首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work has shown that induction of a high-affinity NADPH-dependent nitrosodimethylamine demethylase (NDMAd) in liver microsomes occurs in rats due to fasting, ethanol consumption, and streptozotocin-induced diabetes. Several lines of observations suggest that this is due to the induction of specific cytochrome P-450 isozymes. Induction of P-450 species by ethanol has also been observed by other investigators. Since each of the above altered metabolic states has in common elevated levels of ketone bodies, the possible role of acetone, a known inducer of NDMAd, in the induction of the demethylase activity was investigated. Levels of endogenous acetone in fasted rats correlated (r = 0.72) with a three- to fourfold increase in NDMAd activity. However, a dose-response experiment showed endogenous levels of acetone to be capable of causing at most 40% of the induction in fasted rats. This suggests that other ketone bodies or factors may have contributed to the induction. The induction of NDMAd by ethanol was enhanced by alcohol dehydrogenase inhibitors pyrazole and acetaldehyde oxime, suggesting that ethanol, rather than its metabolites, was responsible for the induction.  相似文献   

2.
Metabolism of nitrosamines was studied in a reconstituted monooxygenase system composed of cytochrome P-450 isozymes purified from liver microsomes of ethanol- and phenobarbital-treated rats. The ethanol-induced isozyme (P-450et) was efficient in catalyzing the demethylation of N-nitrosodimethylamine (NDMA), with a Km of 2.4 mM and Vmax of 7.2 nmol min-1 nmol P-450(-1), but less active with N-nitrosomethylbenzylamine and N-nitrosomethylaniline. The phenobarbital-induced form (P-450b) was ineffective in NDMA metabolism but was active in catalyzing the demethylation of N-nitrosomethylaniline, with an estimated Km of 0.08 mM and a Vmax of 7.2 nmol min-1 nmol-1. P-450et also catalyzed the denitrosation of NDMA with a Km of 13.6 mM and a Vmax of 1.36 nmol min-1 nmol-1. With control liver microsomes, multiple Km values were observed for the demethylation and denitrosation of NDMA. Involvement of superoxide radicals in the metabolism of NDMA was suggested by the action of superoxide dismutase, which inhibited the denitrosation by 43 to 73% and the demethylation by 13 to 22% in different monooxygenase systems. The P-450et-dependent NDMA demethylation was strongly inhibited by 2-phenylethylamine and 3-amino-1,2,4-triazole; these compounds were previously believed not to be inhibitors of P-450-dependent reactions but were found to inhibit microsomal NDMA demethylase. The present results establish the role of P-450 in nitrosamine metabolism and help to clarify some of the previous confusion in this area of research.  相似文献   

3.
Metabolism of the potent hepatocarcinogen N-nitrosodimethylamine (NDMA) was evaluated in reconstituted monooxygenase systems containing each of 11 purified rat hepatic cytochrome P-450 isozymes. The reaction has an absolute requirement for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH, as well as a partial dependence on dilauroylphosphatidylcholine. Of the cytochrome P-450 isozymes evaluated, only cytochrome P-450j, purified from livers of ethanol- or isoniazid-treated rats, had high catalytic activity for the N-demethylation of NDMA. At substrate concentrations of 0.5 and 5 mM, rates of NDMA metabolism to formaldehyde catalyzed by cytochrome P-450j were at least 15-fold greater than the rates obtained with any of the other purified isozymes. At the pH optimum (approximately 6.7) for the reaction, the Km,app and Vmax were 3.5 mM and 23.9 nmol/min/nmol cytochrome P-450j, respectively. With hepatic microsomes from ethanol-treated rats, which contain induced levels of cytochrome P-450j, the Km,app and Vmax were 0.35 mM and 3.9 nmol/min/nmol cytochrome P-450, respectively. Inclusion of purified cytochrome b5 in the reconstituted system containing cytochrome P-450j caused a six-fold decrease in Km,app (0.56 mM) of NDMA demethylation with little or no change in Vmax (29.9 nmol/min/nmol cytochrome P-450j). Trypsin-solubilized cytochrome b5, bovine serum albumin, or hemoglobin had no effect on the kinetic parameters of the reconstituted system, indicating a specific effect of intact cytochrome b5 on the Km,app of the reaction. These results demonstrate high isozyme specificity in the metabolism of NDMA to an ultimate carcinogen and further suggest an important role for cytochrome b5 in this biotransformation process.  相似文献   

