaded cells. Analysis of the incorporation of FA into different lipid pools showed that palmitate, stearate, and oleate were similarly incorporated into phospholipids (PL) and did not modify the FA profile. In contrast, differences were observed in the total incorporation of FA into triacylglycerides (TAG): unsaturated FA were readily diverted toward TAG, whereas saturated FA could accumulate as diacylglycerol (DAG). Treatment with palmitate increased the activity of membrane-associated protein kinase C, whereas oleate had no effect. Mixture of palmitate with oleate diverted the saturated FA toward TAG and abolished its effect on glucose uptake. In conclusion, our data indicate that saturated FA-promoted changes in basal glucose uptake and insulin response were not correlated to a modification of the FA profile in PL or TAG accumulation. In contrast, these changes were related to saturated FA being accumulated as DAG and activating protein kinase C. Therefore, our results suggest that accumulation of DAG may be a molecular link between an increased availability of saturated FA and the induction of insulin resistance.  相似文献   

12.
When loaded with high (pathological) levels of Ca2+, mitochondria become swollen and uncoupled as the result of a large non-specific increase in membrane permeability. This process, known as the mitochondrial permeability transition (MPT), is exacerbated by oxidative stress and adenine nucleotide depletion. These conditions match those that a heart experiences during reperfusion following a period of ischaemia. The MPT is caused by the opening of a non-specific pore that can be prevented by sub-micromolar concentrations of cyclosporin A (CsA). A variety of conditions that increase the sensitivity of pore opening to [Ca2+], such as thiol modification, oxidative stress, increased matrix volume and chaotropic agents, all enhance the binding of matrix cyclophilin (CyP) to the inner mitochondrial membrane in a CsA-sensitive manner. In contrast, ADP, membrane potential and low pH decrease the sensitivity of pore opening to [Ca2+] without affecting CyP binding. We present a model of pore opening involving CyP binding to a membrane target protein followed by Ca2+-dependent triggering of a conformational change to induce channel opening. Using the ischaemic/reperfused rat heart we have shown that the mitochondrial pore does not open during ischaemia, but does do so during reperfusion. Recovery of heart during reperfusion is improved in the presence of 0.2 µM CsA, suggesting that the MPT may be critical in the transition from reversible to irreversible reperfusion injury. (Mol Cell Biochem 174: 167–172, 1997)  相似文献   

13.
Proton leak exerts stronger control over ATP/ADP in mitochondria from clonal pancreatic beta-cells (INS-1E) than in those from rat skeletal muscle, due to the higher proton conductance of INS-1E mitochondria [Affourtit and Brand (2006) Biochem. J. 393, 151-159]. In the present study, we demonstrate that high proton leak manifests itself at the cellular level too: the leak rate (measured as myxothiazol-sensitive, oligomycin-resistant respiration) was nearly four times higher in INS-1E cells than in myoblasts. This relatively high leak activity was decreased more than 30% upon knock-down of UCP2 (uncoupling protein-2) by RNAi (RNA interference). The high contribution of UCP2 to leak suggests that proton conductance through UCP2 accounts for approx. 20% of INS-1E respiration. UCP2 knock-down enhanced GSIS (glucose-stimulated insulin secretion), consistent with a role for UCP2 in beta-cell physiology. We propose that the high mitochondrial proton leak in beta-cells is a mechanism which amplifies the effect of physiological UCP2 regulators on cytoplasmic ATP/ADP and hence on insulin secretion.  相似文献   

