首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The metabolic fate of infused [1-14C]glutamate was studied in perfused rat liver. The 14C label taken up by the liver was recovered to 85 +/- 2% as 14CO2 and [14C]glutamine. Whereas 14CO2 production accounted for about 70% of the [1-14C]glutamate taken up under conditions of low endogenous rates of glutamine synthesis, stepwise stimulation of glutamine synthesis by NH4Cl increased 14C incorporation into glutamine at the expense of 14CO2 production. Extrapolation to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of vascular glutamate taken up by the liver for glutamine synthesis. This was observed in both, antegrade and retrograde perfusions and suggests an almost exclusive uptake of glutamate into perivenous glutamine-synthetase-containing hepatocytes. 2. Glutamate was simultaneously taken up and released from perfused rat liver. At a near-physiological influent glutamate concentration (0.1 mM), the rates of unidirectional glutamate influx and efflux were similar (about 100 and 120 nmol g-1 min-1, respectively). 3. During infusion of [1-14C]oxoglutarate (50 microM), addition of glutamate (2 mM) did not affect hepatic uptake of [1-14C]oxoglutarate. However, it increased labeled glutamate release from the liver about 10-fold (from 9 +/- 2 to 86 +/- 20 nmol g-1 min-1; n = 4), whereas 14CO2 production from labeled oxoglutarate decreased by about 40%. This suggests not only different mechanisms of oxoglutarate and glutamate transport across the plasma membrane, but also points to a glutamate/glutamate exchange. 4. Oxoglutarate was recently shown to be taken up almost exclusively by perivenous glutamine-synthetase-containing hepatocytes [Stoll, B & H?ussinger, D. (1989) Eur. J. Biochem. 181, 709-716] and [1-14C]oxoglutarate (9 microM) was used to label selectively the intracellular glutamate pool in this perivenous cell population. The specific radioactivity of this intracellular (perivenous) glutamate pool was assessed by measuring the specific radioactivity of newly synthesized glutamine which is continuously released from these cells into the perfusate. Comparison of the specific radioactivities of glutamine and glutamate released from perivenous cells indicates that about 60% of total glutamate release from the liver is derived from the perivenous glutamine-synthetase-containing cell population. Following addition of unlabeled glutamate (0.1 mM), unidirectional glutamate efflux from perivenous cells increased from about 30 to 80 nmol g-1 min-1, whereas glutamate efflux from non-perivenous (presumably periportal) hepatocytes remained largely unaltered (i.e. 20-30 nmol g-1 min-1). 5. It is concluded that, in the intact liver, vascular glutamate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase.  相似文献   

2.
Addition of phenylephrine to isolated perfused rat liver is followed by an increased 14CO2 production from [1-14C]glutamate, [1-14C]glutamine, [U-14C]proline and [3-14C]pyruvate, but by a decreased 14CO2 production from [1-14C]pyruvate. Simultaneously, there is a considerable decrease in tissue content of 2-oxoglutarate, glutamate and citrate. Stimulation of 14CO2 production from [1-14C]glutamate is also observed in the presence of amino-oxyacetate, suggesting a stimulation of glutamate dehydrogenase and 2-oxoglutarate dehydrogenase fluxes by phenylephrine. Inhibition of pyruvate dehydrogenase flux by phenylephrine is due to an increased 2-oxoglutarate dehydroxygenase flux. Phenylephrine stimulates glutaminase flux and inhibits glutamine synthetase flux to a similar extent, resulting in an increased hepatic glutamine uptake. Whereas the effects of NH4+ ions and phenylephrine on glutaminase flux were additive, activation of glutaminase by glucagon was considerably diminished in the presence of phenylephrine. The reported effects are largely overcome by prazosin, indicating the involvement of alpha-adrenergic receptors in the action of phenylephrine. It is concluded that stimulation of gluconeogenesis from various amino acids by phenylephrine is due to an increased flux through glutamate dehydrogenase and the citric acid cycle.  相似文献   