4.
Acetone oxidation in rat liver microsomes was induced 5- or 8-fold by the treatment of the animals with ethanol or acetone, respectively. The apparent Km of the reaction was 0.9 mM, a value lower than the concentration reported for plasma acetone under starvation conditions. The major acetone metabolite was identified as acetol by GC-MS. Acetone oxidation in microsomes was inhibited by typical P-450 inhibitors as well as by compounds (e.g. imidazole) known to interact with the ethanol-inducible P-450 form. Antibodies against this P-450 isozyme were inhibitory for the reaction in rabbit liver microsomes and this isozyme was the only one that showed acetone hydroxylation activity in reconstituted membranes. Imidazole inhibited the conversion of [14C]acetone into low-Mr compounds (e.g. glucose) in vivo. It is suggested that the ethanol- and acetone-inducible P-450 make use of acetone as an endogenous substrate in the utilization of the compound for, e.g. glucose production under conditions of starvation and diabetic ketoacidosis.  相似文献   

5.
The activity of cytochrome P-450 dependent monooxygenase system from rat liver microsomes after induction by phenobarbital and 3-methylcholantrene in early neonatal period (3-16 days after birth) was studied. It was found that the total amount of cytochrome P-450 increases after injection of these inducers in neonatal rats of all age groups. In parallel, in the case of 3-methylcholantrene induction the benz(a)pyrene hydroxylase and 7-ethoxyresorufin deethylase activities increase; phenobarbital induction causes a rise in the benzphetamine-N-demethylase and benz(a)pyrene hydroxylase activities. Immunochemical analysis involving the use of antibodies specifically directed against cytochrome P-450 of adult rats revealed that the level of cytochrome P-450 in the case of 3-methylcholantrene induction increases from 5 to 50%, whereas that of cytochrome P-450 upon phenobarbital induction increases from 5 to 40% in liver microsomes of 3- and 16-day-old rats. The mode of inhibition of various substrates metabolism by antibodies in neonatal rat microsomes suggests that the 3-methylcholantrene-induced cytochrome P-448, like in adult rats, participates in the hydroxylation of benz(a)pyrene and O-deethylation of 7-etoxyresorufin. The participation of phenobarbital-induced cytochrome P-450 in the metabolism of benzphetamine and aldrin in neonatal rats is much lower than in the adult ones. The metabolism of benz(a)pyrene in phenobarbital-induced neonatal rat microsomes in all age groups is not inhibited by antibodies. The age-dependent differences in inhibition of metabolism and the increase in the benz(a)pyrene hydroxylase activity in phenobarbital-induced rats suggest that the spectrum of inducible forms of cytochrome P-450 in neonatal rats differ from that in adult animals.  相似文献   

