首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the formal reduction potentials (E degrees') of adrenodoxin with and without adrenodoxin reductase in order to elucidate the mechanism of electron transfer from adrenodoxin reductase (a flavoprotein) to adrenodoxin (an iron-sulfur protein). It was found by our spectropotentiostatic method that adrenodoxin showed no variation of E degrees' at different pH's in the absence of adrenodoxin reductase. The average E degrees' was -252 +/- 2 mV in the pH range between 6.0 and 8.3. In the presence of adrenodoxin reductase, adrenodoxin exhibited, on the other hand, a pH dependence of E degrees' at pH higher than 7.2 with a slope of -59 mV per pH unit: Adrenodoxin molecule possesses one protonation site with a pKa of 7.2. Cyclic voltammograms of adrenodoxin additionally revealed that the reoxidation reaction of reduced adrenodoxin is very slow in the absence of adrenodoxin reductase, but that it is readily reoxidized in the presence of adrenodoxin reductase.  相似文献   

2.
Cytochromes P450 play a vital role in the steroid biosynthesis pathway of the adrenal gland. An example of an essential P450 cytochrome is the steroid 11beta-hydroxylase CYP11B1, which catalyses the conversion of 11-deoxycorticol to hydrocortisone. However, despite its high biotechnological potential, this enzyme has so far been unsuccessfully employed in present-day biotechnology due to a poor expression yield and inherent protein instability. In this study, CYP11B1 was biotransformed into various strains of the yeast Schizosaccharomyces pombe, all of which also expressed the electron transfer proteins adrenodoxin and/or adrenodoxin reductase - central components of the mitochondrial P450 system - in order to maximise hydrocortisone production efficiency in our proposed model system. Site-directed mutagenesis of CYP11B1 at positions 52 and 78 was performed in order to evaluate the impact of altering the amino acids at these sites. It was found that the presence of an isoleucine at position 78 conferred the highest 11beta-hydroxylation activity of CYP11B1. Coexpression of adrenodoxin and adrenodoxin reductase appeared to further increase the 11beta-hydroxylase activity of the enzyme (3.4 fold). Adrenodoxin mutants which were found to significantly enhance enzyme efficiency in other cytochromes in previous studies were also tested in our system. It was found that, in this case, the wild type adrenodoxin was more efficient. The new fission yeast strain TH75 coexpressing the wild type Adx and AdR displays high hydrocortisone production efficiency at an average of 1mM hydrocortisone over a period of 72h, the highest value published to date for this biotransformation. Finally, our research shows that pTH2 is an ideal plasmid for the coexpression of the mitochondrial electron transfer counterparts, adrenodoxin and adrenodoxin reductase, in Schizosaccharomyces pombe, and so could serve as a convenient tool for future biotechnological applications.  相似文献   

3.
Adrenodoxin reductase (EC 1.18.1.2) catalyzes the oxidation of NADPH by 1.4-benzoquinone. The catalytic constant of this reaction at pH 7.0 is equal to 25-28 s-1. NADP+ acts as the mixed-type nonlinear inhibitor of enzyme increasing Km of NADPH and decreasing catalytic constant. NADP+ and NADPH act as mutually exclusive inhibitors relative to reduced adrenodoxin reductase. The patterns of 2',5'-ADP inhibition are analogous to that of NADP+. These data support the conclusion about the existence of second nicotinamide coenzyme binding centre in adrenodoxin reductase.  相似文献   

4.
Ziegler GA  Schulz GE 《Biochemistry》2000,39(36):10986-10995
Adrenodoxin reductase is a flavoenzyme that shuffles electrons for the biosynthesis of steroids. Its chain topology belongs to the glutathione reductase family of disulfide oxidoreductases, all of which bind FAD at equivalent positions. The three reported structures of adrenodoxin reductase were ligated with reduced and oxidized NADP and have now confirmed this equivalence also for the NADP-binding site. Remarkably, the conformations and relative positions of the prosthetic group FAD and the cofactor NADP have been conserved during protein evolution despite very substantial changes in the polypeptide. The ligated enzymes showed small changes in the domain positions. When compared with the structure of the NADP-free enzyme, these positions correspond to several states of the domain motion during NADP binding. On the basis of the observed structures, we suggest an enzymatic mechanism for the subdivision of the received two-electron package into the two single electrons transferred to the carrier protein adrenodoxin. The data banks contain 10 sequences that are closely related to bovine adrenodoxin reductase. Most of them code for gene products with unknown functions. Within this family, the crucial residues of adrenodoxin reductase are strictly conserved. Moreover, the putative docking site of the carrier is rather well conserved. Five of the family members were assigned names related to ferredoxin:NADP(+) reductase, presumably because adrenodoxin reductase was considered a member of this functionally similar family. Since this is not the case, the data bank entries should be corrected.  相似文献   

