首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Site-directed sulfhydryl chemistry and spectroscopy can be used to probe protein structure, mechanism and dynamics in situ. The aspartate receptor of bacterial chemotaxis is representative of a large family of prokaryotic and eukaryotic receptors that regulate histidine kinases in two-component signaling pathways, and has become one of the best characterized transmembrane receptors. We report here the use of cysteine and disulfide scanning to probe the helix-packing architecture of the cytoplasmic domain of the aspartate receptor. RESULTS: A series of designed cysteine pairs have been used to detect proximities between cytoplasmic helices in the full-length, membrane-bound receptor by measurement of disulfide-bond formation rates. Upon mild oxidation, 25 disulfide bonds from rapidly between three specific pairs of helices, whereas other helix pairs yield no detectable disulfide-bond formation. Further constraints on helix packing are provided by 14 disulfide bonds that retain receptor function in an in vitro kinase regulation assay. Of these functional disulfides, seven lock the receptor in the conformation that constitutively stimulates kinase activity ('lock-on'), whereas the remaining seven retain normal kinase regulation. Finally, disulfide-trapping experiments in the absence of bound kinase reveal large-amplitude relative motions of adjacent helices, including helix translations and rotations of up to 19 A and 180 degrees, respectively. CONCLUSIONS: The 25 rapidly formed and 14 functional disulfide bonds identify helix-helix contacts and their register in the full-length, membrane-bound receptor-kinase complex. The results reveal an extended, rather than compact, domain architecture in which the observed helix-helix interactions are best described by a four-helix bundle arrangement. A cluster of six lock-on disulfide bonds pinpoints a region of the four-helix bundle critical for kinase activation, whereas the signal-retaining disulfides indicate that signal-induced rearrangements of this region are small enough to be accommodated by disulfide-bond flexibility (< or = 1.2 A). In the absence of bound kinase, helix packing within the cytoplasmic domain is highly dynamic.  相似文献   

2.
Winston SE  Mehan R  Falke JJ 《Biochemistry》2005,44(38):12655-12666
The aspartate receptor is one of the ligand-specific, homodimeric chemoreceptors that detects extracellular attractants and triggers the chemotaxis pathway of Escherichia coli and Salmonella typhimurium. This receptor regulates the activity of the histidine kinase CheA, which forms a kinetically stable complex with the receptor cytoplasmic domain. An atomic four-helix bundle model has been constructed for this domain, which is functionally subdivided into the signaling and adaptation subdomains. The proposed four-helix bundle structure of the signaling subdomain, which binds CheA, is fully supported by experimental evidence. Much less evidence is available to test the four-helix bundle model of the adaptation subdomain, which possesses covalent adaptation sites and docking surfaces for adaptation enzymes. The present study focuses on a putative helix near the C terminus of the adaptation subdomain. To probe the structural and functional features of positions G467-A494 in this C-terminal region, a cysteine and disulfide scanning approach has been employed. Measurement of the chemical reactivities of scanned cysteines reveals an alpha-helical periodicity of exposed and buried residues, confirming alpha-helical secondary structure and mapping out a buried packing face. The effects of cysteine substitutions on activity in vivo and in vitro highlight the functional importance of the helix, especially its buried face. A scan for disulfide bond formation between symmetric pairs of engineered cysteines reveals promiscuous collisions between subunits, indicating the presence of significant thermal dynamics. A scan for functional disulfides reveals lock-on and signal-retaining disulfide bonds formed between symmetric pairs of cysteines at buried positions, indicating that the buried face of the helix lies near the subunit interface of the homodimer in the equilibrium structures of both the apo and aspartate-bound states where it plays a critical role in kinase regulation. These results strongly support the existing four-helix bundle model of the adaptation subdomain structure. A mechanistic model is proposed in which a signal is transmitted through the adaptation subdomain by a change in supercoiling of the four-helix bundle.  相似文献   