6.
Aldrin epoxidation was studied in monooxygenase systems reconstituted from purified rat liver microsomal cytochrome P-450 or P-448, NADPH-cytochrome c reductase, dilauroylphosphatidylcholine and sodium cholate. Cytochrome P-450, purified from hepatic microsomes of phenobarbital-treated rats, exhibited a high rate of dieldrin formation. The low enzyme activity observed in the absence of the lipid and sodium cholate was increased threefold by addition of dilauroylphosphatidylcholine and was further stimulated twofold by addition of sodium cholate. The apparent Km for aldrin in the complete system was 7 +/- 2 microM. SKF 525-A, at a concentration of 250 microM, inhibited aldrin epoxidation by 65%, whereas 7,8-benzoflavone had no inhibitory effect at concentrations up to 250 microM. Addition of ethanol markedly increased epoxidase activity. The increase was threefold in the presence of 5% ethanol. When cytochrome P-448 purified from hepatic microsomes of 3-methylcholanthrene-treated rats was used, a very low rate of epoxidation was observed which was less than 3% of the activity mediated by cytochrome P-450 under similar assay conditions. Enzyme activity was independent of the lipid factor dilauroylphosphatidylcholine. The apparent Km for aldrin was 27 +/- 7 microM. The modifiers of monooxygenase reactions, 7,8-benzoflavone, SKF 525-A and ethanol, inhibited the activity mediated by cytochrome P-448. The I50 was 0.05, 0.2 and 800 mM, respectively. These results indicate that aldrin is a highly selective substrate for cytochrome P-450 species present in microsomes of phenobarbital-treated animals and is a poor substrate for cytochrome P-448. The two forms of aldrin epoxidase can be characterised by their turnover number, their apparent Km and their sensitivity to modifiers, like 7,8-benzoflavone and ethanol.  相似文献   

7.
The ethanol-induced rabbit liver microsomal cytochrome P-450, P-450LM3a, has been shown previously to efficiently catalyze the demethylation of N-nitrosodimethylamine (NDMA) with a Km of 2.9 mM. Since the predominant Km in hepatic microsomes from ethanol-treated rabbits is 0.07 mM, the role of P-450LM3a in the activation of this carcinogen has been uncertain. In the present study, antibodies to P-450LM3a were shown to almost completely inhibit NDMA demethylation by the purified P-450 in a reconstituted system as well as the low-Km activity of liver microsomes from control or ethanol-treated rabbits. In contrast, the antibody did not inhibit the high-Km NDMA demethylase activity in the microsomes. These results indicate that P-450LM3a is the major P-450 responsible for the low-Km NDMA demethylase activity. In addition, evidence is provided for the existence of a cytochrome immunochemically similar to P-450LM3a in liver microsomes from rats, mice, and guinea pigs that effectively catalyzes the demethylation of NDMA.  相似文献   

8.
The presence of the components of polysubstrate monooxygenase (PSMO) activity, viz., cytochrome P-450 and NADPH cytochrome P-450 reductase has been established for the first time in the microsomes of Aspergillus parasiticus. The microsomes were able to metabolize benzphetamine. NADPH cytochrome P-450 reductase, benzphetamine metabolism and aflatoxin production was increased by the presence of phenobarbitone (PB, 2mg/ml) in the medium. These results demonstrate that induction of PSMO activity could be a prerequisite for increased production of aflatoxins, since hydroxylation of intermediates is an obligatory step in aflatoxin biosynthesis.  相似文献   

9.
The cytochrome P-450-dependent 20-monooxygenation of ecdysone is catalyzed both by mitochondria and microsomes isolated from Musca domestica (L.) larvae; however, about 50% of the activity is associated with mitochondria, and 37% is associated with microsomes. Pretreatment of larvae with ecdysone results in an increase in Vmax and a decrease in Km values in mitochondria but not in microsomes. Phenobarbital, a known cytochrome P-450 inducer, increases the cytochrome P-450 levels in microsomes without affecting the 20-monooxygenase activity, but both the cytochrome P-450 levels and monooxygenase activity are depressed in mitochondria from phenobarbital-pretreated larvae. The ecdysone 20-monooxygenase activity is equally distributed between mitochondria and microsomes in adult insects. Pretreatment of the insects with ecdysone does not significantly modify the 20-monooxygenase activity of either mitochondrial or microsomal fractions, but the cytochrome P-450 levels are reduced in mitochondria. Phenobarbital also depresses the mitochondrial cytochrome P-450 levels while markedly increasing the microsomal cytochrome P-450 levels. However, no significant changes in ecdysone 20-monooxygenase activity are produced by phenobarbital pretreatment. The effects of ecdysone on adult cytochrome P-450 are mostly evidenced in mitochondria isolated from females, whereas in males the changes are not statistically significant. It is concluded that the mitochondrial ecdysone 20-monooxygenase is under regulatory control by ecdysone in the larval stage, which suggests that only the mitochondrial activity has a physiological role during insect development in M. domestica. In adults, both the mitochondrial and microsomal ecdysone 20-monooxygenase activities are not responsive to ecdysone, which, coupled to their high Km values, indicates that the reaction may not be of physiological importance in adult insects and that the mitochondrial cytochrome P-450 species being depressed by ecdysone in females are possibly not involved in ecdysone metabolism.  相似文献   

