首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Oxidative stress and the role of antioxidants are currently one of the most important subjects in the field of life science. In the present study, we assessed the oxidation of plasma lipids induced by free radicals and its inhibition by antioxidants with a fluorescence probe BODIPY. Vitamin E and C-depleted plasma was used to evaluate the inherent action of several antioxidants. BODIPY reacted with free radicals in plasma to emit fluorescence (ex. 510 nm, em. 520 nm), which was suppressed by the antioxidants in a concentration-dependent manner. However, the suppression of fluorescence emission by antioxidants did not always correlate quantitatively with the suppression of lipid peroxidation. For example, alpha-tocopherol suppressed BODIPY fluorescence but enhanced the peroxidation of plasma lipids in the absence of ascorbic acid. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without a phytyl side chain, almost completely suppressed both fluorescence emission and lipid peroxidation in the plasma. These results show that BODIPY can be used as a convenient probe for radical scavenging, but that care should be taken for the evaluation of antioxidant capacity.  相似文献   

2.
The oxidative modification of low-density lipoprotein (LDL) plays an important role in atherosclerosis. Protecting LDL from oxidation has been shown to reduce the risk of coronary heart disease. In this study, we compared the protective effects of two lipophilic antioxidants (vitamin E and lazaroid) with two hydrophilic antioxidants (trolox and vitamin C) in the presence of several different free radical generating systems. Vitamin E (IC50 = 5.9 μM) and lazaroid (IC50 = 5.0 μM) were more effective in inhibiting lipid peroxidation caused by a Fe-ADP free radical generating system than vitamin C (IC50 = 5.2 × 103 μM) and trolox (IC5 = 1.2 × 103 μM). Preincubation of lipoproteins with a lipophilic antioxidant increased the protective effect against various free radicals. Preincubation with hydrophilic antioxidants did not have an effect. We also tested the efficacy of the antioxidants when the free radicals were generated within the lipid or the aqueous environment surrounding the LDL. For this purpose, we used the peroxyl generating azo-compounds AMVN (2,2′-azobis(2,4-dimethylvaleronitrile)) and AAPH (2,2′azobis (2-amidinopropane) dihydrochloride). All of the antioxidants tested were more effective against free radicals generated in a water soluble medium than they were against free radicals generated in a lipid environment. In conclusion, our data demonstrate that lipid solubility is an important factor for both the antioxidant and the free radical generating systems in determining the extent of lipid peroxidation in LDL. Our data also demonstrate that antioxidant efficacy in one set of experimental conditions may not necessarily translate into a similar degree of protection in another set of conditions where lipophilicity is a variable.  相似文献   

3.
Alzheimer's disease (AD) is accompanied by oxidative stress in the brain. Because the brain tissue is rich in polyunsaturated fatty acids, it is prone to the free radical attack resulting in lipid peroxidation. Intermediates of lipid peroxidation may diffuse from the primary site, cross the blood-brain barrier and modify erythrocyte membranes in the bloodstream. We exposed isolated erythrocyte membranes from patients with AD and the control group to in vitro free radical damage and monitored the accumulation of the end products of lipid peroxidation, lipofuscin-like pigments (LFPs), by fluorescence spectroscopy. LFPs were analyzed by means of tridimensional and synchronous fluorescence spectroscopy. The levels of LFP formed during in vitro peroxidation were significantly higher in erythrocyte membranes from patients with AD compared with the control group. Furthermore, the chemical composition of LFP in AD was different from the control group. The analysis of the specific modifications of erythrocyte membranes in AD is of great medical importance regarding the need of a diagnostic blood biomarker.  相似文献   

