首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Non-homologous end joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammalian cells and is likely responsible for the non-homologous integration of transgenes. In higher eukaryotes, this pathway predominates over the homologous recombination (HR) pathway and therefore may account for the low level of HR events that occur in mammalian cells. We evaluated the effects of transient RNAi-induced down-regulation of key components of the NHEJ pathway in human HCT116 cells. Treatment with siRNA targeting Ku70 and Xrcc4 reduced corresponding protein levels by 80-90% 48h after transfection, with a return to normal levels by 96h. Additionally, down-regulation of Ku70 and Xrcc4 resulted in a concomitant depletion of both Ku70 and Ku86 proteins. Biological consequences of transient RNAi-mediated depletion of Ku70 and Xrcc4 included sensitization to gamma radiation and a significant decrease in the expression of a linear GFP reporter gene. The results highlight the possibility of a successful means to manipulate the NHEJ pathway by RNAi.  相似文献   

2.
Random integration of targeting vectors into the genome is the primary obstacle in human somatic cell gene targeting. Non-homologous end-joining (NHEJ), a major pathway for repairing DNA double-strand breaks, is thought to be responsible for most random integration events; however, absence of DNA ligase IV (LIG4), the critical NHEJ ligase, does not significantly reduce random integration frequency of targeting vector in human cells, indicating robust integration events occurring via a LIG4-independent mechanism. To gain insights into the mechanism and robustness of LIG4-independent random integration, we employed various types of targeting vectors to examine their integration frequencies in LIG4-proficient and deficient human cell lines. We find that the integration frequency of targeting vector correlates well with the length of homology arms and with the amount of repetitive DNA sequences, especially SINEs, present in the arms. This correlation was prominent in LIG4-deficient cells, but was also seen in LIG4-proficient cells, thus providing evidence that LIG4-independent random integration occurs frequently even when NHEJ is functionally normal. Our results collectively suggest that random integration frequency of conventional targeting vectors is substantially influenced by homology arms, which typically harbor repetitive DNA sequences that serve to facilitate LIG4-independent random integration in human cells, regardless of the presence or absence of functional NHEJ.  相似文献   

3.
In higher animal cells, the principal limitation of gene-targeting technology is the extremely low efficiency of targeted integration, which occurs three to four orders of magnitude less frequently than random integration. Assuming that random integration mechanistically involves non-homologous end-joining (NHEJ), inactivation of this pathway should reduce random integration and may enhance gene targeting. To test this possibility, we examined the frequencies of random and targeted integration in NHEJ-deficient chicken DT40 and human Nalm-6 cell lines. As expected, loss of NHEJ resulted in drastically reduced random integration in DT40 cells. Unexpectedly, however, this was not the case for Nalm-6 cells, indicating that NHEJ is not the sole mechanism of random integration. Nevertheless, we present evidence that NHEJ inactivation can lead to enhanced gene targeting through a reduction of random integration and/or an increase in targeted integration by homologous recombination. Most intriguingly, our results show that, in the absence of functional NHEJ, random integration of targeting vectors occurs more frequently than non-targeting vectors (harboring no or little homology to the host genome), implying that suppression of NHEJ-independent random integration events is needed to greatly enhance gene targeting in animal cells.  相似文献   

