首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signals directing induction of tolerance rather than immunity are largely unknown. The CD8 T cell response to soluble Ags generally results in deletional tolerance following transient, costimulation-dependent activation. We demonstrated that CD40 signaling reversed the outcome of this response. Adoptive transfer of OVA-specific CD8 T cells followed by soluble OVA immunization resulted in induction of lytic activity and optimal clonal expansion only when CD40 was triggered via an agonistic mAb. Activation of CD8 T cells by CD40 signaling was indirect, because CD40 expression by host cells was required. CD40 signaling along with soluble Ag immunization also induced expansion of secondary lymphoid and intestinal mucosal endogenous OVA-specific CD8 T cells as detected by MHC tetramer reactivity. When CD40 activation was included, long-lived secondary lymphoid and mucosal memory CD8 cells were generated from adoptively transferred and endogenous CD8 T cells. Mucosal and peripheral CD8 memory cells exhibited constitutive Ag-specific lytic activity, with mucosal memory cells being 10-fold more lytic than splenic or lymph node memory cells. These results demonstrated that CD40 signaling during a response to a poorly immunogenic soluble Ag was necessary and sufficient for CTL and memory T cell induction.  相似文献   

2.
The intestinal mucosal CD8 T cell response to infection with Listeria monocytogenes was measured using MHC class I tetramers and was compared with the response in peripheral blood, secondary lymphoid tissue, and liver. To assess the vaccination potential of Listeria and to analyze responses in C57BL/6 mouse strains, a recombinant Listeria expressing OVA (rLM-ova) was generated. The response peaked at 9 days postinfection with a much larger fraction of the intestinal mucosa and liver CD8 T cell pool OVA specific, as compared with the spleen. However, these differences were not linked to bacterial titers in each site. The higher responses in lamina propria and liver resulted in a larger CD8 memory population in these tissues. Furthermore, the level of memory induced was dependent on infectious dose and inversely correlated with the magnitude of the recall response after oral challenge. Recall responses in the tissues were most robust in the lamina propria and liver, and reactivated Ag-specific T cells produced IFN-gamma. Infection of CD40- or MHC class II-deficient mice induced poor CD8 T cell responses in the intestinal mucosa, but only partially reduced responses in the spleen and liver. Overall, the results point to novel pathways of tissue-specific regulation of primary and memory antimicrobial CD8 T cell responses.  相似文献   

3.
Intestinal autoimmune diseases are thought to be associated with a breakdown in tolerance, leading to mucosal lymphocyte activation perhaps as a result of encounter with bacterium-derived Ag. To study mucosal CD8(+) T cell activation, tolerance, and polarization of autoimmune reactivity to self-Ag, we developed a novel (Fabpl(4x at -132)-OVA) transgenic mouse model expressing a truncated form of OVA in intestinal epithelia of the terminal ileum and colon. We found that OVA-specific CD8(+) T cells were partially tolerant to intestinal epithelium-derived OVA, because oral infection with Listeria monocytogenes-encoding OVA did not elicit an endogenous OVA-specific MHC class I tetramer(+)CD8(+) T cell response and IFN-gamma-, IL-4-, and IL-5-secreting T cells were decreased in the Peyer's patches, mesenteric lymph nodes, and intestinal mucosa of transgenic mice. Adoptive transfer of OVA-specific CD8(+) (OT-I) T cells resulted in their preferential expansion in the Peyer's patches and mesenteric lymph nodes and subsequently in the epithelia and lamina propria but failed to cause mucosal inflammation. Thus, CFSE-labeled OT-I cells greatly proliferated in these tissues by 5 days posttransfer. Strikingly, OT-I cell-transferred Fabpl(4x at -132)-OVA transgenic mice underwent a transient weight loss and developed a CD8(+) T cell-mediated acute enterocolitis 5 days after oral L. monocytogenes-encoding OVA infection. These findings indicate that intestinal epithelium-derived "self-Ag" gains access to the mucosal immune system, leading to Ag-specific T cell activation and clonal deletion. However, when Ag is presented in the context of bacterial infection, the associated inflammatory signals drive Ag-specific CD8(+) T cells to mediate intestinal immunopathology.  相似文献   