3.
The cytoplasmic membrane protein TatB is an essential component of the Escherichia coli twin-arginine (Tat) protein translocation pathway. Together with the TatC component it forms a complex that functions as a membrane receptor for substrate proteins. Structural predictions suggest that TatB is anchored to the membrane via an N-terminal transmembrane alpha-helix that precedes an amphipathic alpha-helical section of the protein. From truncation analysis it is known that both these regions of the protein are essential for function. Here we construct 31 unique cysteine substitutions in the first 42 residues of TatB. Each of the substitutions results in a TatB protein that is competent to support Tat-dependent protein translocation. Oxidant-induced disulfide cross-linking shows that both the N-terminal and amphipathic helices form contacts with at least one other TatB protomer. For the transmembrane helix these contacts are localized to one face of the helix. Molecular modeling and molecular dynamics simulations provide insight into the possible structural basis of the transmembrane helix interactions. Using variants with double cysteine substitutions in the transmembrane helix, we were able to detect cross-links between up to five TatB molecules. Protein purification showed that species containing at least four cross-linked TatB molecules are found in correctly assembled TatBC complexes. Our results suggest that the transmembrane helices of TatB protomers are in the center rather than the periphery of the TatBC complex.  相似文献   

4.
The protease-activated receptors are tethered ligand G protein-coupled receptors that are activated by proteolytic cleavage of the extracellular domain of the receptor. The archetypic protease-activated receptor PAR1 strongly activates G(q) signaling pathways, but very little is known regarding the mechanism of signal transference between receptor and internally located G protein. The recent x-ray structure of rhodopsin revealed the presence of a highly conserved amphipathic 8th helix that is likely to be physically interposed between receptor and G protein. We found that the analogous 8th helix region of PAR1 was critical for activation of G(q)-dependent signaling. Engineering an 8th helix alpha-aneurysm with a downwards-directed alanine residue markedly interfered with signal transference to G(q). The 8th helix-anchoring cysteine palmitoylation sites were important for the affinity of ligand-dependent G protein coupling but did not affect the maximal signal. A network of H-bond and ionic interactions was found to connect the N-terminal portion of the 8th helix to the nearby NPXXY motif on transmembrane helix 7 and also to the adjacent intracellular loop-1. Disruption of these pairwise interactions caused additive defects in coupling to G protein, indicating that the transmembrane 7-8th helix-i1 loop may move in a coordinated manner to transfer the signal from PAR1 to G protein. This "7-8-1" interaction network was found to be prevalent in G protein-coupled receptors involved in endothelial signaling and angiogenesis.  相似文献   

5.
Receptor dimerization is a crucial intermediate step in activation of signaling by receptor tyrosine kinases (RTKs). However, dimerization of the RTK Neu (also designated ErbB-2, HER-2, and p185neu), while necessary, is not sufficient for signaling. Earlier work in our laboratory had shown that introduction of an ectopic cysteine into the Neu juxtamembrane domain induces Neu dimerization but not signaling. Since Neu signaling does require dimerization, we hypothesized that there are additional constraints that govern signaling ability. With the importance of the interreceptor cross-phosphorylation reaction, a likely constraint was the relative geometry of receptors within the dimer. We have tested this possibility by constructing a consecutive series of cysteine substitutions in the Neu juxtamembrane domain in order to force dimerization along a series of interreceptor faces. Within the group that dimerized constitutively, a subset had transforming activity. The substitutions in this subset all mapped to the same face of a predicted alpha helix, the most likely conformation for the intramembrane domain. Furthermore, this face of interaction aligns with the projected Neu* V664E substitution and with a predicted amphipathic interface in the Neu juxtamembrane domain. We propose that these results identify an RTK dimer interface and that dimerization of this RTK induces an extended contact between juxtamembrane and intramembrane alpha helices.  相似文献   