10.
A simple and rapid method for the determination of (S)-mephenytoin 4-hydroxylase activity by human liver microsomal cytochrome P-450 has been developed. [Methyl-14C] mephenytoin was synthesized by alkylation of S-nirvanol with 14CH3I and used as a substrate. After incubation of [methyl-14C]mephenytoin with human liver microsomes or a reconstituted monooxygenase system containing partially purified human liver cytochrome P-450, the 4-hydroxylated metabolite of mephenytoin was separated by thin-layer chromatography and quantified. The formation of the metabolite depended on the incubation time, substrate concentration, and cytochrome P-450 concentration and was found to be optimal at pH 7.4. The Km and Vmax rates obtained with a human liver microsomal preparation were 0.1 mM and 0.23 nmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450, respectively. The hydroxylation activity showed absolute requirements for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH in a reconstituted monooxygenase system. Activities varied from 5.6 to 156 pmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450 in 11 human liver microsomal preparations. The basic system utilized for the analysis of mephenytoin 4-hydroxylation can also be applied to the estimation of other enzyme activities in which phenol formation occurs.  相似文献   

11.
For clarification of the effects of steroid concentration on steroidogenesis of adrenal microsomes, the kinetic parameters, Km and kcat, were determined in the steady-state for progesterone and 17 alpha-hydroxyprogesterone metabolism catalyzed by P-450C21 and P-450(17 alpha lyase) in guinea pig adrenal microsomes. At a high concentration of progesterone, it was equally metabolized by P-450C21 and P-450(17 alpha lyase), while at a low concentration, it was hydroxylated at 17 alpha-position with twice higher rate than at 21-position. 17 alpha-Hydroxyprogesterone is apparently metabolized preferentially by P-450C21 at any concentration. Although the productions of deoxycortisol and androstenedione from 17 alpha-hydroxyprogesterone were strongly inhibited by progesterone, androstenedione formation from progesterone was not inhibited by a high concentration of progesterone. The addition of liposomal P-450C21 to the reaction medium containing adrenal microsomes caused a decrease in the concentration of 17 alpha-hydroxyprogesterone released into the medium in the steady state reaction, but this had no effect on the activity of androstenedione formation from high concentrations of progesterone. It thus follows that androstenedione is produced by successive monooxygenase reactions without the release of 17 alpha-hydroxyprogesterone from P-450(17 alpha lyase) at a high concentration of progesterone, which is the condition of the adrenal microsomes in vivo.  相似文献   

12.
The filamentous fungus Aspergillus ochraceus TS produces an inducible microsomal cytochrome P-450 linked monooxygenase which is capable of hydroxylating benzo(a)pyrene in presence of O2 and NADPH. The addition of Benzo(a)pyrene, 3-Methyl cholanthrene, beta-Naphthoflavone and other aryl hydrocarbons during the induction period causes dramatic improvement in the kinetics of benzo(a) pyrene hydroxylation as was evidenced by large decrease in Km and increase in Vmax values. On the other hand, treatment with Phenobarbital, Polychlorinated biphenyl and Progesterone has no significant effect on the kinetics of benzo(a)pyrene hydroxylation although a significant induction of NADPH-Cyt C reductase activity was observed in all the three cases. Again, both Phenobarbital and 3-Methyl cholanthrene induced microsomes exhibit the characteristic reduced metyrapone difference spectra. These findings together with the results obtained with flavone on the metabolism of benzo(a)pyrene by various microsomal preparations suggest a parallel induction of multiple forms of cytochrome P-450 as observed in mammalian liver under identical condition.  相似文献   