4.
New water-soluble analogues of 1,3,7-trimethyluric acid with N-1 methyl replaced by various groups were prepared and evaluated for their ability to scavenge hydroxyl radicals as well as their protective potential against lipid peroxidation in erythrocyte membranes. The deoxyribose degradation method indicates that all the analogues tested effectively scavenge hydroxyl radicals and some of them show better activity than uric acid and methyluric acids. These effects are shown to be concentration dependent and are more potent at low concentrations (10-50 microM). Among the analogues tested, 1-butenyl-, 1-propargyl- and 1-benzyl-3,7-dimethyluric acids show high hydroxyl radical scavenging property with a reaction rate constant (Ks) of 3.2-6.7 x 10(10) M(-1) S(-1), 2.3-3.7 x 10(10) M(-1) S(-1) and 2.4-3.7 x 10(10) M(-1) S(-1), respectively. The effectiveness of these analogues as hydroxyl radical scavengers appears to be better than mannitol (Ks, 1.9-2.5 x 10(9) M(-1) S(-1)). With the exception of 1-pentyl- and 1-(2'-oxopropyl)-3,7-dimethyluric acids, all other analogues tested are effective inhibitors of tert-butylhydroperoxide-induced lipid peroxidation in human erythrocyte membranes. All the analogues tested are susceptible to peroxidation in the presence of hemoprotein and hydrogen peroxide. The present study has pointed out that it is possible to significantly enhance the antioxidant property of 1,3,7-trimethyluric acid by structural modification at N-1 position. Such compounds may be useful as antioxidants in vivo.  相似文献   

5.
Treatment of the porcine intestinal brush-border membranes with 100 microM ascorbic acid and 10 microM Fe2+ in the presence of various concentrations of tert-butyl hydroperoxide (t-BuOOH) resulted in a marked fluorescence development at 430 nm, depending on the hydroperoxide concentration. This fluorescence formation was closely related to lipid peroxidation of the membranes as assessed by formation of conjugated diene. However there is no linear relation between thiobarbituric acid-reactive substances (TBARS) and fluorescence formation. On the other hand, fluorescence formation in the membranes by treatment with ascorbic acid/Fe2+ or t-BuOOH alone was negligible. The results with antioxidants and radical scavengers suggest that ascorbic acid/Fe2+/t-BuOOH-induced lipid peroxidation of the membranes is mainly due to t-butoxyl and/or t-butyl peroxy radicals. Most TBARS produced during the peroxidation reaction were released from the membranes, but fluorescent products remained in the membrane components. The fluorescence properties of products formed by lipid peroxidation of the membranes were compared with those of products derived from the interaction of malondialdehyde (MDA) or acetaldehyde with the membranes. The fluorescence products in the acetaldehyde-modified membranes also exhibited the emission maximum at 430 nm, while the emission maximum of MDA-modified membranes was 470 nm. The fluorescence intensity of MDA-modified membranes was markedly decreased by treatment with 10 mM NaBH4 but that of the peroxidized or acetaldehyde-modified membranes was enhanced by about two-fold with the treatment. In addition, a pH dependence profile revealed that the fluorescence intensity of the peroxidized or acetaldehyde-modified membranes decreases with increasing pH of the medium, whereas that of MDA-modified ones did not change over the pH range from 5.4 to 8.0. On the basis of these results, the fluorescence properties of products formed in the intestinal brush-border membranes by lipid peroxidation are discussed.  相似文献   

6.
The oxidative modification of low-density lipoprotein (LDL) plays an important role in atherosclerosis. Protecting LDL from oxidation has been shown to reduce the risk of coronary heart disease. In this study, we compared the protective effects of two lipophilic antioxidants (vitamin E and lazaroid) with two hydrophilic antioxidants (trolox and vitamin C) in the presence of several different free radical generating systems. Vitamin E (IC50 = 5.9 microM) and lazaroid (IC50 = 5.0 microM) were more effective in inhibiting lipid peroxidation caused by a Fe-ADP free radical generating system than vitamin C (IC50 = 5.2 x 10(3) microM) and trolox (IC5 = 1.2 x 10(3) microM). Preincubation of lipoproteins with a lipophilic antioxidant increased the protective effect against various free radicals. Preincubation with hydrophilic antioxidants did not have an effect. We also tested the efficacy of the antioxidants when the free radicals were generated within the lipid or the aqueous environment surrounding the LDL. For this purpose, we used the peroxyl generating azo-compounds AMVN (2,2'-azobis(2,4-dimethylvaleronitrile)) and AAPH (2,2'azobis(2-amidinopropane) dihydrochloride). All of the antioxidants tested were more effective against free radicals generated in a water soluble medium than they were against free radicals generated in a lipid environment. In conclusion, our data demonstrate that lipid solubility is an important factor for both the antioxidant and the free radical generating systems in determining the extent of lipid peroxidation in LDL. Our data also demonstrate that antioxidant efficacy in one set of experimental conditions may not necessarily translate into a similar degree of protection in another set of conditions where lipophilicity is a variable.  相似文献   