3.
1. In isolated perfused rat liver maximal rates of 2-[1-14C]oxoglutarate uptake were about 0.4 mumol.g-1 .min-1; half-maximal rates of 2-[14C]oxoglutarate uptake were observed with influent concentrations of about 100 microM. 2-[14C]Oxoglutarate uptake by the liver was not affected by the direction of perfusion, but was decreased by about 80-90% when Na+ in the perfusion fluid was substituted by choline+, suggesting a Na+-dependence of hepatic 2-oxoglutarate uptake. In the absence of added ammonia, [14C]oxoglutarate uptake by the liver was about twice the net oxoglutarate uptake, indicating a simultaneous release of unlabeled oxoglutarate from perfused rat liver. 2. 14C-Labeled metabolites derived from [1-14C]oxoglutarate and recovered in the effluent perfusate were 14CO2 and 14C-labeled glutamate and glutamine; they accounted for 85-100% of the radiolabel taken up by the liver. 14CO2 was the major product (more than 70%) from [1-14C]oxoglutarate taken up the liver, provided glutamine synthesis was either inhibited by methionine sulfoximine or the endogenous rate of glutamine production was below 40 nmol.g-1.min-1. 3. Stimulation of glutamine synthesis by ammonia did not affect [14C]oxoglutarate uptake by the liver, but considerably increased net hepatic oxoglutarate uptake, indicating a decreased release of unlabeled oxoglutarate from the liver. Stepwise stimulation of hepatic glutamine synthesis led to a gradual decrease of 14CO2 production and radiolabel was recovered increasingly as [14C]glutamine in the effluent. At high rates of glutamine formation (i.e. about 0.6 mumol.g-1.min-1), about 60% of the [1-14C]oxoglutarate taken up by the liver was recovered in the effluent as [14C]glutamine. 14CO2 and [14C]glutamine production from added [1-14C]oxoglutarate were dependent on the rate of hepatic glutamine synthesis but not on the direction of perfusion. Extrapolation of 14C incorporation into glutamine to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of the [14C]oxoglutarate taken up by the liver for glutamine synthesis. This was again true for both the antegrade and the retrograde perfusion directions. On the other hand, addition of ammonia did not affect 14CO2 production from labeled oxoglutarate, when glutamine synthetase was inhibited by methionine sulfoximine. 4. The data suggest that vascular oxoglutarate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase, i.e. a cell population comprising only 6-7% of all hepatocytes. Thus, the findings demonstrate the existence of a, to date, uniquely zonally distributed oxoglutarate transport system which is probably Na+-dependent in the plasma membrane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
14CO2 production from [l-14C]oleate, [l-14C]butyrate and [U-14C]proline by isolated rat hepatocytes was studied. In hepatocytes from fed rats, fatty acid and proline oxidation are stimulated in parallel by adrenaline, noradrenaline, vasopressin and angiotensin II. In contrast in hepatocytes from 24 h-starved rats these hormones stimulate proline oxidation whereas oleate and butyrate oxidation is hormone-insensitive. This suggests that 14CO2 production from [U-14C]proline and [l-14C]oleate is subject to independent endocrine control. In support of this in hepatocytes from fed rats, glucagon and dibutyryl cyclic AMP stimulate 14CO2 production from proline but inhibit 14CO2 production from [l-14C]oleate. The pathway of hepatic proline oxidation is discussed and it is suggested that 2-oxoglutarate dehydrogenase is one site of endocrine control of proline oxidation.  相似文献   