4.
Homologous recombination is required for AAV-mediated gene targeting   总被引:5,自引:0,他引:5  
High frequencies of gene targeting can be achieved by infection of mammalian cells with recombinant adeno-associated virus (rAAV) vectors [D. W. Russell and R. K. Hirata (1998) Nature Genet., 18, 325–330; D. W. Russell and R. K. Hirata (2000) J. Virol., 74, 4612–4620; R. Hirata et al. (2002) Nat. Biotechnol., 20, 735–738], but the mechanism of targeting is unclear and random integration often occurs in parallel. We assessed the role of specific DNA repair and recombination pathways in rAAV gene targeting by measuring correction of a mutated enhanced green fluorescent protein (EGFP) gene in cells where homologous recombination (HR) or non-homologous end-joining (NHEJ) had been suppressed by RNAi. EGFP-negative cells were transduced with rAAV vectors carrying a different inactivating deletion in the EGFP, and in parallel with rAAV vectors carrying red fluorescent protein (RFP). Expression of RFP accounted for viral transduction efficiency and long-term random integration. Approximately 0.02% of the infected GFP-negative cells were stably converted to GFP positive cells. Silencing of the essential NHEJ component DNA-PK had no significant effect on the frequency of targeting at any time point examined. Silencing of the SNF2/SWI2 family members RAD54L or RAD54B, which are important for HR, reduced the rate of stable rAAV gene targeting ~5-fold. Further, partial silencing of the Rad51 paralogue XRCC3 completely abolished stable long-term EGFP expression. These results show that rAAV gene targeting requires the Rad51/Rad54 pathway of HR.  相似文献   

5.
Non‐homologous end joining (NHEJ) is the major model proposed for Agrobacterium T‐DNA integration into the plant genome. In animal cells, several proteins, including KU70, KU80, ARTEMIS, DNA‐PKcs, DNA ligase IV (LIG4), Ataxia telangiectasia mutated (ATM), and ATM‐ and Rad3‐related (ATR), play an important role in ‘classical’ (c)NHEJ. Other proteins, including histone H1 (HON1), XRCC1, and PARP1, participate in a ‘backup’ (b)NHEJ process. We examined transient and stable transformation frequencies of Arabidopsis thaliana roots mutant for numerous NHEJ and other related genes. Mutants of KU70, KU80, and the plant‐specific DNA LIGASE VI (LIG6) showed increased stable transformation susceptibility. However, these mutants showed transient transformation susceptibility similar to that of wild‐type plants, suggesting enhanced T‐DNA integration in these mutants. These results were confirmed using a promoter‐trap transformation vector that requires T‐DNA integration into the plant genome to activate a promoterless gusA (uidA) gene, by virus‐induced gene silencing (VIGS) of Nicotiana benthamiana NHEJ genes, and by biochemical assays for T‐DNA integration. No alteration in transient or stable transformation frequencies was detected with atm, atr, lig4, xrcc1, or parp1 mutants. However, mutation of parp1 caused high levels of T‐DNA integration and transgene methylation. A double mutant (ku80/parp1), knocking out components of both NHEJ pathways, did not show any decrease in stable transformation or T‐DNA integration. Thus, T‐DNA integration does not require known NHEJ proteins, suggesting an alternative route for integration.  相似文献   

6.
Plant transformation based on random integration of foreign DNA often generates complex integration structures. Precision in the integration process is necessary to ensure the formation of full-length, single-copy integration. Site-specific recombination systems are versatile tools for precise genomic manipulations such as DNA excision, inversion or integration. The yeast FLP-FRT recombination system has been widely used for DNA excision in higher plants. Here, we report the use of FLP-FRT system for efficient targeting of foreign gene into the engineered genomic site in rice. The transgene vector containing a pair of directly oriented FRT sites was introduced by particle bombardment into the cells containing the target locus. FLP activity generated by the co-bombarded FLP gene efficiently separated the transgene construct from the vector-backbone and integrated the backbone-free construct into the target site. Strong FLP activity, derived from the enhanced FLP protein, FLPe, was important for the successful site-specific integration (SSI). The majority of the transgenic events contained a precise integration and expressed the transgene. Interestingly, each transgenic event lacked the co-bombarded FLPe gene, suggesting reversion of the integration structure in the presence of the constitutive FLPe expression. Progeny of the precise transgenic lines inherited the stable SSI locus and expressed the transgene. This work demonstrates the application of FLP-FRT system for site-specific gene integration in plants using rice as a model.  相似文献   

7.
The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3′-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ.  相似文献   