7.
Oxidations of soybean phosphatidylcholine liposomes in an aqueous dispersion initiated by free radicals generated initially either in the aqueous phase or in the lipid phase were efficiently suppressed by vitamin E in the membranes. Vitamin E was consumed linearly with time and, when the inhibition period was over the oxidation proceeded rapidly at a rate similar to that in the absence of vitamin E. L-Cysteine was also effective by itself in scavenging radicals in the aqueous region, but it was consumed more rapidly than vitamin E. On the other hand, cysteine could not scavenge the radicals efficiently in a lipid region. Nevertheless, when vitamin E was incorporated into liposomes, the addition of cysteine in the aqueous phase prolonged the inhibition period and it reduced the rate of decay of vitamin E markedly even when the radicals were generated initially in the lipid bilayer. Furthermore, it was found by an electron spin resonance study that chromanoxyl radical disappeared quite rapidly when it was mixed with cysteine and that the spin adduct of cysteine radical was observed in the presence of alpha-(4-pyridyl-N-oxide)-N-tert-butyl nitrone. It was concluded that L-cysteine located in an aqueous region could regenerate vitamin E by reacting with vitamin E radical formed in a lipid region and show a synergistic antioxidant effect, although its efficiency of vitamin E regeneration was lower than that by vitamin C.  相似文献   

8.
Low density lipoprotein (LDL) has been reported to be injurious or toxic to cells in vitro. This injurious effect is, in some instances, due to oxidation of the lipid moiety of the lipoprotein. The objectives of this study were to determine if the oxidation rendering the lipoprotein toxic to human skin fibroblasts occurred by free radical mechanisms, and if so, which of the common free radical oxygen species were involved. The selective free radical blockers or scavengers employed included superoxide dismutase for superoxide, catalase for hydrogen peroxide, dimethylfuran for singlet molecular oxygen, and mannitol for hydroxyl radical. The presence during lipoprotein preparation of general free radical scavengers (vitamin E, butylated hydroxytoluene) or the divalent cation chelator ethylenediamine tetraacetic acid prevented the formation of cytotoxic low density lipoprotein, while the simultaneous presence of superoxide dismutase and catalase partially inhibited its formation. The results indicate that superoxide and/or hydrogen peroxide are involved in the formation of the toxic LDL lipid. The toxic action of oxidized LDL could not be prevented by inclusion of antioxidants in the culture medium, indicating that an oxidized lipid was responsible for cell injury rather than free radicals generated in culture by the action of oxidized LDL. Three separate assays for cell injury (enumeration of attached cells, cell loss of lactate dehydrogenase into the culture medium, and trypan blue uptake) indicated a sequence of events in which the fibroblasts are injured, die, and then detach.  相似文献   

9.
Ubiquinones and tocopherols (vitamin E) are intrinsic lipid components which have a stabilizing function in many membranes attributed to their antioxidant activity. The antioxidant effects of tocopherols are due to direct radical scavenging. Although ubiquinones also exert antioxidant properties the specific molecular mechanisms of their antioxidant activity may be due to: (i) direct reaction with lipid radicals or (ii) interaction with chromanoxyl radicals resulting in regeneration of vitamin E. Lipid peroxidation results have now shown that tocopherols are much stronger membrane antioxidants than naturally occurring ubiquinols (ubiquinones). Thus direct radical scavenging effects of ubiquinols (ubiquinones) might be negligible in the presence of comparable or higher concentrations of tocopherols. In support of this our ESR findings show that ubiquinones synergistically enhance enzymic NADH- and NADPH-dependent recycling of tocopherols by electron transport in mitochondria and microsomes. If ubiquinols were direct radical scavengers their consumption would be expected. Further proving our conclusion HPLC measurements demonstrated that ubiquinone-dependent sparing of tocopherols was not accompanied by ubiquinone consumption.  相似文献   