4.
The mucosa of the conjunctiva is an important site of entry for environmental Ags as well as Ags emanating from the eye itself. However, very little is known about T cell recognition of Ag introduced through this important mucosal site. We have characterized the in vivo process of CD4 T cell recognition of Ag delivered via the conjunctival mucosa. Application of soluble OVA to the conjunctiva of BALB/c mice induced potent T cell tolerance. APC-presenting OVA peptide in vivo was only found in the submandibular lymph node and not in other lymph nodes, spleen, or nasal-associated lymphoid tissue. Similarly, in TCR transgenic DO11. 10 adoptive transfer mice, OVA-specific CD4+ T cell clonal expansion was only observed in the submandibular lymph node following conjunctival application of peptide. These experiments thus define a highly specific lymphatic drainage pathway from the conjunctiva. OVA-specific T cell clonal expansion peaked at day 3 following initiation of daily OVA administration and gradually declined during the 10-day treatment period, but remained elevated compared with nontreated adoptive transfer mice. During this period, the T cells expressed activation markers, and proliferated and secreted IL-2 in vitro in response to OVA stimulation. In contrast, these cells were unable to clonally expand in vivo, or proliferate in vitro following a subsequent OVA/CFA immunization. These results suggest that Ag applied to a mucosal site can be efficiently presented in a local draining lymph node, resulting in initial T cell priming and clonal expansion, followed by T cell anergy.  相似文献   

5.
Following activation within secondary lymphoid tissue, CD8 T cells must migrate to targets, such as infected self tissue, allografts, and tumors, to mediate contact-dependent effector functions. To test whether the pattern of migration of activated CD8 T cells was dependent on the site of Ag encounter, we examined the distribution of mouse Ag-specific CD8 T cells following local challenges. Our findings indicated that activated CD8 T cells migrated pervasively to all nonlymphoid organs irrespective of the site of initial Ag engagement. Using an adoptive transfer system, migration of nonlymphoid memory cells was also examined. Although some limited preference for the tissue of origin was noted, transferred CD8 memory T cells from various nonlymphoid tissues migrated promiscuously, except to the intestinal mucosa, supporting the concept that distinct memory pools may exist. However, regardless of the tissue of origin, reactivation of transferred memory cells resulted in widespread dissemination of new effector cells. These data indicated that recently activated primary or memory CD8 T cells were transiently endowed with the ability to traffic to all nonlymphoid organs, while memory cell trafficking was more restricted. These observations will help refine our understanding of effector and memory CD8 T cell migration patterns.  相似文献   

6.
Ag delivery via the nasal route typically induces tolerance or fails to polarize CD4+ T cell responses unless an adjuvant is provided. To better understand this process, we assessed the effects of two mucosal adjuvants, Escherichia coli LPS and cholera toxin (CT), on Ag passage and T cell activation in the draining lymph nodes (DLN) of BALB/c mice following per nasal administration of the model protein allergen, OVA. We found a range of cell types acquired small amounts of fluorescent OVA in the DLN 4 h after per nasal administration. However, this early uptake was eclipsed by a wave of OVA+CD8alpha(low) dendritic cells that accumulated in the DLN over the next 20 h to become the dominant OVA-processing and -presenting population. Both LPS and CT stimulated increases in CD80 and CD86 expression on OVA+CD8alpha(low) DC. LPS also increased the number of OVA+CD8alpha(low) dendritic cells accumulating in the DLN. When the primary T cell response was examined after adoptive transfer of CD4+ T cells from DO11.10 mice, CT and LPS stimulated surprisingly similar effects on T cell activation and proliferation, IL-4 and IFN-gamma priming, and memory T cell production. Despite these similarities, T cell recipients immunized with CT, but not LPS, developed lung eosinophilia upon secondary OVA challenge. Thus, we found no bias within the DLN in Ag handling or the primary T cell response associated with the eventual Th2 polarization induced by CT, and suggest that additional tissue-specific factors influence the development of allergic disease in the airways.  相似文献   