8.
Double-strand breaks (DSBs) are recombinogenic lesions in chromosomal DNA in yeast, Drosophila and Caenorhabditis elegans. Recent studies in mammalian cells utilizing the I-Scel endonuclease have demonstrated that in some immortalized cell lines DSBs in chromosomal DNA are also recombinogenic. We have now tested embryonic stem (ES) cells, a non-transformed mouse cell line frequently used in gene targeting studies. We find that a DSB introduced by I-Scel stimulates gene targeting at a selectable neo locus at least 50-fold. The enhanced level of targeting is achieved by transient expression of the I-Scel endonuclease. In 97% of targeted clones a single base pair polymorphism in the transfected homologous fragment was incorporated into the target locus. Analysis of the targeted locus demonstrated that most of the homologous recombination events were 'two-sided', in contrast to previous studies in 3T3 cells in which 'one-sided' homologous events predominated. Thus ES cells may be more faithful in incorporating homologous fragments into their genome than other cells in culture.  相似文献   

9.
Cotransformation and gene targeting in mouse embryonic stem cells.   总被引:17,自引:3,他引:14       下载免费PDF全文
We have investigated cotransformation in mammalian cells and its potential for identifying cells that have been modified by gene targeting. Selectable genes on separate DNA fragments were simultaneously introduced into cells by coelectroporation. When the introduced fragments were scored for random integration, 75% of the transformed cells integrated both fragments within the genome of the same cell. When one of the cointroduced fragments was scored for integration at a specific locus by gene targeting, only 4% of the targeted cells cointegrated the second fragment. Apparently, cells that have been modified by gene targeting with one DNA fragment rarely incorporate a second DNA fragment. Despite this limitation, we were able to use the cotransformation protocol to identify targeted cells by screening populations of colonies that had been transformed with a cointroduced selectable gene. When hypoxanthine phosphoribosyltransferase (hprt) targeting DNA was coelectroporated with a selectable neomycin phosphotransferase (neo) gene into embryonic stem (ES) cells, hprt-targeted colonies were isolated from the population of neo transformants at a frequency of 1 per 70 G418-resistant colonies. In parallel experiments with the same targeting construct, hprt-targeted cells were found at a frequency of 1 per 5,500 nonselected colonies. Thus, an 80-fold enrichment for targeted cells was observed within the population of colonies transformed with the cointroduced DNA compared with the population of nonselected colonies. This enrichment for targeted cells after cotransformation should be useful in the isolation of colonies that contain targeted but nonselectable gene alterations.  相似文献   

10.
影响动物细胞同源重组发生与基因打靶效率的分子机制   总被引:1,自引:0,他引:1  
真核细胞的基因打靶是基因结构与功能研究的一种非常有价值的技术,也是可应用于基因治疗的具有潜力的工具。有2个限制因素束缚真核细胞基因打靶的发展,即同源重组(HR)率非常低而随机整合率非常高。通过特定基因的过表达或表达干涉,使一些参与DNA重组的蛋白表达水平瞬间改变,可能会增加HR率,降低随机整合率。本文列举了一些与HR相关的候选基因,详细介绍了其中的Rad52上位簇基因,还讨论了打靶载体的设计与修饰、DNA转染方法的有效性等。  相似文献   

11.
The Ercc1-Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Ercc1-Xpf incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here we demonstrate that although Ercc1 is dispensable for recombination between sister chromatids, it is essential for targeted gene replacement in mouse embryonic stem cells. Surprisingly, the role of Ercc1-Xpf in gene targeting is distinct from its previously identified role in removing nonhomologous termini from recombination intermediates because it was required irrespective of whether the ends of the DNA targeting constructs were heterologous or homologous to the genomic locus. Our observations have implications for the mechanism of gene targeting in mammalian cells and define a new role for Ercc1-Xpf in mammalian homologous recombination. We propose a model for the mechanism of targeted gene replacement that invokes a role for Ercc1-Xpf in making the recipient genomic locus receptive for gene replacement.  相似文献   