6.
Miller AS  Falke JJ 《Biochemistry》2004,43(7):1763-1770
Previous model studies of peptides and proteins have shown that protein-lipid interactions, primarily involving amino acid side chains near the membrane-water interface, modulate the position of transmembrane helices in bilayers. The present study examines whether such interfacial side chains stabilize the signaling states of a transmembrane signaling helix in a representative receptor, the aspartate receptor of bacterial chemotaxis. To examine the functional roles of signaling helix side chains at the periplasmic and cytoplasmic membrane-water interfaces, arginine and cysteine substitutions were scanned through these two interfacial regions. The chemical reactivities of the cysteine residues were first measured to determine the positions at which the helix crosses the membrane-water interface in both the periplasmic and cytoplasmic compartments. Subsequently, two antisymmetric in vitro activity measurements were carried out to determine the effect of each interfacial arginine or cysteine substitution on receptor signaling. Substitutions that stabilize the receptor on-state cause upregulation of receptor-coupled kinase activity and inhibition of methylation at receptor adaptation sites, while substitutions that stabilize the off-state have the opposite effects on these two activities. Notably, four substitutions at aromatic tryptophan and phenylalanine positions buried in the membrane near the membrane-water interface were found to stabilize the native on- or off-signaling state. The striking ability of these substitutions to drive the receptor toward a specific signaling state indicates that interfacial side chains are highly optimized to correctly position the native signaling helix in the membrane and to allow normal switching between the on- and off-signaling states. The analogous substitutions in model transmembrane helices are known to drive small piston-type displacements of the helix normal to the membrane. Thus, the simplest molecular interpretation of the present findings is that the signal-stabilizing substitutions drive piston displacements of the signaling helix, providing further support for the piston model for transmembrane signaling in bacterial chemoreceptors. More generally, the findings indicate that the interfacial phenylalanine, tryptophan, and arginine side chains widespread in the transmembrane alpha-helices of receptors, channels, and transporters can play important roles in modulating transitions between signaling and conformational states.  相似文献   

7.
The proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli is composed of two types of subunits, alpha and beta, organized as an alpha(2)beta(2) tetramer. The protein contains three recognizable domains, of which domain II is the transmembrane region of the molecule containing the pathway for proton translocation. Domain II is composed of four transmembrane helices at the carboxyl-terminus of the alpha subunit and either eight or nine transmembrane helices at the amino-terminal region of the beta subunit. We have introduced pairs of cysteine residues into a cysteine-free transhydrogenase by site-directed mutagenesis. Disulfide bond formation between some of these cysteine residues occurred spontaneously or on treatment with cupric 1, 10-phenanthrolinate. Analysis of crosslinked products confirmed that there are nine transmembrane helices in the domain II region of the beta subunit. The proximity to one another of several of the transmembrane helices was determined. Thus, helices 2 and 4 are close to helix 6 (nomenclature of Meuller and Rydstr?m, J. Biol. Chem. 274, 19072-19080, 1999), and helix 3 and the carboxyl-terminal eight residues of the alpha subunit are close to helix 7. In the alpha(2)beta(2) tetramer, helices 2 and 4 of one alpha subunit are close to the same pair of transmembrane helices of the other alpha subunit, and helix 6 of one beta subunit is close to helix 6 of the other beta subunit.  相似文献   