7.
Systemic delivery of Ag usually induces poor mucosal immunity. To improve the CD8 T cell response at mucosal sites, we targeted the Ag to MAdCAM-1, a mucosal addressin cell adhesion molecule expressed mainly by high endothelial venules (HEV) in mesenteric lymph nodes (MLN) and Peyer's patches of gut-associated lymphoid tissue. When chemical conjugates of anti-MAdCAM-1 Ab and model Ag OVA were injected i.v., a greatly enhanced proliferative response of Ag-specific OT-I CD8 T cells was detected in MLN. This was preceded by prolonged accumulation, up to 2 wk, of the anti-MAdCAM OVA conjugate on HEV of Peyer's patches and MLN. In contrast, nontargeted OVA conjugate was very inefficient in inducing OT-I CD8 T cell proliferation in MLN and required at least 20-fold more Ag to induce a comparable response. In addition, MAdCAM targeting elicits an endogenous OVA-specific CD8 T cell response, evident by IFN-gamma production and target killing. Induced response offers protection against an OVA-expressing B cell lymphoma. We propose that the augmentation of gut CD8 T cell responses by MAdCAM targeting is due to both accumulation of Ag in the HEV and conversion of a soluble Ag to a cell-associated one, allowing cross-presentation by DCs.  相似文献   

8.
Chronic innocuous aeroallergen exposure attenuates CD4(+) T cell-mediated airways hyperresponsiveness in mice; however, the mechanism(s) remain unclear. We examined the role of airway mucosal dendritic cell (AMDC) subsets in this process using a multi-OVA aerosol-induced tolerance model in sensitized BALB/c mice. Aeroallergen capture by both CD11b(lo) and CD11b(hi) AMDC and the delivery of OVA to airway draining lymph nodes by CD8α(-) migratory dendritic cells (DC) were decreased in vivo (but not in vitro) when compared with sensitized but nontolerant mice. This was functionally significant, because in vivo proliferation of OVA-specific CD4(+) T cells was suppressed in airway draining lymph nodes of tolerized mice and could be restored by intranasal transfer of OVA-pulsed and activated exogenous DC, indicating a deficiency in Ag presentation by endogenous DC arriving from the airway mucosa. Bone marrow-derived DC Ag-presenting function was suppressed in multi-OVA tolerized mice, and allergen availability to airway APC populations was limited after multi-OVA exposure, as indicated by reduced OVA and dextran uptake by airway interstitial macrophages, with diffusion rather than localization of OVA across the airway mucosal surface. These data indicate that inhalation tolerance limits aeroallergen capture by AMDC subsets through a mechanism of bone marrow suppression of DC precursor function coupled with reduced Ag availability in vivo at the airway mucosa, resulting in limited Ag delivery to lymph nodes and hypoproliferation of allergen-specific CD4(+) T cells.  相似文献   

