首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron micrographs of thin sections of nuclear, microsomal, and mitochondrial fractions obtained from a carrageenin-induced granuloma showed considerable contamination of the heavier by the lighter fractions. Striated collagen fibrils could be identified in the nuclei + debris fraction. Only a few striated fibrils occurred in the mitochondrial fraction; very fine filaments (diameter 50 A) could be seen in this fraction, but could not be distinguished with certainty from fibrillar material derived from broken nuclei. 35 per cent of the mitochondrial and 80 per cent of the microsomal collagen was extractable by 0.2 M NaCl and could be purified by the standard methods of solution and reprecipitation. The amino acid composition of these collagen fractions determined by ion exchange chromatography was within the range normally found for collagen and gelatin from other mammalian species, allowing for 10 to 20 per cent of some non-collagenous contaminant of the microsomal collagen. Hydroxyproline and proline were isolated by chromatography on paper from hydrolysates of the nuclear, mitochondrial, and microsomal collagen fractions, after incubation of tissue slices with L-14C-proline. The specific activities of the hydroxyproline from these collagens were in the approximate ratio 1:2:6, while that of bound hydroxyproline derived from the supernatant was only 1, indicating primary synthesis of collagen in the microsomes. Attempts to demonstrate incorporation of L-14C-proline into collagen or into free hydroxyproline in cell free systems were unsuccessful, nor was it possible to demonstrate non-specific incorporation of L-14C-valine into TCA-insoluble material by various combinations of subcellular fractions.  相似文献   

2.
Metabolites of -[14C]proline were found in the trichloroacetic acid-soluble fraction of 16-day-old chick embryo frontal bones. In several ion-exchange procedures these metabolites interfered with the analysis of hydroxyproline derived from the metabolic breakdown of collagen. The major metabolite was identified as glutamic acid by its chromatographic and crystallization properties. It was eluted from AG50 cation-exchange resin with 1.0 HCL in the hydroxyproline region, but was separated from hydroxyproline on a DC-6A column in the amino acid analyzer. Another metabolite was identified as aspartic acid. It was not separated from hydroxyproline on either AG50 using 1 HCL for elution or on DC-6A using 0.1 sodium citrate, pH 3.25, for elution, but adequate separation was obtained by elution with 0.2 sodium citrate buffer at pH 2.91. Formation of these metabolites was not related either to protein synthesis or proline hydroxylation. Therefore, it is possible to analyze for hydroxyproline accurately by using a separate unhydroxylated sample to correct for the presence of the metabolites. The formation of glutamic acid suggested that proline oxidase activity might be present in bone tissue, but none was detected using a sensitive radioisotopic assay. Although the amount of radioactivity found in the metabolites was 36% of the amount of [14C]proline incorporated into protein, no radioactive glutamic or aspartic acid was present in protein hydrolyzates. This observation suggests that the metabolites did not enter the major amino acid pool used for protein synthesis.  相似文献   

3.
In a previous study where rat skin collagen was labeled with 18O in the hydroxyl group of the collagen hydroxyproline we noticed that the decay rate of this label was much faster than had been observed when the skin collagen hydroxyproline was labeled with 3H in the prolyl ring. In this study a rat was labeled concurrently with [18O2] and [3H] proline and the rate of decline of both labels was determined in rat skin collagen hydroxyproline. After correction for growth dilution of the skin collagen the [18O] hydroxyproline was found to have a half-life of 27 days while the [3H] hydroxyproline had a half-life of 53 days. The decay rate of the [18O] hydroxyproline represents the true turnover rate of collagen since there is no possibility of recycling this label. Hence, the difference between this and the [3H] hydroxyproline decay rate is due to recycling of l-[3H] proline into new collagen. The efficiency of recycling of proline from catabolized collagen into new collagen was about 93%.  相似文献   