8.
The Bacillus thuringiensis insecticidal delta-endotoxins have a three-domain structure, with the seven amphipathic helices which comprise domain I being essential for toxicity. To better define the function of these helices in membrane insertion and toxicity, either site-directed or random mutagenesis of two regions was performed. Thirty-nucleotide segments in the B. thuringiensis cry1Ac1 gene, encoding parts of helix alpha4 and the loop connecting helices alpha4 and alpha5, were randomly mutagenized. This hydrophobic region of the toxin probably inserts into the membrane as a hairpin. Site-directed mutations were also created in specific surface residues of helix alpha3 in order to increase its hydrophobicity. Among 12 random mutations in helix alpha4, 5 resulted in the total loss of toxicity for Manduca sexta and Heliothis virescens, another caused a significant increase in toxicity, and one resulted in decreased toxicity. None of the nontoxic mutants was altered in toxin stability, binding of toxin to a membrane protein, or the ability of the toxin to aggregate in the membrane. Mutations in the loop connecting helices alpha4 and alpha5 did not affect toxicity, nor did mutations in alpha3, which should have enhanced the hydrophobic properties of this helix. In contrast to mutations in helix alpha5, those in helix alpha4 which inactivated the toxin did not affect its capacity to oligomerize in the membrane. Despite the formation of oligomers, there was no ion flow as measured by light scattering. Helix alpha5 is important for oligomerization and perhaps has other functions, whereas helix alpha4 must have a more direct role in establishing the properties of the channel.  相似文献   

9.
Cry4Ba, isolated from Bacillus thuringiensis subsp. israelensis, is specifically toxic to the larvae of Aedes and Anopheles mosquitoes. The structure of activated Cry4Ba toxin has been determined by multiple isomorphous replacement with anomalous scattering and refined to R(cryst) = 20.5% and R(free)= 21.8% at 1.75 Angstroms resolution. It resembles previously reported Cry toxin structures but shows the following distinctions. In domain I the helix bundle contains only the long and amphipathic helices alpha3-alpha7. The N-terminal helices alpha1-alpha2b, absent due to proteolysis during crystallisation, appear inessential to toxicity. In domain II the beta-sheet prism presents short apical loops without the beta-ribbon extension of inner strands, thus placing the receptor combining sites close to the sheets. In domain III the beta-sandwich contains a helical extension from the C-terminal strand beta23, which interacts with a beta-hairpin excursion from the edge of the outer sheet. The structure provides a rational explanation of recent mutagenesis and biophysical data on this toxin. Furthermore, added to earlier structures from the Cry toxin family, Cry4Ba completes a minimal structural database covering the Coleoptera, Lepidoptera, Diptera and Lepidoptera/Diptera specificity classes. A multiple structure alignment found that the Diptera-specific Cry4Ba is structurally more closely similar to the Lepidoptera-specific Cry1Aa than the Coleoptera-specific Cry3Aa, but most distantly related to Lepidoptera/Diptera-specific Cry2Aa. The structures are most divergent in domain II, supporting the suggestion that this domain has a major role in specificity determination. They are most similar in the alpha3-alpha7 major fragment of domain I, which contains the alpha4-alpha5 hairpin crucial to pore formation. The collective knowledge of Cry toxin structure and mutagenesis data will lead to a more critical understanding of the structural basis for receptor binding and pore formation, as well as allowing the scope of diversity to be better appreciated.  相似文献   

10.
The Tat (twin arginine translocation) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The integral membrane proteins TatA, TatB, and TatC are essential components of the Tat pathway. TatA forms high order oligomers and is thought to constitute the protein-translocating unit of the Tat system. Cysteine scanning mutagenesis was used to systematically investigate the functional importance of residues in the essential N-terminal transmembrane and amphipathic helices of Escherichia coli TatA. Cysteine substitutions of most residues in the amphipathic helix, including all the residues on the hydrophobic face of the helix, severely compromise Tat function. Glutamine 8 was identified as the only residue in the transmembrane helix that is critical for TatA function. The cysteine variants in the transmembrane helix were used in disulfide mapping experiments to probe the oligomeric arrangement of TatA protomers within the larger TatA complex. Residues in the center of the transmembrane helix (including residues 10-16) show a distinct pattern of cross-linking indicating that this region of the protein forms well defined interactions with other protomers. At least two interacting faces were detected. The results of our TatA studies are compared with analogous data for the homologous, but functionally distinct, TatB protein. This comparison reveals that it is only in TatA that the amphipathic helix is sensitive to amino acid substitutions. The TatA amphipathic helix may play a role in forming and controlling the path of substrate movement across the membrane.  相似文献   