9.
The presence of high-avidity CTLs in the right compartment can greatly affect clearance of a virus infection (for example, AIDS viral infection of and dissemination from mucosa). Comparing mucosal vs systemic immunization, we observed a novel compartmentalization of CTL avidity and proportion of functionally active Ag-specific CD8(+) T cells to tissues proximal to sites of immunization. Whereas both s.c. and intrarectal routes of immunization induced tetramer(+) cells in the spleen and gut, the mucosal vaccine induced a higher percentage of functioning IFN-gamma(+) Ag-specific CD8(+) T cells in the gut mucosa in mice. Translating to the CD8(+) CTL avidity distribution in rhesus macaques, intrarectal vaccination induced more high-avidity mucosal CTL than s.c. vaccination and protection of mucosal CD4(+) T cells from AIDS viral depletion, whereas systemic immunization induced higher avidity IFN-gamma-secreting cells in the draining lymph nodes but no protection of mucosal CD4(+) T cells, after mucosal challenge with pathogenic simian/human immunodeficiency virus. Mucosal CD4(+) T cell loss is an early critical step in AIDS pathogenesis. The preservation of CD4(+) T cells in colonic lamina propria and the reduction of virus in the intestine correlated better with high-avidity mucosal CTL induced by the mucosal AIDS vaccine. This preferential localization of high-avidity CTL may explain previous differences in vaccination results and may guide future vaccination strategy.  相似文献   

10.
Mucosal tolerance prevents the body from eliciting productive immune responses against harmless Ags that enter the body via the mucosae, and is mediated by the induction of regulatory T cells that differentiate in the mucosa-draining lymph nodes (LN) under defined conditions of Ag presentation. In this study, we show that mice deficient in FcgammaRIIB failed to develop mucosal tolerance to OVA, and demonstrate in vitro and in vivo a critical role for this receptor in modulating the Ag-presenting capacity of dendritic cells (DC). In vitro it was shown that absence of FcgammaRIIB under tolerogenic conditions led to increased IgG-induced release of inflammatory cytokines such as MCP-1, TNF-alpha, and IL-6 by bone marrow-derived DC, and increased their expression of costimulatory molecules, resulting in an altered immunogenic T cell response associated with increased IL-2 and IFN-gamma secretion. In vivo we could show enhanced LN-DC activation and increased numbers of Ag-specific IFN-gamma-producing T cells when FcgammaRIIB(-/-) mice were treated with OVA via the nasal mucosa, inferring that DC modulation by FcgammaRIIB directed the phenotype of the T cell response. Adoptive transfer of CD4(+) T cells from the spleen of FcgammaRIIB(-/-) mice to naive acceptor mice demonstrated that OVA-responding T cells failed to differentiate into regulatory T cells, explaining the lack of tolerance in these mice. Our findings demonstrate that signaling via FcgammaRIIB on DC, initiated by local IgG in the mucosa-draining LN, down-regulates DC activation induced by nasally applied Ag, resulting in those defined conditions of Ag presentation that lead to Tr induction and tolerance.  相似文献   

11.
Naive T cell circulation is restricted to secondary lymphoid organs. Effector and memory T cells, in contrast, acquire the ability to migrate to nonlymphoid tissues. In this study we examined whether nonlymphoid tissues contribute to the differentiation of effector T cells to memory cells and the long-term maintenance of memory T cells. We found that CD4, but not CD8, effector T cell differentiation to memory cells is impaired in adoptive hosts that lack secondary lymphoid organs. In contrast, established CD4 and CD8 memory T cells underwent basal homeostatic proliferation in the liver, lungs, and bone marrow, were maintained long-term, and functioned in the absence of secondary lymphoid organs. CD8 memory T cells found in nonlymphoid tissues expressed both central and effector memory phenotypes, whereas CD4 memory T cells displayed predominantly an effector memory phenotype. These findings indicate that secondary lymphoid organs are not necessary for the maintenance and function of memory T cell populations, whereas the optimal differentiation of CD4 effectors to memory T cells is dependent on these organs. The ability of memory T cells to persist and respond to foreign Ag independently of secondary lymphoid tissues supports the existence of nonlymphoid memory T cell pools that provide essential immune surveillance in the periphery.  相似文献   