5.
Spinach leaf ferredoxin and ferredoxin:NADP oxidoreductase as well as pig adrenodoxin and adrenodoxin reductase have been purified to homogeneity. Ferredoxin-NADP reductase and adrenodoxin-NADP reductase can perform the same diaphorase reactions (dichloroindophenol, ferricyanide and cytochrome c reduction) albeit not with the same efficiency. Despite the differences in their redox potentials, animal and plant ferredoxins can be used as heterologous substrates by the ferredoxin-NADP reductases from both sources. In heterologous systems, however, the ferredoxin/adrenodoxin concentrations must be increased approximately 100-fold in order to reach rates similar to those obtained in homologous systems. Ferredoxin and adrenodoxin can form complexes with the heterologous reductases as demonstrated by binding experiments on ferredoxin-Sepharose or ferredoxin-NADP-reductase-Sepharose and by the realization of difference spectra. Adrenodoxin also weakly substitutes for ferredoxin in NADP photoreduction, and can be used as an electron carrier in the light activation of the chloroplastic enzyme NADP-dependent malate dehydrogenase. In addition adrenodoxin is a good catalyst of pseudocyclic photophosphorylation, but not of cyclic phosphorylation and can serve as a substrate of glutamate synthase. These results are discussed with respect to the known structures of plant and animals ferredoxins and their respective reductases.  相似文献   

6.
M H Barros  F G Nobrega 《Gene》1999,233(1-2):197-203
Here we describe the identification of a yeast gene (YAH1) with significant homology to a mammalian enzyme, adrenodoxin, encoded in open reading frame (ORF) YPL252C. Adrenodoxin is the second electron carrier that participates in a mitochondrial electron transfer chain that, in mammals, catalyses the conversion of cholesterol into pregnenolone, the first step in the synthesis of all steroid hormones. The inactivation of the yeast gene's chromosomal copy reveals that it performs an essential function. We show that the protein is targeted to the mitochondrial matrix and describe attempts to complement the yeast knockout with the human adrenodoxin gene (FDX1) and with chimerical proteins constructed with the fusion of the yeast and the human gene. The previous identification of a homolog of the first mammalian enzyme in yeast, ARH1, also shown to be essential (Manzella, L., Barros, M.H., Nobrega, F.G., 1998. Yeast 14, 839-846), strongly suggests that there is a novel electron transfer chain, unlinked to respiration, and of essential function in mitochondria.  相似文献   

7.
The conversion of cholesterol to pregnenolone by cytochrome P450scc is the rate-determining step in placental progesterone synthesis. The limiting component for placental cytochrome P450scc activity is the concentration of adrenodoxin reductase in the mitochondria, where it permits cytochrome P450scc to work at only 16% of maximum velocity. Adrenodoxin reductase serves to reduce adrenodoxin as part of the electron transfer from NADPH to cytochrome P450scc. We therefore measured the proportion of adrenodoxin in the reduced form in intact mitochondria from the human placenta during active pregnenolone synthesis, using EPR. We found that the adrenodoxin pool was only 30% reduced, indicating that the adrenodoxin reductase concentration was insufficient to maintain the adrenodoxin in the fully reduced state. As both oxidized and reduced adrenodoxin can bind to cytochrome P450scc we tested the ability of oxidized adrenodoxin to act as a competitive inhibitor of pregnenolone synthesis. This was done in a fully reconstituted system comprising 0.3% Tween 20 and purified proteins, and in a partially reconstituted system comprising submitochondrial particles, purified adrenodoxin and adrenodoxin reductase. We found that oxidized adrenodoxin is an effective competitive inhibitor of placental cytochrome P450scc with a Ki value half that of the Km for reduced adrenodoxin. We conclude that the limiting concentration of adrenodoxin reductase present in placental mitochondria has a two-fold effect on cytochrome P450scc activity. It limits the amount of reduced adrenodoxin that is available to donate electrons to cytochrome P450scc and the oxidized adrenodoxin that remains, competitively inhibits the cytochrome.  相似文献   