5.
Glycogen synthesis in hepatocyte cultures is dependent on: (1) the nutritional state of the donor rat, (2) the acinar origin of the hepatocytes, (3) the concentrations of glucose and gluconeogenic precursors, and (4) insulin. High concentrations of glucose (15-25 mM) and gluconeogenic precursors (10 mM-lactate and 1 mM-pyruvate) had a synergistic effect on glycogen deposition in both periportal and perivenous hepatocytes. When hepatocytes were challenged with glucose, lactate and pyruvate in the absence of insulin, glycogen was deposited at a linear rate for 2 h and then reached a plateau. However, in the presence of insulin, the initial rate of glycogen deposition was increased (20-40%) and glycogen deposition continued for more than 4 h. Consequently, insulin had a more marked effect on the glycogen accumulated in the cell after 4 h (100-200% increase) than on the initial rate of glycogen deposition. Glycogen accumulation in hepatocyte cultures prepared from rats that were fasted for 24 h and then re-fed for 3 h before liver perfusion was 2-fold higher than in hepatocytes from rats fed ad libitum and 4-fold higher than in hepatocytes from fasted rats. The incorporation of [14C]lactate into glycogen was 2-4-fold higher in periportal than in perivenous hepatocytes in both the absence and the presence of insulin, whereas the incorporation of [14C]glucose into glycogen was similar in periportal and perivenous hepatocytes in the absence of insulin, but higher in perivenous hepatocytes in the presence of insulin. Rates of glycogen deposition in the combined presence of glucose and gluconeogenic precursors were similar in periportal and perivenous hepatocytes, whereas in the presence of glucose alone, rates of glycogen deposition paralleled the incorporation of [14C]glucose into glycogen and were higher in perivenous hepatocytes in the presence of insulin. It is concluded that periportal and perivenous hepatocytes utilize different substrates for glycogen synthesis, but differences between the two cell populations in the relative utilization of glucose and gluconeogenic precursors are dependent on the presence of insulin and on the nutritional state of the rat.  相似文献   

6.
Stimulation of DNA synthesis by EGF was compared in cultured periportal and perivenous hepatocyte populations. Periportal hepatocytes responded to EGF more sensitive (IC50-values 20 vs 75 ng/ml) and with a higher maximal stimulation (420 vs 290%) than perivenous hepatocytes with respect to both [3H]thymidine incorporation and labeling index. The glutamine synthetase-positive hepatocytes responded much less to EGF than did the perivenous cells in general. The simultaneous presence of insulin increased the sensitivity for EGF predominantly in the periportal hepatocytes. These inherent differences in the growth potential of hepatocytes from different acinar localizations may contribute to different growth patterns across the lobules in normal and regenerating liver.  相似文献   

7.
With physiological portal HCO3- and CO2 concentrations of 25mM and 1.2mM in the perfusate, respectively, acetazolamide inhibited urea synthesis from NH4Cl in isolated perfused rat liver by 50-60%, whereas urea synthesis from glutamine was inhibited by only 10-15%. A decreased sensitivity of urea synthesis from glutamine to acetazolamide inhibition was also observed when the extracellular HCO3- and CO2 concentrations were varied from 0-50mM and 0-2.4mM, respectively. Stimulation of intramitochondrial CO2 formation at pyruvate dehydrogenase with high pyruvate concentrations (7mM) was without effect on the acetazolamide sensitivity of urea synthesis from NH4Cl. Urea synthesis was studied under conditions of a limiting HCO3- supply for carbamoyl-phosphate synthesis. In the absence of externally added HCO3- or CO2, when 14CO2 was provided intracellularly by [U-14C]glutamine or [1-14C]-glutamine oxidation, acetazolamide had almost no effect on label incorporation into urea, whereas label incorporation from an added tracer H14CO3- dose was inhibited by about 70%. 14CO2 production from [U-14C]glutamine was about twice as high as from [1-14C]glutamine, indicating that about 50% of the CO2 produced from glutamine is formed at 2-oxoglutarate dehydrogenase. The fractional incorporation of 14CO2 into urea was about 13% with [1-14C]-as well as with [U-14C]glutamine. Addition of small concentrations of HCO3- (1.2mM) to the perfusate increased urea synthesis from glutamine by about 70%. This stimulation of urea synthesis was fully abolished by acetazolamide. The carbonate-dehydratase inhibitor prevented the incorporation of added HCO3- into urea, whereas incorporation of CO2 derived from glutamine degradation was unaffected. Without HCO3- and CO2 in the perfusion medium, when 14CO2 was provided by [1-14C]-pyruvate oxidation, acetazolamide inhibited urea synthesis from NH4Cl as well as 14C incorporation into urea by about 50%. Therefore carbonate-dehydratase activity is required for the utilization of extracellular CO2 or pyruvate-dehydrogenase-derived CO2 for urea synthesis, but not for CO2 derived from glutamine oxidation. This is further evidence for a special role of glutamine as substrate for urea synthesis.  相似文献   