10.
Erythrocytes from rats fed large doses of Vitamin A alone, or large doses of vitamin A and vitamin E or diphenyl-p-phenylene diamine (DPPD) were studied for H2O2-induced hemolysis. The vitamin A-dosed rats were more susceptible than normal rats to H2O2-induced hemolysis. Hemolysis was not accompanied by lipid peroxidation. Nevertheless, the antioxidants vitamin E and DPPD inhibited hemolysis in erythrocytes from vitamin A-dosed rats. These antioxidants had the same inhibitory effect when they were included in the diet or added to erythrocyte suspensions in vitro. Erythrocytes from vitamin A-dosed rats with or without added vitamin E or DPPD were less susceptible than the erythrocytes from normal rats to osmotic challenge, showing that vitamin A was present in levels sufficient to alter the structure of the erythrocyte membrane. These studies show that oxidative hemolysis occurs when the erythrocyte membrane is modified. Furthermore, this oxidative hemolysis is unrelated to lipid peroxidation.  相似文献   

11.
The present study examined the relationship between lipid peroxidation and vitamin C, vitamin E and reduced glutathione levels in plasma, erythrocytes and erythrocyte membranes of pulmonary tuberculosis patients and an equal number of age-and sex-matched healthy subjects. Enhanced plasma, erythrocytes and erythrocyte membrane lipid peroxidation with concomitant decline in vitamin C, vitamin E and reduced glutathione levels were found in pulmonary tuberculosis patients. The elevated lipid peroxidation and decreased vitamin C, vitamin E and reduced glutathione levels indicate the potential of oxidative damage to erythrocytes and erythrocyte membranes of pulmonary tuberculosis patients.  相似文献   

12.
Plant flavonoids are emerging as novel therapeutic drugs for free radical mediated diseases, for which cell membranes mainly serve as targets for lipid peroxidation and related deleterious effects. Screening and characterization of these ubiquitous, therapeutically potent polyphenolic compounds require a clear understanding regarding their binding and possible locations in membranes, as well as quantitative estimates of relevant parameters such as partition coefficients, antioxidant and radical scavenging capacities. In this article we present perspectives emphasizing novel uses of the exquisitely sensitive 'two color' intrinsic fluorescence of plant flavonoids (which arise due to highly efficient photoinduced excited state intramolecular proton transfer (ESIPT) reactions) to explore their binding to model biomembranes consisting of phosphatidylcholine liposomes. Extension of such studies to natural biomembranes of relevant interest is also exemplified. Spectrophotometric assays reveal that typical mono- as well as poly-hydroxy substituted flavonoids have remarkable inhibitory actions on lipid peroxidation, and are significantly more potent antioxidants (2.5-4 times higher) compared to the reference compound Trolox (an water soluble derivative of vitamin E). The structure-activity relationships emerging from such studies are consistent with theoretical predictions based on quantum chemical computations.  相似文献   

13.
Selenium is connected to three small molecule antioxidant compounds, ascorbate, α-tocopherol, and ergothioneine. Ascorbate and α-tocopherol are true vitamins, while ergothioneine is a “vitamin-like” compound. Here we review how selenium is connected to all three. Selenium and vitamin E work together as a team to prevent lipid peroxidation. Vitamin E quenches lipid hydroperoxyl radicals and the resulting lipid hydroperoxide is then converted to the lipid alcohol by selenocysteine-containing glutathione peroxidase. Ascorbate reduces the resulting α-tocopheroxyl radical in this reaction back to α-tocopherol with concomitant production of the ascorbyl radical. The ascorbyl radical can be reduced back to ascorbate by selenocysteine-containing thioredoxin reductase. Ergothioneine and ascorbate are both water soluble, small molecule reductants that can reduce free radicals and redox-active metals. Thioredoxin reductase can reduce oxidized forms of ergothioneine. While the biological significance of this is not yet realized, this discovery underscores the centrality of selenium to all three antioxidants.  相似文献   