8.
Crystallographic analysis of a fully functional, truncated bovine adrenodoxin, Adx(4-108), has revealed the structure of a vertebrate-type [2Fe-2S] ferredoxin at high resolution. Adrenodoxin is involved in steroid hormone biosythesis in adrenal gland mitochondria by transferring electrons from adrenodoxin reductase to different cytochromes P450. Plant-type [2Fe-2S] ferredoxins interact with photosystem I and a diverse set of reductases.A systematic structural comparison of Adx(4-108) with plant-type ferredoxins which share about 20 % sequence identity yields these results. (1) The ferredoxins of both types are partitioned into a large, strictly conserved core domain bearing the [2Fe-2S] cluster and a smaller interaction domain which is structurally different for both subfamilies. (2) In both types, residues involved in interactions with reductase are located at similar positions on the molecular surface and coupled to the [2Fe-2S] cluster via structurally equivalent hydrogen bonds. (3) The accessibility of the [2Fe-2S] cluster differs between Adx(4-108) and the plant-type ferredoxins where a solvent funnel leads from the surface to the cluster. (4) All ferredoxins are negative monopoles with a clear charge separation into two compartments, and all resulting dipoles but one point into a narrow cone located in between the interaction domain and the [2Fe-2S] cluster, possibly controlling predocking movements during interactions with redox partners. (5) Model calculations suggest that FE1 is the origin of electron transfer pathways to the surface in all analyzed [2Fe-2S] ferredoxins and that additional transfer probability for electrons tunneling from the more buried FE2 to the cysteine residue in position 92 of Adx is present in some.  相似文献   

9.
Adrenodoxin is an iron-sulfur protein that belongs to the broad family of the [2Fe-2S]-type ferredoxins found in plants, animals and bacteria. Its primary function as a soluble electron carrier between the NADPH-dependent adrenodoxin reductase and several cytochromes P450 makes it an irreplaceable component of the steroid hormones biosynthesis in the adrenal mitochondria of vertebrates. This review intends to summarize current knowledge about structure, function, and biochemical behavior of this electron transferring protein. We discuss the recently solved first crystal structure of the vertebrate-type ferredoxin, the truncated adrenodoxin Adx(4-108), that offers the unique opportunity for better understanding of the structure-function relationships and stabilization of this protein, as well as of the molecular architecture of [2Fe-2S] ferredoxins in general. The aim of this review is also to discuss molecular requirements for the formation of the electron transfer complex. Essential comparison between bacterial putidaredoxin and mammalian adrenodoxin will be provided. These proteins have similar tertiary structure, but show remarkable specificity for interactions only with their own cognate cytochrome P450. The discussion will be largely centered on the protein-protein recognition and kinetics of adrenodoxin dependent reactions.  相似文献   

10.
Previously, we have proposed that bovine adrenocortical mitochondrial adrenodoxin reductase may possess a domain structure, based upon the generation of two major peptide fragments from limited tryptic proteolysis. In the present study, kinetic characterization of the NADPH-dependent ferricyanide reductase activity of the partially proteolyzed enzyme demonstrates that Km(NADPH) increases (from 1.2 μM to 2.7 μM), whereas 1 Vmax remains unaltered at 2100 min−1 The two proteolytic fragments have been purified to homogeneity by reverse-phase HPLC, and amino acid sequence analysis unambiguously demonstrates that the 30.6 kDa fragment corresponds to the amino terminal portion of the intact protein, whereas the 22.8 kDa fragment is derived from the carboxyl terminus of the reductase. Trypsin cleavage occurs at either Arg-264 or Arg-265. Covalent crosslinking experiments using a water-soluble carbodiimide show that adrenodoxin crosslinks exclusively to the 30.6 kDa fragment, thus implicating the N-terminal region of adrenodoxin reductase in binding to the iron-sulfur protein. Our inability to detect covalent carbohydrate on either intact or proteolyzed adrenodoxin reductase prompted a re-examination of the previously reported requirement of an oligosaccharide moiety for efficient electron transfer from the reductase to adrenodoxin. Treatment of adrenodoxin reductase with a highly purified preparation of neuraminidase demonstrates that neither the adrenodoxin-independent ferric yanide reductase activity nor the adrenodoxin-dependent cytochrome c reductase activity of the enzyme is affected by neuraminidase treatment.  相似文献   