8.
用大鼠肝脏门静脉或肝静脉周围的肝细胞来研究葡萄糖和酮体生成的区域分布。肝细胞通过毛地黄皂苷-胶原酶灌流技术分离。门静脉周围肝细胞的γ谷氨酰转肽酶的活性比肝静脉周围肝细胞高2.4倍;而谷氨酰胺合成酶的活性则相反,肝静脉周围肝细胞高出56倍。门静脉周围肝细胞的内源性葡萄糖合成比肝静脉周围肝细胞高1.57倍。给予刺激葡萄糖异生的底物,门静脉周围肝细胞的葡萄糖合成则增加1.7-2.1倍。肝静脉周围肝细胞的内源性酮体生成比门静脉周围肝细胞高1.3倍。给予能明显刺激酮体生成的辛酸盐,肝静脉周围肝细胞的酮体生成仅略为增加。我们的结果证实,在基础和刺激的条件下,葡萄糖的异生在门静脉周围肝细胞中优先,而酮体生成仅在肝静脉周围肝细胞占微弱的优势。  相似文献   

9.
We have investigated the cause of defective glycogen synthesis in hepatocyte preparations enriched with cells from the periportal or perivenous zones obtained by the methods of Lindros & Penttila [Biochem. J. (1985) 228, 757-760] and of Quistorff [Biochem. J. (1985) 229, 221-226]. A modified procedure which yields hepatocytes capable of consistent rates of glycogen synthesis is described, and the rates of glucose and glycogen syntheses and of glycolysis in hepatocytes from the two zones are compared. Glycogen synthesis in cells was greatly impaired by very low concentrations (0.01-0.05 mg/ml) of digitonin, which had little effect on glucose and protein syntheses and Trypan Blue exclusion. Cells exposed to such low concentrations of digitonin lose all their synthetic capacity and ability to exclude Trypan Blue when incubated with EGTA, which does not affect cells not exposed to digitonin. With a modified procedure based on this phenomenon, our study reveals that hepatocyte preparations enriched with cells from the periportal zone synthesized glucose from lactate and alanine at rates twice those by cells from the perivenous zone, whereas the rate of glycogen synthesis from C3 precursors in periportal cells was 4 times that in the perivenous preparations. With substrates entering the pathway at the triose phosphate level, gluconeogenesis in periportal-cell preparations was 20% higher, and glycogen synthesis was twice that in perivenous preparations. Glycolysis was studied by the formation of 3HOH from [2-3H]glucose, the yield of lactate, and the conversion of [14C]glucose into [14C]lactate. In cell preparations from both zones glycolysis by all criteria was negligible at 10 mM-glucose, but was substantial at higher concentrations. However, there was no difference between the zones. We confirm that the capacities for glucose and glycogen syntheses in periportal cells are higher than in perivenous cells, but that at physiological glucose concentrations there is negligible glycolysis in liver parenchyma in both zones. The metabolic pattern in the perivenous cells is not glycolytic.  相似文献   