11.
Swain KE  Falke JJ 《Biochemistry》2007,46(48):13684-13695
The HAMP domain is a conserved motif widely distributed in prokaryotic and lower eukaryotic organisms, where it is often found in transmembrane receptors that regulate two-component signaling pathways. The motif links receptor input and output modules and is essential to receptor structure and signal transduction. Recently, a structure was determined for a HAMP domain isolated from an unusual archeal membrane protein of unknown function [Hulko, M., et al. (2006) Cell 126, 929-940]. This study uses cysteine and disulfide chemistry to test this archeal HAMP model in the full-length, membrane-bound aspartate receptor of bacterial chemotaxis. The chemical reactivities of engineered Cys residues scanned throughout the aspartate receptor HAMP region are highly correlated with the degrees of solvent exposure of corresponding positions in the archeal HAMP structure. Both domains are homodimeric, and the individual subunits of both domains share the same helix-connector-helix organization with the same helical packing faces. Moreover, disulfide mapping reveals that the four helices of the aspartate receptor HAMP domain are arranged in the same parallel, four-helix bundle architecture observed in the archeal HAMP structure. One detectable difference is the packing of the extended connector between helices, which is not conserved. Finally, activity studies of the aspartate receptor indicate that contacts between HAMP helices 1 and 2' at the subunit interface play a critical role in modulating receptor on-off switching. Disulfide bonds linking this interface trap the receptor in its kinase-activating on-state, or its kinase inactivating off-state, depending on their location. Overall, the evidence suggests that the archeal HAMP structure accurately depicts the architecture of the conserved HAMP motif in transmembrane chemoreceptors. Both the on- and off-states of the aspartate receptor HAMP domain closely resemble the archeal HAMP structure, and only a small structural rearrangement occurs upon on-off switching. A model incorporating HAMP into the full receptor structure is proposed.  相似文献   

12.
TANK-binding kinase 1 (TBK1) is an important enzyme in the regulation of cellular antiviral effects. TBK1 regulates the activity of the interferon regulatory factors IRF3 and IRF7, thereby playing a key role in type I interferon (IFN) signaling pathways. The structure of TBK1 consists of an N-terminal kinase domain, a middle ubiquitin-like domain (ULD), and a C-terminal elongated helical domain. It has been reported that the ULD of TBK1 regulates kinase activity, playing an important role in signaling and mediating interactions with other molecules in the IFN pathway. In this study, we present the crystal structure of the ULD of human TBK1 and identify several conserved residues by multiple sequence alignment. We found that a hydrophobic patch in TBK1, containing residues Leu316, Ile353, and Val382, corresponding to the “Ile44 hydrophobic patch” observed in ubiquitin, was conserved in TBK1, IκB kinase epsilon (IKK?/IKKi), IκB kinase alpha (IKKα), and IκB kinase beta (IKKβ). In comparison with the structure of the IKKβ ULD domain of Xenopus laevis, we speculate that the Ile44 hydrophobic patch of TBK1 is present in an intramolecular binding surface between ULD and the C-terminal elongated helices. The varying surface charge distributions in the ULD domains of IKK and IKK-related kinases may be relevant to their specificity for specific partners.  相似文献   