12.
Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway   总被引:2,自引:0,他引:2  
The CD28/B7 costimulatory pathway is generally considered dispensable for memory T cell responses, largely based on in vitro studies demonstrating memory T cell activation in the absence of CD28 engagement by B7 ligands. However, the susceptibility of memory CD4 T cells, including central (CD62L(high)) and effector memory (T(EM); CD62L(low)) subsets, to inhibition of CD28-derived costimulation has not been closely examined. In this study, we demonstrate that inhibition of CD28/B7 costimulation with the B7-binding fusion molecule CTLA4Ig has profound and specific effects on secondary responses mediated by memory CD4 T cells generated by priming with Ag or infection with influenza virus. In vitro, CTLA4Ig substantially inhibits IL-2, but not IFN-gamma production from heterogeneous memory CD4 T cells specific for influenza hemagglutinin or OVA in response to peptide challenge. Moreover, IL-2 production from polyclonal influenza-specific memory CD4 T cells in response to virus challenge was completely abrogated by CTLA4Ig with IFN-gamma production partially inhibited. When administered in vivo, CTLA4Ig significantly blocks Ag-driven memory CD4 T cell proliferation and expansion, without affecting early recall and activation. Importantly, CTLA4Ig treatment in vivo induced a striking shift in the phenotype of the responding population from predominantly T(EM) in control-treated mice to predominantly central memory T cells in CTLA4Ig-treated mice, suggesting biased effects of CTLA4Ig on T(EM) responses. Our results identify a novel role for CD28/B7 as a regulator of memory T cell responses, and have important clinical implications for using CTLA4Ig to abrogate the pathologic consequences of T(EM) cells in autoimmunity and chronic disease.  相似文献   

13.
Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model, we performed a longitudinal study to determine the effect of antiretroviral therapy on the phenotype and functional potential of CD4(+) T cells repopulating intestinal mucosa in human immunodeficiency virus infection. Severe depletion of CD4(+) and CD4(+) CD8(+) T cells occurred in the intestinal mucosa during primary SIV infection. The majority of these cells were of activated memory phenotype. Phosphonate 9-[2-(phosphomethoxypropyl]adenine (PMPA) treatment led to a moderate suppression of intestinal viral loads and repopulation of intestinal mucosa by predominantly activated memory CD4(+) T-helper cells. This repopulation was independent of the level of viral suppression. Compared to preinfection values, the frequency of naive CD4(+) T cells increased following PMPA therapy, suggesting that new CD4(+) T cells were repopulating the intestinal mucosa. Repopulation by CD4(+) CD8(+) T cells was not observed in either jejunum or colon lamina propria. The majority of CD4(+) T cells repopulating the intestinal mucosa following PMPA therapy were CD29(hi) and CD11ahi. A subset of repopulating intestinal CD4(+) T cells expressed Ki-67 antigen, indicating that local proliferation may play a role in the repopulation process. Although the majority of repopulating CD4(+) T cells in the intestinal mucosa were functionally capable of providing B- and T-cell help, as evidenced by their expression of CD28, these CD4(+) T cells were found to have a reduced capacity to produce interleukin-2 (IL-2) compared to the potential of CD4(+) T cells prior to SIV infection. Persistent viral infection may play a role in suppressing the potential of repopulating CD4(+) T cells to produce IL-2. Hence, successful antiretroviral therapy should aim at complete suppression of viral loads in mucosal lymphoid tissues, such as intestinal mucosa.  相似文献   