4.
Monkey arterial smooth muscle cells (SMC) which are stimulated to proliferate in the presence of 5% monkey blood serum (MBS) and which remain quiescent in 5% monkey platelet-poor plasma serum (MPPPS) were examined for their ability to synthesize collagen in each of these conditions in culture. Collagen synthesis was measured by determining amounts of newly formed labeled hydroxyproline, following labelling in the presence of [3H]proline and ascorbic acid. Ascorbate requirements of SMC were examined to assure maximal hydroxylation. SMC synthesize the same amount of collagen/cell in 5% whole blood serum (MBS) during the early phase of rapid proliferation as during slow growth in later phases in culture. SMC grown in the presence of serum-lacking platelet factors synthesize 60–90% less collagen and 60–90% less non-collagen protein (per cell or per mg protein) than cells grown in MBS. Non-collagen protein synthesis was measured as incorporation of both [3H]proline and of [3H]leucine, determined as trichloroacetic acid (TCA)-precipitable material. Previous studies indicate that a factor derived from platelets is the principal mitogen present in whole blood serum for diploid cells such as SMC and fibroblasts in culture. Similarly derived factors are potent stimulators of both collagen and non-collagen protein synthesis by SMC. SMC, quiescent in medium lacking platelet derived material (MPPPS), is being used to investigate factors important in SMC proliferation since this is a significant event in atherogenesis in vivo. An increased deposition of collagen also occurs during atherogenesis. Consequently it will be useful to employ similar cultures of quiescent SMC to examine agents which affect production of this connective tissue matrix protein.  相似文献   

5.
Experiments were carried out to determine whether bone cells isolated from rat calvaria degrade newly synthesized collagen intracellularly prior to secretion and to assess the effect of dichloromethylenebisphosphonate, a compound shown to stimulate collagen synthesis during this event. The findings indicate that isolated bone cells grown in culture degraded a proportion (average 16%) of newly synthesizes collagen prior to secretion. This process was markedly reduced by exposure to dichloromethylenebisphosphonate in a dose-related manner. Concomitantly with the observed decrease of degradation, an increase of collagen synthesis was detected as determined by the incorporation of [3H]proline into collagenase-digestible proteins or by the conversion of [3H]proline into [3H]hydroxyproline. No similar enhancement on total non-collagenous protein synthesis was evident. Dichloromethylenebisphosphonate did not influence the extracellular degradation of collagen. Although the reduction in intracellular degradation accounted only for part of the bisphosphonate mediated increase in net collagen synthesis, it is conceivable that the rate of collagen synthesis is regulated, at least in part, by mechanisms that modulate the level of intracellular degradation.  相似文献   

6.
Summary This study describes the ability of aortic smooth muscle cells to synthesize and accumulate collagen with time in culture. Inasmuch as smooth muscle cell cultures multilayer and continue to divide, albeit slowly, and can be maintained in the same vessels where seeded for extended periods of time, a long-term aging study from a single subcultivated population of cells was carried out. This is different from the usual cell-culture aging achieved by an increase in cell population doublings obtained by repeated subcultivations. The latter process, which is trypsin induced, involves a changing cellular environment including the extracellular matrix that is produced by the cells in culture. Second subcultures of weanling rabbit, aortic media, smooth muscle cells maintained for different periods of time up to 14 wk displayed decreasing hydroxyproline formation with time. Proline hydroxylation was determined by pulsing these second-passage cells with [14C]proline for 24 h at various times during the 14 wk period. The cell layer and medium were evaluated separately for radioactive proline and hydroxyproline and the medium for bacterial collagenase-susceptible protein as well. The percent of hydroxylation in the medium decreased from >31% within 1 wk after plating to 15.2% after 14 wk in culture. The percent of collagenase-susceptible protein in the medium decreased in a comparable manner. The DNA levels increased during the entire period although initially somewhat more rapidly. Accumulation of protein in the extracellular matrix continued during the 14-wk span. The accumulation of hydroxyproline in the extracellular matrix also continued to increase throughout the culture period, but it did slow down significantly. Yet the cells appear not to have lost their ability to accumulate connective tissue and protein in the insoluble cell layer. The data suggest clearly that the percent collagen synthesis relative to total protein synthesis decreases in the older cultures; total protein synthesis also decreases as expected. This study was supported by NIH Program Projects AG00001 and HL 13262.  相似文献   