13.
14.
The inducer of the liver monooxygenase system perfluorodecalin added to microsomes as a submicron emulsion forms an enzyme-substrate complex with cytochrome P-450. The K(app) values for the perfluorodecalin binding to cytochrome P-450 in microsomes isolated from the livers of control and phenobarbital-treated rats are 5 x 10(-5) M and 2.3 x 10(-6) M, respectively. Perfluorodecalin competitively inhibits the binding of substrates to cytochrome P-450 and decreases the rates of monooxygenase reactions. Perfluorodecalin extrusion from the active center of cytochrome P-450 occurs when an excess of perfluorocarbons non-interacting with cytochrome P-450 is added to microsomes. There is a significant vagueness in the rates of various monooxygenase reactions because of simultaneous induction and inhibition of monooxygenase enzymes after perfluorodecalin administration to rats. The data obtained are consistent with the hypothesis that constitutive forms of cytochrome P-450 are primary receptors for xenobiotic-inducers of phenobarbital-type cytochrome P-450 isoforms.  相似文献   

15.
The effects of tetrahydrofuran (THF) on rat liver microsomes in vitro and in vivo were opposite. In vitro THF inhibited the p-nitrophenol (PNP) hydroxylase activity of microsomes from control rats and from rats treated with PB, acetone, and isoniazide--by 50, 20, 60, and 80%, respectively. THF inhibited dimethylnitrosamine (NDMA) demethylation in control and induced microsomes in a lesser degree. THF increased the total cytochrome P-450 content as well as the contents of cytochromes P-450IIE1 and P-450IIB1/B2. The activities of PNP-hydroxylation and NDMA-demethylation increased also, whereas the PR-dealkylation activity was unchanged. An increase in the THF dose caused inhibition of the rat liver microsomal monooxygenase system.  相似文献   

16.
Theophylline metabolism has been studied in a reconstituted monooxygenase system with purified forms of cytochrome P-450: P-450a, P-450b, P-450d and P-450k as well as in liver microsomes of control and 3-methylcholanthrene-induced rats. Cytochrome P-450 isoforms, P-450a and P-450b, had no effect on theophylline metabolism, whereas forms P-450d and P-450k induced the synthesis of 1.3-dimethyluric acid (1.3-DMA) at the rates of 900 and 330 pmol/min/nmol of protein, respectively. The catalytic activity of these isoforms was fully inhibited by homologous monospecific antibodies. P-450c catalyzed the formation of a nonidentified metabolite. In microsomes of control animals antibodies specifically directed to cytochrome P-450k suppressed the rate of 1.3-DMA synthesis by 73%, whereas antibodies specifically raised against P-450c+d--by 11%. In microsomes of methylcholanthrene-induced animals the rate of 1.3-DMA synthesis was increased two-fold. This activity was inhibited by 61% by antibodies to cytochrome P-450k and by 18% by anti-P-450c+d antibodies.  相似文献   

17.
Treatment of rats with pyrazole elevated the hepatic microsomal dimethylnitrosamine demethylase activity (DMNd) by several fold. Methylethylnitrosamine demethylase activity was also increased by pyrazole, but some classical monooxygenase activities were not induced. The treatment induced a new protein species which has an apparent molecular weight of 52,000 dal and is believed to be a cytochrome P-450 isozyme. The involvement of a hemoprotein in the pyrazole-induced DMNd was demonstrated in an experiment with CoCl2 which decreased both the microsomal cytochrome P-450 content and DMNd. The induced enzyme with a single Km value of 0.061 mM and Vmax of 12.1 nmol/min/mg is probably the most efficient enzyme known to metabolize nitrosamines. NADPH-cytochrome P-450 reductase was also demonstrated to be an essential component enzyme of the DMNd. These results further substantiate the idea that the P-450-containing monooxygenase is responsible for the metabolism of dimethylnitrosamine in both the control and pyrazole induced microsomes.  相似文献   