10.
The coexpression of normally periportal and perivenous markers has been described in heterotopically transplanted hepatocytes. To determine whether such a coexpression might also occur in hepatocytes retaining their original intrahepatic location, we compared in bileduct-ligated livers and intrasplenically transplanted hepatocytes, the expression and distribution of the predominantly periportal glucose-6-phosphatase, succinate dehydrogenase, and lactate dehydrogenase, the predominantly perivenous glutamate dehydrogenase, NADPH-dehydrogenase, and -hydroxybutyrate dehydrogenase, and the strictly perivenous glutamine synthetase. The coexpression of high levels of the two periportal markers glucose-6-phosphatase and lactate dehydrogenase and of the perivenous marker NADPH dehydrogenase was observed in two situations: in clusters of hepatocytes isolated within the ductular proliferation in bile-duct-ligated livers and the majority of intrasplenically transplanted hepatocytes. The expression of glutamine synthetase was different according to the site. The protein was observed in certain intrasplenically transplanted hepatocytes bordering the splenic vessels but was never detected in hepatocyte clusters found in bile-duct-ligated livers. Our study therefore suggests that the coexpression of periportal and perivenous markers in the same hepatocytes is likely to be a non-specific consequence of the loss of the normal connections of hepatocytes with the normal liver microcirculation.  相似文献   

11.
The effect of the excitotoxin kainic acid on glutamate and glutamine metabolism was studied in cerebellar slices incubated with D-[2-14C]glucose, [U-14C]gamma-aminobutyric acid, [3H]acetate, [U-14C]glutamate, and [U-14C]glutamine as precursors. Kainic acid (1 mM) strongly inhibited the labeling of glutamine relative to that of glutamate from all precursors except [2-14C]glucose and [U-14C]glutamine. Kainic acid did not inhibit glutamine synthetase directly. The data indicate that in the cerebellum kainic acid inhibits the synthesis of glutamine from the small pool of glutamate that is thought to be associated with glial cells. Kainic acid also markedly stimulated the efflux of glutamate from cerebellar slices and this release was not sensitive to tetrodotoxin. Kainic acid stimulated efflux of both glucose- and acetate-labeled glutamate. In contrast, veratridine released glucose-labeled glutamate preferentially via a tetrodotoxin-sensitive mechanism. Kainic acid did not release [U-14C]glutamate from synaptosomal fractions. These results suggest that the bulk of the glutamate released from cerebellar slices by kainic acid comes from nonsynaptic pools.  相似文献   

12.
1. Pyruvate strongly inhibited aspartate production by mitochondria isolated from Ehrlich ascites-tumour cells, and rat kidney and liver respiring in the presence of glutamine or glutamate; the production of (14)CO(2) from l-[U-(14)C]glutamine was not inhibited though that from l-[U-(14)C]glutamate was inhibited by more than 50%. 2. Inhibition of aspartate production during glutamine oxidation by intact Ehrlich ascites-tumour cells in the presence of glucose was not accompanied by inhibition of CO(2) production. 3. The addition of amino-oxyacetate, which almost completely suppressed aspartate production, did not inhibit the respiration of the mitochondria in the presence of glutamine, though the respiration in the presence of glutamate was inhibited. 4. Glutamate stimulated the respiration of kidney mitochondria in the presence of glutamine, but the production of aspartate was the same as that in the presence of glutamate alone. 5. The results suggest that the oxidation of glutamate produced by the activity of mitochondrial glutaminase can proceed almost completely through the glutamate dehydrogenase pathway if the transamination pathway is inhibited. This indicates that the oxidation of glutamate is not limited by a high [NADPH]/[NADP(+)] ratio. 6. It is suggested that under physiological conditions the transamination pathway is a less favourable route for the oxidation of glutamate (produced by hydrolysis of glutamine) in Ehrlich ascites-tumour cells, and perhaps also kidney, than the glutamate dehydrogenase pathway, as the production of acetyl-CoA strongly inhibits the first mechanism. The predominance of the transamination pathway in the oxidation of glutamate by isolated mitochondria can be explained by a restricted permeability of the inner mitochondrial membrane to glutamate and by a more favourable location of glutamate-oxaloacetate transaminase compared with that of glutamate dehydrogenase.  相似文献   