14.
Under the conditions of this assay, antioxidants that react rapidly with peroxy free radicals (e.g., ascorbate, vitamin E analogs, urate), protect phycoerythrin completely from damage by such radicals generated by thermal decomposition of 2,2'-azobis(2-amidinopropane); other compounds provide partial concentration-dependent protection. Change in phycoerythrin fluorescence emission with time provides a measure of the rate of free radical damage. The assay exploits the unusual reactivity of phycoerythrin toward these peroxy radicals. On a molar basis, phycoerythrin reacts with these radicals over 100-fold slower than do ascorbate or vitamin E analogs, but over 60-fold faster than other proteins. Applications of this assay to the estimation of the peroxy radical scavenging capacity of human plasma are described, and to the comparison of the scavenging properties of several proteins and of DNA, of vitamins and their derivatives, of catecholamine neurotransmitters, and of a variety of other low molecular weight biological compounds.  相似文献   

15.
The present study examines the evidence for the important role of free radicals, localized on carbon atoms of the hydrocarbon chains, in lipid peroxidation. These radicals show a great inter- and intramolecular mobility in membranes by the way of relay-transfer (isomerisation). The sequence of intermediate steps of shift of free radicals in membranes with correction for molecular organization of the hydrocarbon zone of membranes, the intramembrane localization of unsaturated links and the gradient of mobility of the hydrocarbon chains are described. The effect of inhibitors in lipid peroxidation are interpreted in terms of decay of hydrocarbon free radicals as a result of its interaction with the antioxidant molecules. The natural antioxidants having a side chain (such as tocopherols) may be regarded as a some kind of "channel" through which free radicals leave the hydrocarbon moiety of the membrane. The processes of lipid peroxidation in membranes are subjected to a great extent to the requirements of the theory of oxidation of solid polymers and hydrocarbons.  相似文献   

16.
Antioxidant Activities of Some Extracts of Thymus zygis   总被引:2,自引:0,他引:2  
The antioxidant activities of methanol and ethyl ether extracts obtained from Thymus zygis, collected during the flowering or non-flowering period, were evaluated and compared. To investigate this potential, extracts were tested on their capacity to react with diphenyl-picrylhydrazyl (DPPH) in a homogeneous medium, and to inhibit Fe2+/ascorbate-induced membrane lipid peroxidation, as estimated by the formation of thiobar-bituric acid-reactive substances (TBARS). Although methanol extracts reduce DPPH radicals more efficiently than ethyl ether extracts, suggesting a potent radical scavenger activity, the ethyl ether extracts were found to be most active in inhibiting lipid peroxidation in sarcoplasmic reticulum (SR) membranes. In addition, both extracts present peroxyl and superoxide radical scavenging activities. Peroxyl radicals were generated by the water soluble 2, 2A-azobis(2-amidinopropane) dihydrochloride (AAPH) azoinitiator, and the scavenging activities of the extracts were measured by the inhibition of cis-parinaric acid (PnA) fluorescence decay in SR. Superoxide radicals were generated either by an enzymatic or a non-enzymatic system, and the scavenger ability was evaluated by the inhibition of nitrob-lue tetrazolium reduction. Methanolic extracts are more potent as scavengers of peroxyl and super oxide radicals than the ethyl ether extracts. Apparently, there is a relationship between antioxidant potency and the total phenolic groups content in each extract.  相似文献   

17.
Chen G  Djuric Z 《FEBS letters》2001,505(1):151-154
It has been questioned whether carotenoids can act as antioxidants in biological membranes. Biological membranes can be modeled for studies of lipid peroxidation using unilamellar liposomes. Both carotenoid depletion and lipid peroxidation were increased with increasing oxygen tension in unilamellar liposomes. Carotenoids in such liposomes were found to be very sensitive to degradation by free radicals generated from iron and 2,2'-azobis(2-amidinopropane) dihydrochloride, but they were not protective against lipid peroxidation. Lycopene and beta-carotene were more sensitive to free radical attack than lutein, zeaxanthin, and beta-cryptoxanthin.  相似文献   