11.
Adrenodoxin stimulated the oxidation of NADPH by 1,4-benzoquinone, catalyzed by NADPH:adrenodoxin reductase. It prevented the enzyme inhibition by NADPH and formed an additional pathway of benzoquinone reduction presumably via reduced adrenodoxin. In the presence of 100-400 microM NADP+, which increased the Km of NADPH, adrenodoxin acted as a partial competitive inhibitor for NADPH decreasing its TN/Km by a limiting factor of 3. Ki of adrenodoxin decreased on the NADP+ concentration decrease and was estimated to be about 10(-8) M in the absence of NADP+.  相似文献   

12.
Adrenodoxin of bovine adrenocortical mitochondria was spin-labeled with two different spin-labeling reagents, N-(2,2,5,5-tetramethyl-3-carbonylpyrroline-1-oxyl)imidazole (I) and N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)maleimide (II), without major loss of its activity for electron transport from NADPH to cytochrome c. The EPR spectrum of adrenodoxin spin-labeled with either of the reagents showed a pattern typical of a moderately immobilized spin label. When adrenodoxin was treated with (I), approximately two amino acid residues per molecule were spin-labeled, whereas a single residue was labeled by (II). While assition of NADPH to adrenodoxin spin-labeled with (I) did not diminish the EPR signal intensity, addition of the reductant to the labeled adrenodoxin in the presence of adrenodoxin reductase caused slow reduction of the spin label, the rate of which was dependent on the aerobicity. Addition of adrenodoxin reductase to adrenodoxin spin-labeled with (I) or (II) resulted in the appearance of a more immobilized component in the EPR spectrum. The ratio of the more immobilized component to the less immobilized component was saturated at a molar ratio of one to one. Addition of cytochrome P-450scc to adrenodoxin labeled with (I) had similar effects on the EPR spectrum.  相似文献   

13.
Expression and regulation of adrenodoxin and P450scc mRNA in rodent tissues   总被引:1,自引:0,他引:1  
The rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone. This reaction occurs in steroidogenic tissue in the inner mitochondrial membrane, and is mediated by the cholesterol side-chain cleavage enzyme. This enzyme system transfers electrons from NADPH to cholesterol through its three protein components: adrenodoxin reductase, adrenodoxin, and the terminal oxidase, P450scc. We have previously shown that P450scc mRNA is regulated by tropic hormones and cAMP by a cycloheximide-independent mechanism in mouse Leydig tumor MA-10 cells. We now show that the mRNA for adrenodoxin, another component of the cholesterol side-chain cleavage enzyme system, is regulated by tropic hormones and cAMP in MA-10 cells. We cloned rat adrenodoxin cDNA to analyze adrenodoxin mRNA in various rat tissues and in MA-10 cells by RNase protection assays. Adrenodoxin mRNA is found in virtually all rat tissues examined, although it is most abundant in adrenals, ovaries, and testes. MA-10 cells synthesize two species of adrenodoxin mRNA, one of 1.2 kb and the other of 0.8 kb. Both of these adrenodoxin mRNAs are increased approximately six-fold by 1 mM 8-Br-cAMP, five-fold by 10 microM forskolin, and three-fold by both 25 ng/ml hCG and by 100 ng/ml LH. Maximal adrenodoxin mRNA accumulation occurs by 4 h of hormonal stimulation. The cAMP-mediated increase in adrenodoxin mRNA accumulation is independent of protein synthesis, since treatment with cycloheximide or puromycin in the absence or presence of cAMP does not inhibit, and even increases, adrenodoxin mRNA accumulation.  相似文献   