18.
Ethylmorphine N-demethylase activity of the sheep liver and lung microsomes was reconstituted in the presence of solubilized microsomal cytochrome P-450, NADPH-cytochrome c reductase and synthetic lipid, phosphatidylcholine dilauroyl. The Km of the lung microsomal ethylmorphine N-demethylase was calculated to be 4.84 mM ethylmorphine from its Lineweaver-Burk graph and lung enzyme was inhibited by its substrate, ethylmorphine, when its concn was 25 mM and above, reaching to 67% inhibition at 50 mM concn. The Lineweaver-Burk and Eadie-Hofstee plots of the liver enzyme were found to be curvilinear. From these graphs, two different Km values were calculated for the liver enzyme as 4.17 mM and 0.40 mM ethylmorphine. Ethylmorphine N-demethylase activities of both liver and lung microsomes were inhibited by NiCl2, CdCl2 and ZnSO4. Ethylalcohol inhibited N-demethylation of ethylmorphine in lung and liver microsomes. Acetone (5%) slightly enhanced the N-demethylase activity of the liver enzyme, whereas 5% acetone completely inhibited the lung enzyme. Phenylmethylsulfonyl fluoride at 0.10 mM and 0.25 mM concn had no effect on liver enzyme activity, while at these concns, it inhibited the activity of the lung enzyme by about 35%.  相似文献   

19.
Androstenedione formation from progesterone by P-450(17 alpha,lyase) was investigated in ovarian microsomes of immature rats treated with pregnant mare serum gonadotropin. Successive monooxygenase reactions in the formation of androstenedione without the intermediate leaving P-450(17 alpha,lyase) were demonstrated by a double-substrate double-label experiment using [14C]progesterone and 17 alpha-[3H]hydroxyprogesterone as substrates and also by specific reduction in the concentration of intermediate 17 alpha-hydroxyprogesterone in the reaction medium by reaction of liposomal P-450C21. A detailed kinetic study on the reactions of P-450(17 alpha,lyase) in microsomes was conducted in the steady state. Kinetic parameters indicated the C17,C20-lyase reaction for 17 alpha-hydroxyprogesterone (Km = 80 nM) to be strongly inhibited by progesterone (Ki = 8 nM). In the presence of a high concentration of progesterone, as in the case of in vivo rat ovary, most androstenedione is concluded to be formed directly from progesterone by successive monooxygenase reactions catalyzed by P-450(17 alpha,lyase). 20 alpha-Dihydroprogesterone competitively inhibited the C17,C20-lyase reaction for 17 alpha-hydroxyprogesterone with Ki = 23 nM, but had only slight effect on progesterone metabolism to androstenedione. 20 alpha-Dihydroprogesterone, thus, cannot be a regulator for androstenedione formation in rat ovary.  相似文献   

20.
The induction of a specific form of cytochrome P-450 (P-450j) by fasting   总被引:7,自引:0,他引:7  
In previous work we have demonstrated that liver microsomal N-nitrosodimethylamine demethylase (NDMAd) activity is increased in rats by fasting, and we have postulated that this is due to the induction of a specific form of cytochrome P-450. This communication provides evidence for such a hypothesis. Fasting for 24 and 48 h caused 59 and 116% increases, respectively, in NDMAd activity in male rats, and fasting for 48 h caused a 63% increase in female rats. These increases were accompanied by corresponding increases of cytochrome P-450j (P-450ac) determined by immunoblotting. Fasting for 24 and 48 h also increased the mRNA for P-450j by 153 to 250%, as determined by hybridization with a cDNA probe of this cytochrome. The results suggest that fasting affects the gene expression of P-450j.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号