18.
The antioxidant activities of trans-resveratrol (trans-3,5,4′-trihydroxystilbene) and trans-piceid (trans-5,4′-dihydroxystilbene-3-O-β-d-glucopyranoside), its more widespread glycosilate derivative, have been compared measuring their inhibitory action on peroxidation of linoleic acid (LA) and the radical scavenging ability towards different free radicals (such as DPPH) and radical initiators. It has been found that the two stilbenes have similar antioxidant capacity, while the comparison with BHT (2,6-di-tert-butyl-4-methylphenol) and -tocopherol (vitamin E, vit. E), taken as reference, points out a slower but prolonged protective action against lipid peroxidation. Furthermore, piceid appears more efficacious than resveratrol as a consequence of the reaction of the latter with its radical form.

The DSC profiles of phosphatidylcholine liposomes of various chain lengths, and EPR measurements of spin labelled liposomes demonstrated that the susceptible hydroxyl group of these compounds are located in the lipid region of the bilayer close to the double bonds of polyunsatured fatty acids, making these stilbenes particularly suitable for the prevention and control of the lipid peroxidation of the membranes.  相似文献   


19.
Production of oxygen radicals by stimulated phagocytes followed by surfactant lipid peroxidation (LPO) and loss of surfactant function have all been implicated in the pathogenesis of acute lung injury. We studied the interactions between natural lung surfactant (Curosurf) and neutrophils in vitro , and compared various antioxidants; (superoxide dismutase (SOD), vitamin E, vitamin C, ebselen and melatonin), or combinations of them in duplicate and triplicate regarding their ability to decrease superoxide production and the peroxidation level of surfactant caused by activated phagocytes. The superoxide production of neutrophils activated by Candida albicans was measured with the nitroblue tetrazolium (NBT) test. The subsequent LPO was estimated as the content of malondialdehyde (MDA) and 4-hydroxyalkenals (4-HNE). We found that lung surfactant decreased the superoxide production by activated neutrophils (29.7%) and that Curosurf was peroxidized with elevated MDA/4-HNE values. With supplements of antioxidants (except vitamin C), superoxide radical production and the surfactant LPO level fell in a dose-dependent manner. The protective effect of the antioxidants differed in each test. SOD had a slight effect in both tests. The findings with vitamin E, melatonin and ebselen were similar. The best combination was that of a natural and a synthetic antioxidant (melatonin-ebselen) with a 60% decrease in comparison to the corresponding control. These findings suggest that antioxidants, particularly in combination, prevent LPO of lung surfactant.  相似文献   

20.
Lipid peroxyl radicals resulting from the peroxidation of polyunsaturated fatty acids by soybean lipoxygenase were directly detected by the method of rapid mixing, continuous-flow electron spin resonance spectroscopy. When air-saturated borate buffer (pH 9.0) containing linoleic acid or arachidonate acid was mixed with lipoxygenase, fatty acid-derived peroxyl free radicals were readily detected; these radicals have a characteristic g-value of 2.014. An organic free radical (g = 2.004) was also detected; this may be the carbon-centered fatty acid free radical that is the precursor of the peroxyl free radical. The ESR spectrum of this species was not resolved, so the identification of this free radical was not possible. Fatty acids without at least two double bonds (e.g. stearic acid and oleic acid) did not give the corresponding peroxyl free radicals, suggesting that the formation of bisallylic carbon-centered radicals precedes peroxyl radical formation. The 3.8-G doublet feature of the fatty acid peroxyl spectrum was proven (by selective deuteration) to be a hyperfine coupling due to a gamma-hydrogen that originated as a vinylic hydrogen of arachidonate. Arachidonate peroxyl radical formation was shown to be dependent on the substrate, active lipoxygenase, and molecular oxygen. Antioxidants are known to protect polyunsaturated fatty acids from peroxidation by scavenging peroxyl radicals and thus breaking the free radical chain reaction. Therefore, the peroxyl signal intensity from micellar arachidonate solutions was monitored as a function of the antioxidant concentration. The reaction of the peroxyl free radical with Trolox C was shown to be 10 times slower than that with vitamin E. The vitamin E and Trolox C phenoxyl radicals that resulted from scavenging the peroxyl radical were also detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号