13.
The D-galactose chemosensory receptor of Escherichia coli is a .32 kDa globular protein possessing two distinct structural domains, each organized in an alpha/beta folding motif. Helices I and X lie at adjacent approximately parallel positions on the surface of the N-terminal domain, near the hinge region. In order to analyze the relative thermal motions of these two helices, the present study utilizes a generalizable disulfide trapping approach: first, site-directed mutagenesis is used to place a pair of cysteine residues at locations of interest on the protein surface, then disulfide bond formation is used to trap intramolecular cysteine-cysteine collisions resulting from thermal motions. Specifically, four engineered di-cysteine receptors have been constructed, each possessing one cysteine at position 26 on helix I, and a second cysteine at varying positions on helix X. A fifth control receptor possesses one cysteine at position 26, and a second on the opposite surface of the molecule. These surface cysteine substitutions have little or no effect on the measurable receptor parameters as judged by ligand binding equilibria and kinetics, protein stability, and 19F nuclear magnetic resonance, indicating that the engineered receptors are useful probes of native backbone dynamics. Spatial and kinetic features of backbone motions have been investigated by measuring intramolecular disulfide formation rates for cysteine pairs in the fully liganded receptor. The resulting rates decrease monotonically with increasing distance between cysteines in the crystal structure, while no disulfide formation is observed for the control pair unless the molecule is unfolded. The minimum translational amplitudes of the observed backbone motions range from 4.5 to 15.2 A, and the minimum rotational amplitudes are as large as 35 degrees. For each motion the rate of intramolecular sulfhydryl-sulfhydryl collision has been estimated from the measured rate of disulfide formation: the 4.5 and 15.2 A translations yield approximately 10(4) and approximately 10 collisions s-1 molecule-1, respectively. These collision rates, which are faster than ligand dissociation, likely underestimate the actual motional frequencies since only an undetermined fraction of the total motions yield collisions. The simplest plausible trajectory capable of producing such collisions is a rate-limiting translation of one or both helices along their long axes, coupled with minor helix rotations. When sugar is removed from the receptor, a substantial increase in backbone dynamics is observed, indicating the presence of new long-range backbone trajectories. Overall, the results suggest that internal motions in proteins may have larger amplitudes than previously observed.  相似文献   

14.
The high-resolution conformation of human apoC-I in complexes with sodium dodecyl sulfate (SDS) is presented. As estimated from CD data, apoC-I adopts 54% helical secondary structure when bound to SDS, which is similar to the helical content previously found with phospholipids. The NMR-derived conformation of apoC-I is composed of two amphipathic helices, residues 7-29 and 38-52, separated by a flexible linker. The N-terminal helix contains a mobile hinge involving residues 12-15. The hydrophobic side chains cluster on the nonpolar face of both helices, thus forming two discrete lipid-binding sites in the N-terminal helix and one in the C-terminal helix. As suggested by amide proton resonance line widths and deuterium exchange rates, the N-terminal helix is more flexible and may bind less tightly to the detergent than the C-terminal helix. The different mobility of both helices appears to be related to side-chain composition, rather than length of the amphipathic helix, and may play a role in the function of apoC-I as an activator of lecithin:cholesterol acyltransferase (LCAT). A model is suggested in which the C-terminal helix serves as a lipid anchor while the N-terminal helix may hinge off the lipid surface to make specific contacts with LCAT.  相似文献   

15.
The T domain of diphtheria toxin undergoes a low pH-induced conformational change that allows it to penetrate cell membranes. T domain hydrophobic helices 8 and 9 can adopt two conformations, one close to the membrane surface (P state) and a second in which they apparently form a transmembrane hairpin (TM state). We have now studied T domain helices 5-7, a second cluster of hydrophobic helices, using Cys-scanning mutagenesis. After fluorescently labeling a series of Cys residues, penetration into a non-polar environment, accessibility to externally added antibodies, and relative depth in the bilayer were monitored. It was found that helices 5-7 insert shallowly in the P state and deeply in the TM state. Thus, the conformational changes in helices 5-7 are both similar and somehow linked to those in helices 8 and 9. The boundaries of deeply inserting sequences were also identified. One deeply inserted segment was found to span residues 270 to 290, which overlaps helix 5, and a second spanned residues 300 to 320, which includes most of helix 6 and all of helix 7. This indicates that helices 6 and 7 form a continuous hydrophobic segment despite their separation by a Pro-containing kink. Additionally, it is found that in the TM state some residues in the hydrophilic loop between helices 5 and 6 become more highly exposed than they are in the P state. Their exposure to external solution in the TM state indicates that helices 5-7 do not form a stable transmembrane hairpin. However, helix 5 and/or helices 6 plus 7 could form transmembrane structures that are in equilibrium with non-transmembrane states, or be kinetically prevented from forming a transmembrane structure. How helices 5-7 might influence the mechanism by which the T domain aids translocation of the diphtheria toxin A chain across membranes is discussed.  相似文献   