13.
1. The metabolism of glutamine and ammonia was studied in isolated perfused rat liver in relation to its dependence on the direction of perfusion by comparing the physiological antegrade (portal to caval vein) to the retrograde direction (caval to portal vein). 2. Added ammonium ions are mainly converted to urea in antegrade and to glutamine in retrograde perfusions. In the absence of added ammonia, endogenously arising ammonium ions are converted to glutamine in antegrade, but are washed out in retrograde perfusions. When glutamine synthetase is inhibited by methionine sulfoximine, direction of perfusion has no effect on urea synthesis from added or endogenous ammonia. 3. 14CO2 production from [1-14C]glutamine is higher in antegrade than in retrograde perfusions as a consequence of label dilution during retrograde perfusions. 4. The results are explained by substrate and enzyme activity gradients along the liver lobule under conditions of limiting ammonia supply for glutamine and urea synthesis, and they are consistent with a perivenous localization of glutamine synthetase and a predominantly periportal localization of glutaminase and urea synthesis. Further, the data indicate a predominantly periportal localization of endogenous ammonia production. The results provide a basis for an intercellular (as opposed to intracellular) glutamine cycling and its role under different metabolic conditions.  相似文献   

14.
Hepatocyte heterogeneity in response to extracellular ATP   总被引:4,自引:0,他引:4  
1. The metabolic and hemodynamic effects of extracellular ATP in perfused rat liver were compared during physiologically antegrade (portal to hepatic vein) and retrograde (hepatic to portal vein) perfusion. ATP in concentrations up to 100 microM was completely hydrolyzed during a single liver passage regardless of the perfusion direction. 2. The ATP(20 microM)-induced increases of glucose output, perfusion pressure and ammonium ion release seen during antegrade perfusions were diminished by 85-95% when the perfusion was in the retrograde direction, whereas the amount of Ca2+ mobilized from the liver was decreased by only 60%. The maximal rate of initial K+ uptake following ATP was dependent on the amount of Ca2+ mobilized regardless of the direction of perfusion. In the presence of UMP (1 mM), an inhibitor of ATP hydrolysis by membrane-bound nucleotide pyrophosphatase, the effect of the direction of perfusion on the glycogenolytic response to ATP (20 microM) was largely diminished. 3. For a maximal response of glucose output, Ca2+ release and perfusion pressure to extracellular ATP, concentrations of about 20 microM, 50 microM and 100 microM were required during antegrade perfusion, respectively. These maximal responses could also be obtained during retrograde perfusion, but higher ATP concentrations were required (120 microM, 80 microM, above 200 microM, respectively). 4. 14CO2 production from [1-14C]glutamate which occurs predominantly in the perivenous hepatocytes capable of glutamine synthesis was stimulated by extracellular ATP (20 microM); it was only slightly affected by the direction of perfusion. In antegrade perfusions, ATP (20 microM) increased 14CO2 production from 88 to 162 nmol g-1 min-1, compared to an increase from 91 to 148 nmol g-1 min-1 in retrograde perfusion. 5. The data are interpreted to suggest that (a) extracellular ATP is predominantly hydrolyzed by a small hepatocyte population located at the perivenous outflow of the acinus; (b) glycogenolysis to glucose is predominantly localized in the periportal area; (c) contractile elements (sphincters) exist near the inflow of the sinusoidal bed; (d) a considerable portion of the Ca2+ mobilized by ATP is derived from liver cells that do not contribute to hepatic glucose output.  相似文献   