14.
Adrenodoxin reductase, the flavoprotein moiety of the adrenal cortex mitochondrial steroid hydroxylating system, participates in adrenodoxin-dependent cytochrome c and adrenodoxin-independent ferricyanide reduction, with NADPH as electron donor for both of these 1-electron reductions. For ferricyanide reduction, adrenodoxin reductase cycles between oxidized and 2-electron-reduced forms, reoxidation proceeding via the neutral flavin (FAD) semiquinone form (Fig. 9). Addition of adrenodoxin has no effect upon the kinetic parameters of flavoprotein-catalyzed ferricyanide reduction. For cytochrome c reduction, the adrenodoxin reductase-adrenodoxin 1:1 complex has been shown to be the catalytically active species (Lambeth, J. D., McCaslin, D. R., and Kamin, H. (1976) J. Biol. Chem. 251, 7545-7550). Present studies, using stopped flow techniques, have shown that the 2-electron-reduced form of the complex (produced by reaction with 1 eq of NADPH) reacts rapidly with 1 eq of cytochrome c (k approximately or equal to 4.6 s-1), but only slowly with a second cytochrome c (k = 0.1 to 0.3 s-1). However, when a second NADPH is included, two more equivalents of cytochrome are reduced rapidly. Thus, the adrenodoxin reductase-adrenodoxin complex appears to cycle between 1- and 3-electron reduced states, via an intermediate 2-electron-containing form produced by reoxidation by cytochrome (Fig. 10). For ferricyanide reduction by adrenodoxin reductase, the fully reduced and semiquinone forms of flavin each transfer 1 electron at oxidation-reduction potentials which differ by approximately 130 mV. However, adrenodoxin in a complex with adrenodoxin reductase allows electrons of constant potential to be delivered from flavin to cytochrome c via the iron sulfur center...  相似文献   

15.
The single free cysteine at residue 95 of bovine adrenodoxin was labeled with the fluorescent reagent N-iodoacetylamidoethyl-1-aminonaphthalene-5-sulfonate (1,5-I-AEDANS). The modification had no effect on the interaction with adrenodoxin reductase or cytochrome P-450scc, suggesting that the AEDANS group at Cys-95 was not located at the binding site for these molecules. Addition of adrenodoxin reductase, cytochrome P-450scc, or cytochrome c to AEDANS-adrenodoxin was found to quench the fluorescence of the AEDANS in a manner consistent with the formation of 1:1 binary complexes. F?rster energy transfer calculations indicated that the AEDANS label on adrenodoxin was 42 A from the heme group in cytochrome c, 36 A from the FAD group in adrenodoxin reductase, and 58 A from the heme group in cytochrome P-450scc in the respective binary complexes. These studies suggest that the FAD group in adrenodoxin reductase is located close to the binding domain for adrenodoxin but that the heme group in cytochrome P-450scc is deeply buried at least 26 A from the binding domain for adrenodoxin. Modification of all the lysines on adrenodoxin with maleic anhydride had no effect on the interaction with either adrenodoxin reductase or cytochrome P-450scc, suggesting that the lysines are not located at the binding site for either protein. Modification of all the arginine residues with p-hydroxyphenylglyoxal also had no effect on the interaction with adrenodoxin reductase or cytochrome P-450scc. These studies are consistent with the proposal that the binding sites on adrenodoxin for adrenodoxin reductase and cytochrome P-450scc overlap, and that adrenodoxin functions as a mobile electron carrier.  相似文献   

16.
cDNA clones for bovine adrenodoxin reductase were isolated, and the primary structure of the enzyme precursor was deduced from their nucleotide sequences. The precursor consists of 492 amino acids including an extrapeptide of 32 amino acids at the amino terminus. The extrapeptide is hydrophilic [corrected] and rich in arginine. The amino terminal sequence of the precursor is homologous with that of the adrenodoxin precursor. A possible FAD- or NADPH-binding site is present near the amino terminus of the mature enzyme.  相似文献   