16.
Membrane-insertion fragments of Bcl-xL, Bax, and Bid   总被引:8,自引:0,他引:8  
Apoptosis regulators of the Bcl-2 family associate with intracellular membranes from mitochondria and the endoplasmic reticulum, where they perform their function. The activity of these proteins is related to the release of apoptogenic factors, sequestered in the mitochondria, to the cytoplasm, probably through the formation of ion and/or protein transport channels. Most of these proteins contain a C-terminal putative transmembrane (TM) fragment and a pair of hydrophobic alpha helices (alpha5-alpha6) similar to the membrane insertion fragments of the ion-channel domain of diphtheria toxin and colicins. Here, we report on the membrane-insertion properties of different segments from antiapoptotic Bcl-x(L) and proapoptotic Bax and Bid, that correspond to defined alpha helices in the structure of their soluble forms. According to prediction methods, there are only two putative TM fragments in Bcl-x(L) and Bax (the C-terminal alpha helix and alpha-helix 5) and one in activated tBid (alpha-helix 6). The rest of their sequence, including the second helix of the pore-forming domain, displays only weak hydrophobic peaks, which are below the prediction threshold. Subsequent analysis by glycosylation mapping of single alpha-helix segments in a model chimeric system confirms the above predictions and allows finding an extra TM fragment made of helix alpha1 of Bax. Surprisingly, the amphipathic helices alpha6 of Bcl-x(L) and Bax and alpha7 of Bid do insert in membranes only as part of the alpha5-alpha6 (Bcl-x(L) and Bax) or alpha6-alpha7 (Bid) hairpins but not when assayed individually. This behavior suggests a synergistic insertion and folding of the two helices of the hairpin that could be due to charge complementarity and additional stability provided by turn-inducing residues present at the interhelical region. Although these data come from chimeric systems, they show direct potentiality for acquiring a membrane inserted state. Thus, the above fragments should be considered for the definition of plausible models of the active, membrane-bound species of Bcl-2 proteins.  相似文献   

17.
The pore-forming domain of Bacillus thuringiensis Cry1Ac insecticidal protein comprises of a seven alpha-helix bundle (alpha1-alpha7). According to the "umbrella model," alpha4 and alpha5 helices form a hairpin structure thought to be inserted into the membrane upon binding. Here, we have synthesized and characterized the hairpin domain, alpha4-loop-alpha5, its alpha4 and alpha5 helices, as well as mutant alpha4 peptides based on mutations that increased or decreased toxin toxicity. Membrane permeation studies revealed that the alpha4-loop-alpha5 hairpin is extremely active compared with the isolated helices or their mixtures, indicating the complementary role of the two helices and the need for the loop for efficient insertion into membranes. Together with spectrofluorometric studies, we provide direct evidence for the role of alpha4-loop-alpha5 as the membrane-inserted pore-forming hairpin in which alpha4 and alpha5 line the lumen of the channel and alpha5 also participates in the oligomerization of the toxin. Strikingly, the addition of the active alpha4 mutant peptide completely inhibits alpha4-loop-alpha5 pore formation, thus providing, to our knowledge, the first example that a mutated helix within a pore can function as an "immunity protein" by directly interacting with the segments that form the pore. This presents a potential means of interfering with the assembly and function of other membrane proteins as well.  相似文献   