15.
Proline and hepatic lipogenesis   总被引:1,自引:0,他引:1  
The effects of proline on lipogenesis in isolated rat hepatocytes were determined and compared with those of lactate, an established lipogenic precursor. Proline or lactate plus pyruvate increased lipogenesis (measured with 3H2O) in hepatocytes from fed rats depleted of glycogen in vitro and in hepatocytes from starved rats. Lactate plus pyruvate but not proline increased lipogenesis in hepatocytes from starved rats. ( - )-Hydroxycitrate, an inhibitor of ATP-citrate lyase, partially inhibited incorporation into saponifiable fatty acid of 3H from 3H2O and 14C from [U-14C]lactate with hepatocytes from fed rats. Incorporation of 14C from [U-14C]proline was completely inhibited. Similar complete inhibition of incorporation of 14C from [U-14C]proline by ( - )-hydroxycitrate was observed with glycogen-depleted hepatocytes or hepatocytes from starved rats. Inhibition of phosphoenolpyruvate carboxykinase by 3-mercaptopicolinate did not inhibit the incorporation into saponifiable fatty acid of 3H from 3H2O or 14C from [U-14C]proline or [U-14C]lactate. Both 3-mercaptopicolinate and ( - )-hydroxycitrate increased lipogenesis (measured with 3H2O) in the absence or presence of lactate or proline with hepatocytes from starved rats. The results are discussed with reference to the roles of phosphoenolpyruvate carboxykinase, mitochondrial citrate efflux, ATP-citrate lyase and acetyl-CoA carboxylase in proline- or lactate-stimulated lipogenesis.  相似文献   

16.
Dichloroacetate (an activator of pyruvate dehydrogenase) stimulates 14CO2 production from [U-14C]glucose, but not from [U-14C]glutamate, [U-14C]aspartate, [U-14C]- and [1-14C]-valine and [U-14C]- and [1-14C]-leucine. It is concluded (1) that pyruvate dehydrogenase is not rate-limiting in the oxidation to CO2 of amino acids that are metabolized to tricarboxylic acid-cycle intermediates, and (2) that carbohydrate (and not amino acids) is the main carbon precursor in alanine formation in muscle.  相似文献   

17.
The rates of conversion of D-(-)-3-hydroxy[3-14C]butyrate, [3-14C]acetoacetate, [6-14C]glucose and [U-14C]glutamine into 14CO2 were measured in the presence and absence of alternative oxidizable substrates in intact dissociated cells from the brains of young and adult rats. When unlabelled glutamine was added to [6-14C]glucose or unlabelled glucose was added to [U-14C]glutamine, the rate of 14CO2 production was decreased in both young and adult rats. The rate of oxidation of 3-hydroxy[3-14C]butyrate was also decreased by the addition of unlabelled glutamine in both age groups, but in the reverse situation, i.e. unlabelled 3-hydroxybutyrate added to [U-14C]glutamine, only the brain cells from young rats were affected. No significant effects were seen when glutamine and acetoacetate were combined. The addition of either of the two ketone bodies to [6-14C]glucose markedly lowered the rate of 14CO2 production in young rats, but in the adult only 3-hydroxybutyrate was effective and the magnitude of decrease in the rate of [6-14C]glucose oxidation was much lower than in young animals. Unlabelled glucose decreased the rate of [3-14C]acetoacetate oxidation to a minor extent in brain cells from both age groups; when added to 3-hydroxy[3-14C]butyrate, glucose had no effect in young rats and greatly enhanced 14CO2 production in adult brain cells. Many of these patterns of substrate interaction in dissociated brain cells differ from those in whole homogenates; they may be a function of the plasma membranes and the role of a carrier-mediated transport system or a reflection of a difference in the population of cell types or subcellular organelles in these two preparations.  相似文献   

18.
Metabolic Fate of 14C-Labeled Glutamate in Astrocytes in Primary Cultures   总被引:2,自引:0,他引:2  
The metabolic fate of L-[U-14C]- and L-[1-14C]glutamate was studied in primary cultures of mouse astrocytes. Conversion of the uniformly labeled compound to glutamine and aspartate was followed by determination of specific activities after dansylation with [3H]dansyl chloride and subsequent thin layer chromatography of the dansylated amino acids. Metabolic fluxes were calculated from the alterations of specific activities and the pool sizes, which were likewise measured by a dansylation method. Formation of 14CO2 from [1-14C]glutamate was determined by the trapping of CO2 in hyamine hydroxide in a gas-tight chamber, which is, in the known absence of glutamate decarboxylase activity in the cultured astrocytes, an unequivocal expression of the metabolic flux via alpha-ketoglutarate to CO2 and succinyl-CoA. The metabolic fluxes determined by these procedures amounted to 2.4 nmol/min/mg protein for glutamine synthesis, 1.1 nmol/min/mg protein for aspartate production, and 4.1 nmol/min/mg protein for formation and subsequent decarboxylation of alpha-ketoglutarate. The latter process was unaffected by virtually complete inhibition of glutamate-oxaloacetic transaminase with aminooxyacetic acid, indicating that the formation of alpha-ketoglutarate occurs as an oxidative deamination rather than as a transamination. This suggests that the formation of alpha-ketoglutarate from glutamate represents a net degradation, not an isotopic exchange.  相似文献   