14.
RANTES potentiates antigen-specific mucosal immune responses   总被引:8,自引:0,他引:8  
RANTES is produced by lymphoid and epithelial cells of the mucosa in response to various external stimuli and is chemotactic for lymphocytes. The role of RANTES in adaptive mucosal immunity has not been studied. To better elucidate the role of this chemokine, we have characterized the effects of RANTES on mucosal and systemic immune responses to nasally coadministered OVA. RANTES enhanced Ag-specific serum Ab responses, inducing predominately anti-OVA IgG2a and IgG3 followed by IgG1 and IgG2b subclass Ab responses. RANTES also increased Ag-specific Ab titers in mucosal secretions and these Ab responses were associated with increased numbers of Ab-forming cells, derived from mucosal and systemic compartments. Splenic and mucosally derived CD4(+) T cells of RANTES-treated mice displayed higher Ag-specific proliferative responses and IFN-gamma, IL-2, IL-5, and IL-6 production than control groups receiving OVA alone. In vitro, RANTES up-regulated the expression of CD28, CD40 ligand, and IL-12R by Ag-activated primary T cells from DO11.10 (OVA-specific TCR-transgenic) mice and by resting T cells in a dose-dependent fashion. These studies suggest that RANTES can enhance mucosal and systemic humoral Ab responses through help provided by Th1- and select Th2-type cytokines as well as through the induction of costimulatory molecule and cytokine receptor expression on T lymphocytes. These effects could serve as a link between the initial innate signals of the host and the adaptive immune system.  相似文献   

15.
T cell-to-T cell Ag presentation is increasingly attracting attention. In this study, we demonstrated that active CD4+ T (aT) cells with uptake of OVA-pulsed dendritic cell-derived exosome (EXO(OVA)) express exosomal peptide/MHC class I and costimulatory molecules. These EXO(OVA)-uptaken (targeted) CD4+ aT cells can stimulate CD8+ T cell proliferation and differentiation into central memory CD8+ CTLs and induce more efficient in vivo antitumor immunity and long-term CD8+ T cell memory responses than OVA-pulsed dendritic cells. They can also counteract CD4+25+ regulatory T cell-mediated suppression of in vitro CD8+ T cell proliferation and in vivo CD8+ CTL responses and antitumor immunity. We further elucidate that the EXO(OVA)-uptaken (targeted)CD4+ aT cell's stimulatory effect is mediated via its IL-2 secretion and acquired exosomal CD80 costimulation and is specifically delivered to CD8+ T cells in vivo via acquired exosomal peptide/MHC class I complexes. Therefore, EXO-targeted active CD4+ T cell vaccine may represent a novel and highly effective vaccine strategy for inducing immune responses against not only tumors, but also other infectious diseases.  相似文献   

16.
CD4(+) T cells are known to provide support for the activation and expansion of primary CD8(+) T cells, their subsequent differentiation, and ultimately their survival as memory cells. However, the importance of cognate memory CD4(+) T cells in the expansion of memory CD8(+) T cells after re-exposure to Ag has been not been examined in detail. Using bone marrow-derived dendritic cells pulsed with cognate or noncognate MHC class I- and class II-restricted peptides, we examined whether the presence of memory CD4(+) T cells with the same Ag specificity as memory CD8(+) T cells influenced the quantity and quality of the secondary CD8(+) T cell response. After recombinant vaccinia virus-mediated challenge, we demonstrate that, although cognate memory CD4(+) T cells are not required for activation of secondary CD8(+) T cells, their presence enhances the expansion of cognate memory CD8(+) T cells. Cognate CD4(+) T cell help results in an approximate 2-fold increase in the frequency of secondary CD8(+) T cells in secondary lymphoid tissues, and can be accounted for by enhanced proliferation in the secondary CD8(+) T cell population. In addition, cognate memory CD4(+) T cells further selectively enhance secondary CD8(+) T cell infiltration of tumor-associated peripheral tissue, and this is accompanied by increased differentiation into effector phenotype within the secondary CD8(+) T cell population. The consequence of these improvements to the magnitude and phenotype of the secondary CD8(+) T cell response is substantial increase in control of tumor outgrowth.  相似文献   