12.
传统转基因技术,如显微注射、转座子、慢病毒转染等将目的基因插入基因组内的整合方式是随机的,这些随机整合对后期转基因动物品系组建和育种带来诸多不利,因此有研究人员提出了定点整合转基因技术。目前该技术的定点整合效率非常低,主要取决于两个方面:一是靶位点产生DNA双链断裂(double-strand break, DSB)的效率;二是断裂后的靶位点与携带同源臂及外源基因的供体质粒发生同源重组的效率,其中同源重组修复(homologous recombination repair, HDR)是基因组定点整合最为依赖的修复机制。靶位点产生DSB后,机体的DNA修复既可能发生HDR,也可能发生非同源末端连接(nonhomologous end joining, NHEJ),并且两者之间存在竞争关系,因此激活HDR或抑制NEHJ都可提高定点整合转基因的效率。本文结合影响定点整合的因素,对提高定点整合效率最新探索方面进行了综述。  相似文献   

13.
Emerging genome editing technologies hold great promise for the improvement of agricultural crops. Several related genome editing methods currently in development utilize engineered, sequence‐specific endonucleases to generate DNA double strand breaks (DSBs) at user‐specified genomic loci. These DSBs subsequently result in small insertions/deletions (indels), base substitutions or incorporation of exogenous donor sequences at the target site, depending on the application. Targeted mutagenesis in soybean (Glycine max) via non‐homologous end joining (NHEJ)‐mediated repair of such DSBs has been previously demonstrated with multiple nucleases, as has homology‐directed repair (HDR)‐mediated integration of a single transgene into target endogenous soybean loci using CRISPR/Cas9. Here we report targeted integration of multiple transgenes into a single soybean locus using a zinc finger nuclease (ZFN). First, we demonstrate targeted integration of biolistically delivered DNA via either HDR or NHEJ to the FATTY ACID DESATURASE 2‐1a (FAD2‐1a) locus of embryogenic cells in tissue culture. We then describe ZFN‐ and NHEJ‐mediated, targeted integration of two different multigene donors to the FAD2‐1a locus of immature embryos. The largest donor delivered was 16.2 kb, carried four transgenes, and was successfully transmitted to T1 progeny of mature targeted plants obtained via somatic embryogenesis. The insertions in most plants with a targeted, 7.1 kb, NHEJ‐integrated donor were perfect or near‐perfect, demonstrating that NHEJ is a viable alternative to HDR for gene targeting in soybean. Taken together, these results show that ZFNs can be used to generate fertile transgenic soybean plants with NHEJ‐mediated targeted insertions of multigene donors at an endogenous genomic locus.  相似文献   

14.
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.  相似文献   

15.
We have previously reported several lines of evidence that support a role for cellular DNA repair systems in completion of the retroviral DNA integration process. Failure to repair an intermediate in the process of integrating viral DNA into host DNA appears to trigger growth arrest or death of a large percentage of infected cells. Cellular proteins involved in the nonhomologous end joining (NHEJ) pathway (DNA-PK(CS)) and the damage-signaling kinases (ATM and ATR) have been implicated in this process. However, some studies have suggested that NHEJ proteins may not be required for the completion of lentiviral DNA integration. Here we provide additional evidence that NHEJ proteins are required for stable transduction by human immunodeficiency type 1 (HIV-1)-based vectors. Our analyses with two different reporters show that the number of stably transduced DNA-PK(CS)-deficient scid fibroblasts was reduced by 80 to 90% compared to the number of control cells. Furthermore, transduction efficiency can be restored to wild-type levels in scid cells that are complemented with a functional DNA-PK(CS) gene. The efficiency of stable transduction by an HIV-1-based vector is also reduced upon infection of Xrcc4 and ligase IV-deficient cells, implying a role for these components of the NHEJ repair pathway. Finally, we show that cells deficient in ligase IV are killed by infection with an integrase-competent but not an integrase-deficient HIV-1 vector. Results presented in this study lend further support to a general role for the NHEJ DNA repair pathway in completion of the retroviral DNA integration process.  相似文献   