18.
Wei Z  White D  Wang J  Musse AA  Merrill AR 《Biochemistry》2007,46(20):6074-6085
The membrane-bound closed state (zero potential) of the helix 3 segment (Lys-381-Ser-405) of the colicin E1 channel domain was investigated by site-directed fluorescence labeling using a bimane probe tethered to a single cysteine residue of each mutant protein. A number of fluorescence properties of the tethered bimane probe were measured for the soluble channel mutant proteins as well as for the membrane-bound proteins. A new method called helical periodicity surface analysis was employed to fit the fluorescence data to a harmonic wave function using four different statistical methods. The fit of the various data sets to a harmonic wave function indicated that the periodicity of helix 3 in the membrane-bound state is typical for an amphipathic alpha helix (3.7-4.0 residues per turn and an angular frequency between 90 and 97 degrees). Notably, upon membrane binding, helix 3 elongates from 15 residues (soluble structure) to 20 residues by a three- and two-residue extension at the N- and C-termini of the helix, respectively. Dual quencher analysis also revealed that helix 3 is appressed to the surface of the membrane with its N-terminus more deeply buried within the interfacial region of the bilayer than its C-terminus. Finally, contrary to a previous report, our data show that helices 3 and 4 remain separate and independent helices upon membrane association in the absence of a membrane potential.  相似文献   

19.
Ai LS  Liao F 《Biochemistry》2002,41(26):8332-8341
CCR6 is the receptor for the chemokine MIP-3 alpha/CCL20. Almost all chemokine receptors contain cysteine residues in the N-terminal domain and in the first, second, and third extracellular loops. In this report, we have studied the importance of all cysteine residues in the CCR6 sequence using site-directed mutagenesis and biochemical techniques. Like all G protein-coupled receptors, mutating disulfide bond-forming cysteines in the first (Cys118) and second (Cys197) extracellular loops in CCR6 led to complete elimination of receptor activity, which for CCR6 was also associated with the accumulation of the receptor intracellularly. Although two additional cysteines in the N-terminal region and the third extracellular loop, which are present in almost all chemokine receptors, are presumed to form a disulfide bond, this has not been demonstrated experimentally for any of these receptors. We found that mutating the cysteines in the N-terminal domain (Cys36) and the third extracellular loop (Cys288) neither significantly affected receptor surface expression nor completely abolished receptor function. Importantly, contrary to several previous reports, we demonstrated directly that instead of forming a disulfide bond, the N-terminal cysteine (Cys36) and the third extracellular loop cysteine (Cys288) contain free SH groups. The cysteine residues (Cys36 and Cys288), rather than forming a disulfide bond, may be important per se. We propose that CCR6 forms only a disulfide bond between the first (Cys118) and second (Cys197) extracellular loops, which confines a helical bundle together with the N-terminus adjacent to the third extracellular loop, creating the structural organization critical for ligand binding and therefore for receptor signaling.  相似文献   

20.
A parallel bundle of transmembrane (TM) alpha-helices surrounding a central pore is present in several classes of ion channel, including the nicotinic acetylcholine receptor (nAChR). We have modeled bundles of hydrophobic and of amphipathic helices using simulated annealing via restrained molecular dynamics. Bundles of Ala20 helices, with N = 4, 5, or 6 helices/bundle were generated. For all three N values the helices formed left-handed coiled coils, with pitches ranging from 160 A (N = 4) to 240 A (N = 6). Pore radius profiles revealed constrictions at residues 3, 6, 10, 13, and 17. A left-handed coiled coil and a similar pattern of pore constrictions were observed for N = 5 bundles of Leu20. In contrast, N = 5 bundles of Ile20 formed right-handed coiled coils, reflecting loosened packing of helices containing beta-branched side chains. Bundles formed by each of two classes of amphipathic helices were examined: (a) M2a, M2b, and M2c derived from sequences of M2 helices of nAChR; and (b) (LSSLLSL)3, a synthetic channel-forming peptide. Both classes of amphipathic helix formed left-handed coiled coils. For (LSSLLSL)3 the pitch of the coil increased as N increased from 4 to 6. The M2c N = 5 helix bundle is discussed in the context of possible models of the pore domain of nAChR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号