17.
Injection of agonistic anti-CD40 Abs into mice has been shown to amplify weak CD8 T cell responses to poorly immunogenic compounds and to convert T cell tolerance to T cell priming. In this study we demonstrate that anti-CD40 treatment of C57BL/6 mice, without Ag delivery, led to a marked increase in the number of memory phenotype CD4 and CD8 T cells. Adoptive transfer experiments using CD40-deficient hosts further revealed that the proliferative response of memory T cells, induced by systemic CD40 signaling, was dependent on CD40 expression of host APCs. CD40 ligation in vivo induced vigorous cell division of both memory phenotype and bona fide virus-specific memory CD8 T cells in a partially IL-15-dependent manner. However, only memory phenotype, but not Ag-experienced memory CD8 T cells increased in cell number after anti-CD40 treatment in vivo. Taken together our data show that activation of APC via CD40 induces a marked bystander proliferation of memory phenotype T cells. In addition, we demonstrate that bona fide Ag-experienced memory CD8 T cells respond differently to anti-CD40-induced signals than memory phenotype CD8 T cells.  相似文献   

18.
IL-2 is a cytokine produced primarily by activated T cells and is thought to be the quintessential T cell growth factor. The precise role of IL-2 in the regulation of CD8 T cell responses to foreign Ag in vivo however remains enigmatic. Using an adoptive transfer system with IL-2- or IL-2R-deficient TCR transgenic CD8 T cells and MHC class I tetramers, we demonstrated that the expansion of antiviral CD8 T cells in secondary lymphoid tissues was IL-2 independent, whereas IL-2 played a more significant role in supporting the continued expansion of these cells within nonlymphoid tissues. Paradoxically, autocrine IL-2 negatively regulated the overall magnitude of the CD8 T cell response in nonlymphoid tissues via a Fas-independent mechanism. Furthermore, autocrine IL-2 did not regulate the contraction or memory phase of the response. These experiments identified a novel role for IL-2 in regulation of antiviral CD8 T cell responses and homeostasis in nonlymphoid tissues.  相似文献   

19.
Mucosal administration of Ags induces specific Abs in external secretions and systemic unresponsiveness termed oral or mucosal tolerance. The dominant response depends on the species studied, the nature, dose, frequency, route of Ag application, and the use of adjuvants. The temporal sequence of Ag exposure determines the quality of the ensuing immune response; although initial mucosal Ag exposure results in systemic T cell hyporesponsiveness, pre-existing systemic responses are refractory to the tolerizing effects of mucosal Ag encounter. Mucosal and systemic humoral responses may be induced concomitantly with diminished systemic T cell responses, thereby permitting Ab-mediated containment of mucosal Ags without stimulation of the systemic immune compartment. B cell Ig isotype switching and differentiation toward IgA production share common regulatory mechanisms with the suppression of T cells. Optimization of mucosal vaccination strategies has the potential for enhancing protective immune responses and suppressing systemic responses to autoantigens desirable for the treatment of autoimmune diseases.  相似文献   

20.
CD8+ T cell memory is critical for protection against many intracellular pathogens. However, it is not clear how pathogen virulence influences the development and function of CD8+ T cells. Salmonella typhimurium (ST) is an intracellular bacterium that causes rapid fatality in susceptible mice and chronic infection in resistant strains. We have constructed recombinant mutants of ST, expressing the same immunodominant Ag OVA, but defective in various key virulence genes. We show that the magnitude of CD8+ T cell response correlates directly to the intracellular proliferation of ST. Wild-type ST displayed efficient intracellular proliferation and induced increased numbers of OVA-specific CD8+ T cells upon infection in mice. In contrast, mutants with defective Salmonella pathogenicity island II genes displayed poor intracellular proliferation and induced reduced numbers of OVA-specific CD8+ T cells. However, when functionality of the CD8+ T cell response was measured, mutants of ST induced a more functional response compared with the wild-type ST. Infection with wild-type ST, in contrast to mutants defective in pathogenicity island II genes, induced the generation of mainly effector-memory CD8+ T cells that expressed little IL-2, failed to mediate efficient cytotoxicity, and proliferated poorly in response to Ag challenge in vivo. Taken together, these results indicate that pathogens that proliferate rapidly and chronically in vivo may evoke functionally inferior memory CD8+ T cells which may promote the survival of the pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号