19.
In theory, the complete oxidation to CO2 of amino acids that are metabolized by conversion into tricarboxylic acid-cycle intermediates may proceed via their conversion into acetyl-CoA. The possible adrenergic modulation of this oxidative pathway was investigated in isolated hemidiaphragms from 40 h-starved rats. Adrenaline (5.5 microM), phenylephrine (0.49 mM) and dibutyryl cyclic AMP (10 microM) inhibited 14CO2 production from 3 mM-[U-14C]valine by 35%, 28% and 19% respectively. At the same time, these agents stimulated glycogen mobilization (measured as a decrease in glycogen content) and glycolysis (measured as lactate release). Adrenaline, phenylephrine and dibutyryl cyclic AMP did not inhibit 14CO2 production from 3 mM-[U-14C]aspartate or 3 mM-[U-14C]glutamate, although, as in the presence of valine, the agents stimulated glycogen mobilization and glycolysis. The rate of proteolysis (measured as tyrosine release in the presence of cycloheximide) was not changed by adrenaline. The data indicate that the adrenergic inhibition of 14CO2 production from [U-14C]valine was not a consequence of radiolabel dilution. Inhibition was apparently specific for branched-chain amino acid metabolism in that the adrenergic agonists also inhibited 14CO2 production from [1-14C]valine, [1-14C]leucine and [U-14C]isoleucine. Since 14CO2 production from the 1-14C-labelled substrates is a specific measure of decarboxylation in the reaction catalysed by the branched-chain 2-oxo acid dehydrogenase complex, it is at this site that the adrenergic agents are concluded to act.  相似文献   

20.
Role of plasma membrane transport in hepatic glutamine metabolism   总被引:6,自引:0,他引:6  
In livers of fed rats and in perfused livers supplied with a physiological portal glutamine concentration of 0.6 mM, the mitochondrial and cytosolic glutamine concentrations are 20 mM and 7 mM, respectively, thus, the mitochondrial/cytosolic glutamine concentration gradient is 2-3. Uptake and release of glutamine by periportal and perivenous hepatocytes occurs predominantly by an Na+-dependent transport system (so-called system 'N'). Histidine in near-physiological concentrations inhibits both glutamine uptake by periportal hepatocytes and its release by perivenous hepatocytes. This is not due to an inhibition of glutamine-metabolizing enzymes by histidine or its metabolites. With physiological portal glutamine concentrations (0.6 mM), stimulation of glutaminase flux or of glutamine transaminase flux is followed by a decrease of hepatic glutamine levels to about 80% or 30%, respectively, glutamine levels are further decreased to 50% or 20% in the presence of histidine. When glutamine is synthesized endogenously (no glutamine added), the histidine-induced inhibition of glutamine release is paralleled by a 210% increase of the hepatic tissue level of glutamine. In experiments with and without methionine sulfoximine and in the absence of added glutamine, the glutamine content in the small perivenous hepatocyte population containing glutamine synthetase is estimated to be about 3.5 mumol/g wet weight and that in the periportal hepatocytes as low as 0.1 mumol/g wet weight. In contrast to the prevailing view, it is concluded that glutamine transport across the plasma membrane of hepatocytes is a potential regulatory site in glutamine degradation and synthesis, especially under the influence of effectors like histidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号