17.
Adrenodoxin reductase is an NADP dependent flavoenzyme which functions as the reductase of mitochondrial P 450 systems. We sequenced two adrenodoxin reductase cDNAs isolated from a bovine adrenal cortex cDNA library. The deduced amino acid sequence shows no similarity to the sequence of the microsomal P 450 systems or other known protein sequences. Nonetheless, by sequence analysis and c comparisons with known sequences of dinucleotide-binding folds of two NADP-binding flavoenzymes, two regions of adrenodoxin reductase sequence were identified as the FAD- and NADP-binding sites. These analyses revealed a consensus sequence for the NADP-binding dinucleotide fold (GXGXXAXXXAXXXXXXG, in one-letter amino acid code) that differs from FAD and NAD-binding dinucleotide-fold sequences. In the data base of protein sequences, the NADP-binding-site sequence appears solely in NADP-dependent enzymes, the binding sites of which were not known to date. Thus, this sequence may be used for identification of a certain type of NADP-binding site of enzymes that show no significant sequence similarity.  相似文献   

18.
Adrenodoxin, purified from bovine adrenal cortex, was subjected to trypsin cleavage to yield a trypsin-resistant form, designated TT-adrenodoxin. Sequencing with carboxypeptidase Y identified the trypsin cleavage site as Arg-115, while Edman degradation indicated no NH2-terminal cleavage. Native adrenodoxin and TT-adrenodoxin exhibited similar affinity for adrenodoxin reductase as determined in cytochrome c reductase assays. In side chain cleavage assays using cytochrome P-450scc, however, TT-adrenodoxin demonstrated greater activity than adrenodoxin with cholesterol, (22R)-22-hydroxycholesterol, or (20R,22R)-20,22-dihydroxycholesterol as substrate. This enhanced activity is due to increased affinity of TT-adrenodoxin for cytochrome P-450scc; TT-adrenodoxin exhibits a 3.8-fold lower apparent Km for the conversion of cholesterol to pregnenolone. TT-Adrenodoxin was also more effective in coupling with cytochrome P-450(11) beta, exhibiting a 3.5-fold lower apparent Km for the 11 beta-hydroxylation of deoxycorticosterone. In the presence of partially saturating cholesterol, TT-adrenodoxin elicited a type I spectral shift with cytochrome P-450scc similar to that induced by adrenodoxin, and spectral titrations showed that oxidized TT-adrenodoxin exhibited a 1.5-fold higher affinity for cytochrome P-450scc. These results establish that COOH-terminal residues 116-128 are not essential for the electron transfer activity of bovine adrenodoxin, and the differential effects of truncation at Arg-115 on interactions with adrenodoxin reductase and cytochromes P-450 suggest that the residues involved in the interactions are not identical.  相似文献   

19.
The reactions of NADPH oxidation by quinones and inorganic complexes catalyzed by NADPH: adrenodoxin reductase were studied. The catalytic constant for the enzyme at pH 7.0 is 20-25 s-1; the oxidative constants for the quinones vary from 5 X 10(5) to 1.1 X 10(3) M-1 s-1 and show an increase with a rise in the one-electron acceptor reduction potential. The mode of adrenodoxin reductase interaction with oxyquinones differs from that of the enzyme interaction with alkyl-substituted quinones and inorganic complexes. NADPH competitively inhibits electron acceptors, whereas NADP+ is a competitive inhibitor of NADPH and a uncompetitive inhibitor of electron acceptors. (Ki = 25 microM). The depth of FAD incorporation into the enzyme molecule as calculated according to the outer sphere electron transfer theory is 6.1 A.  相似文献   

20.
Adrenodoxin (Adx) is a [2Fe-2S] ferredoxin involved in electron transfer reactions in the steroid hormone biosynthesis of mammals. In this study, we deleted the sequence coding for the complete interaction domain in the Adx cDNA. The expressed recombinant protein consists of the amino acids 1-60, followed by the residues 89-128, and represents only the core domain of Adx (Adx-cd) but still incorporates the [2Fe-2S] cluster. Adx-cd accepts electrons from its natural redox partner, adrenodoxin reductase (AdR), and forms an individual complex with this NADPH-dependent flavoprotein. In contrast, formation of a complex with the natural electron acceptor, CYP11A1, as well as electron transfer to this steroid hydroxylase is prevented. By an electrostatic and van der Waals energy minimization procedure, complexes between AdR and Adx-cd have been proposed which have binding areas different from the native complex. Electron transport remains possible, despite longer electron transfer pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号