14.
15.
Pancreatic β‐cells metabolise both lipid and glucose nutrients but chronic exposure (>24 h) to elevated fatty acid (FA) concentrations results in deleterious metabolic and morphological changes. The aims of this study were to assess the adaptive morphological, metabolic and secretory responses of islet β‐cells to exposure and removal of FA. Isolated mouse islets and INS‐1 β‐cells were exposed to oleate or palmitate (0.5 mM) or a 1:1 mixture of both FA for 48 h prior to a 24 h period without FA. Subsequent changes in lipid storage and composition (triglycerides, TG and phospholipids, PL), gene expression, β‐cell morphology and glucose‐stimulated insulin secretion (GSIS) were determined. Intracellular TG content increased during exposure to FA and was lower in cells subsequently incubated in FA‐free media (P < 0.05); TG storage was visible as oil red O positive droplets (oleate) by light microscopy or ‘splits’ (palmitate) by electron microscopy. Significant desaturation of β‐cell FA occurred after exposure to oleate and palmitate. After incubation in FA‐free media, there was differential handling of specific FA in TG, resulting in a profile that tended to revert to that of control cells. FA treatment resulted in elevated lipolysis of intracellular TG, increased FA oxidation and reduced GSIS. After incubation in FA‐free media, oxidation remained elevated but inhibition of FA oxidation with etomoxir (10 µM) had no effect on the improvement in GSIS. The β‐cell demonstrates metabolic flexibility as an adaptive response to ambient concentrations of FA. J. Cell. Biochem. 109: 683–692, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
It is believed that free fatty acids contribute to the pathogenesis of type 2 diabetes in humans. We have recently shown that lipoapoptosis of human beta-cells is specifically induced by saturated fatty acids while unsaturated had no effect. In the present study we tested the effect of co-incubation of different saturated and unsaturated free fatty acids on lipoapoptosis in beta-cells. RIN1046-38 cells and isolated human beta-cells were incubated with combinations of saturated fatty acids (palmitate, stearate) and mono- or polyunsaturated fatty acids (palmitoleate, oleate, and linoleate). Cells were incubated for 24-72 h with 1mM fatty acids. All unsaturated fatty acids tested completely prevented palmitate- or stearate-induced apoptosis of rat and human beta-cells as assessed by flow cytometric cell cycle analysis and TUNEL assay. This might suggest that apoptosis in vivo is predominantly determined by the content of unsaturated fatty acids in a mixed fatty acid pool.  相似文献   

17.
18.
《BBA》2023,1864(1):148914
Mitochondrial permeability transition (MPT) is a phenomenon that the inner mitochondrial membrane (IMM) loses its selective permeability, leading to mitochondrial dysfunction and cell injury. Electrophysiological evidence indicates the presence of a mega-channel commonly called permeability transition pore (PTP) whose opening is responsible for MPT. However, the molecular identity of the PTP is still under intensive investigations and debates, although cyclophilin D that is inhibited by cyclosporine A (CsA) is the established regulatory component of the PTP. PTP can also open transiently and functions as a rapid mitochondrial Ca2+ releasing mechanism. Mitochondrial fission and fusion, the main components of mitochondrial dynamics, control the number and size of mitochondria, and have been shown to play a role in regulating MPT directly or indirectly. Studies by us and others have indicated the potential existence of a form of transient MPT that is insensitive to CsA. This “non-conventional” MPT is regulated by mitochondrial dynamics and may serve a protective role possibly by decreasing the susceptibility for a frequent or sustained PTP opening; hence, it may have a therapeutic value in many disease conditions involving MPT.  相似文献   

19.
Heat shock suppresses the permeability transition in rat liver mitochondria   总被引:8,自引:0,他引:8  
Heat shock proteins inhibit apoptotic and necrotic cell death in various cell types. However, the specific mechanism underlying protection by heat shock proteins remains unclear. To test the hypothesis that heat shock proteins inhibit cell death by blocking opening of mitochondrial permeability transition (MPT) pores, mitochondria from heat-preconditioned rat livers were isolated by differential centrifugation. Heat shock inhibited MPT pore opening induced by 50 microm CaCl(2) plus 5 microm HgCl(2) or 1 microm mastoparan and by 200 microm CaCl(2) alone. Half-maximal swelling was delayed 15 min or more after heat shock compared with control. Heat shock also increased the threshold of unregulated (Ca(2+)-independent and cyclosporin A-insensitive) MPT pore opening induced by higher doses of HgCl(2) and mastoparan. Heat shock treatment decreased mitochondrial reactive oxygen species formation by 27% but did not change mitochondrial respiration, membrane potential, Ca(2+) uptake, or total glutathione in mitochondrial and cytosolic extracts of liver. Western blot analysis showed that mitochondrial Hsp25 increased, whereas Hsp10, Hsp60, Hsp70, Hsp75, cyclophilin D, and voltage-dependent anion channel did not change after heat shock. These results indicate that heat shock causes resistance to opening of MPT pores, which may contribute to heat shock protection against cellular injury.  相似文献   

20.
The function of pancreatic beta-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ER alpha and ER beta, are important molecules involved in glucose metabolism, yet their role in pancreatic beta-cell physiology is still greatly unknown. In this report we show that both ER alpha and ER beta are present in pancreatic beta-cells. Long term exposure to physiological concentrations of 17beta-estradiol (E2) increased beta-cell insulin content, insulin gene expression and insulin release, yet pancreatic beta-cell mass was unaltered. The up-regulation of pancreatic beta-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ER alpha and ER beta agonists as well as ER alphaKO and ER betaKO mice suggests that the estrogen receptor involved is ER alpha. The up-regulation of pancreatic insulin content by ER alpha activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号