16.
Advancements in somatic cell gene targeting have been slow due to the finite lifespan of somatic cells and the overall inefficiency of homologous recombination. The rate of homologous recombination is determined by mechanisms of DNA repair, and by the balance between homologous recombination (HR) and non-homologous end joining (NHEJ). A plasmid-to-plasmid, extra chromosomal recombination system was used to study the effects of the manipulation of molecules involved in NHEJ (Mre11, Ku70/80, and p53) on HR/NHEJ ratios. In addition, the effect of telomerase expression, cell synchrony, and DNA nuclear delivery was examined. While a mutant Mre11 and an anti-Ku aptamer did not significantly affect the rate of NHEJ or HR, transient expression of a p53 mutant increased overall HR/NHEJ by 2.5 fold. However, expression of the mutant p53 resulted in increased aneuploidy of the cultured cells. Additionally, we found no relationship between telomerase expression and changes in HR/NHEJ. In contrast, cell synchrony by thymidine incorporation did not induce chromosomal abnormalities, and increased the ratio of HR/NHEJ 5-fold by reducing the overall rate of NHEJ. Overall our results show that attempts at reducing NHEJ by use of Mre11 or anti-Ku aptamers were unsuccessful. Cell synchrony via thymidine incorporation, however, does increase the ratio of HR/NHEJ and this indicates that this approach may be of use to facilitate targeting in somatic cells by reducing the numbers of colonies that need to be analyzed before a HR is identified.  相似文献   

17.
18.
19.
Advancements in somatic cell gene targeting have been slow due to the finite lifespan of somatic cells and the overall inefficiency of homologous recombination. The rate of homologous recombination is determined by mechanisms of DNA repair, and by the balance between homologous recombination (HR) and non-homologous end joining (NHEJ). A plasmid-to-plasmid, extra chromosomal recombination system was used to study the effects of the manipulation of molecules involved in NHEJ (Mre11, Ku70/80, and p53) on HR/NHEJ ratios. In addition, the effect of telomerase expression, cell synchrony, and DNA nuclear delivery was examined. While a mutant Mre11 and an anti-Ku aptamer did not significantly affect the rate of NHEJ or HR, transient expression of a p53 mutant increased overall HR/NHEJ by 2.5 fold. However, expression of the mutant p53 resulted in increased aneuploidy of the cultured cells. Additionally, we found no relationship between telomerase expression and changes in HR/NHEJ. In contrast, cell synchrony by thymidine incorporation did not induce chromosomal abnormalities, and increased the ratio of HR/NHEJ 5-fold by reducing the overall rate of NHEJ. Overall our results show that attempts at reducing NHEJ by use of Mre11 or anti-Ku aptamers were unsuccessful. Cell synchrony via thymidine incorporation, however, does increase the ratio of HR/NHEJ and this indicates that this approach may be of use to facilitate targeting in somatic cells by reducing the numbers of colonies that need to be analyzed before a HR is identified.  相似文献   

20.
Maguire KK  Kmiec EB 《Gene》2007,386(1-2):107-114
The mechanism by which modified single-stranded oligonucleotides (MSSOs) direct base changes in genes is not completely understood, but there is evidence that DNA damage, repair and cell cycle checkpoint proteins are involved in the targeted nucleotide exchange (TNE) process. We are interested in the role of the mismatch repair protein, Msh2 in the correction of a frameshift mutation in both yeast and mammalian cells. We show that this protein exerts different and opposing influences on the TNE reaction in MSH2 deficient yeast compared to MSH2(-/-) mammalian cells and in wild-type cells that have RNAi silenced Msh2. Data from yeast show a 10-fold decrease in the targeting frequency whereas mammalian cells have an elevated correction frequency. These results show that in yeast this protein is required for efficient targeting and may play a role in mismatch recognition and repair. In mammalian cells, Msh2 plays a suppressive role in TNE reaction by either precluding the oligonucleotide annealing to the target gene or by maintenance of a cell cycle checkpoint induced by the MSSO itself. These results reveal that the mechanism of TNE between yeast and mammalian cells is not conserved, and demonstrate that the suppression of the TNE reaction can be bypassed using RNAi against MSH2 designed to knockdown its expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号