7.
8.
The capacity of lung explant cultures to synthesize collagen can be estimated by determining the content of [3H]hydroxyproline in protein following incubation with [3H]proline. The technique requires acid hydrolysis followed by quantitative separation of hydroxyproline from proline for scintillation counting and is often restricted to methods that can accommodate large samples because of relatively low specific radioactivity. A method which is useful for such samples, providing rapid separation of nonderivatized amino acids by ion-exchange HPLC, is described here. The HPLC system employs an HPX-87C cation-exchange column in 10 mm calcium acetate, pH 5.5, at 85°C. Under isocratic conditions hydroxyproline is completely resolved from proline with quantitative recovery of the 3H cpm applied to the column. Large amounts of material, equivalent to at least 150 mg wet wt of lung, can be applied without affecting resolution or recovery, and samples can be injected at intervals as short as 40 min. This method was used to study collagen biosynthesis in a model of pulmonary fibrosis induced in rabbits by the tumor-promoting agent, phorbol myristate acetate (PMA), and provides information concerning total protein synthesis as well as production of collagen. The data show a doubling in the rate of collagen production in lung explants prepared from animals treated with PMA compared with explants from control animals.  相似文献   

9.
Plant cell walls contain a glycoprotein component rich in the otherwise rare amino acid hydroxyproline. We examined the synthesis and accumulation of wall hydroxyproline during different states of elongation growth in pea epicotyls. Light-grown peas contained more wall hydroxyproline than their taller, dark-grown counterparts. When elongation was studied by marking growing stems in situ, there was a marked accumulation of wall hydroxyproline coincident with the cessation of elongation. Dividing and elongating regions of the epicotyl showed less wall hydroxyproline than did regions where elongation was no longer occurring.Hydroxyproline biosynthesis was examined by incubation of excised sections of tissues in various growth states in 14C-proline. The extent of conversion of these residues to 14C-hydroxyproline served as a measure of the rate of hydroxyproline synthesis. This rate was highest in tissues which had ceased elongation. The low rate of hydroxyproline synthesis in dividing and elongating cells was probably not due to the inability to hydroxylate peptidyl proline or to secrete proteins.These data show a positive correlation between the synthesis and accumulation of cell wall hydroxyproline and the cessation of cell elongation in pea epicotyls.  相似文献   

10.
Gingival tissue obtained from diphenylhydantoin-treated patients was cultured in the presence of [14C]proline for 24 h. The radioactive medium was removed and the tissue cultured for three days more. DNA, protein, hydroxyproline, proline and radioactivity determinations in the tissue indicated increased cellular proliferation, increased collagen contents and decreased breakdown of collagen in the affected tissues. The media were assayed for dialyzable and non-dialyzable hydroxyproline contents. It was found that the media in which diphenylhydantoin tissues were cultured contained more than twice as much non-dialyzable hydroxyproline than the controls. It was concluded that diphenylhydantoin brought about a reduction in collagen breakdown thus explaining the accumulation of hydroxylated collagen in the tissue.  相似文献   

11.
We decided to study the effect of glucose deprivation on collagen metabolism in MCF7 cells. The incorporation of [3H]‐proline into collagenase‐sensitive and hydroxyproline‐containing proteins was used as an index of collagen synthesis, whereas pulse—chase technique was employed to evaluate the degradation of newly synthesized proteins. The MCF7 cells incubated in high glucose medium synthesized detectable amounts of collagenous proteins. Most of them were found in the cell layer. The shortage of glucose resulted in about 30% reduction in collagen synthesis. The pulse—chase experiments demonstrated that proportionally less collagen was degraded in cultures incubated in low‐glucose than in high‐glucose media.  相似文献   

12.
The collagen content and the rate of collagen synthesis were measured in the anterior and posterior latissimus dorsi muscles and in heart from fully grown fowl. This was done by measuring the proline/hydroxyproline ratios in the muscle and by a constant infusion of [14C]proline. These measurements were also made during the hypertrophy of the anterior muscle in response to the attachment of a weight to one wing of the fowl. In the non-growing muscles the collagen content was higher in the anterior muscle (22.8% of total protein) than in the posterior muscle (9.5% of total protein) and lowest in the heart (3.8% of total protein). In the two skeletal muscles a little over half of the collagen was accounted for by internal collagen (i.e. perimysium and endomysium). Collagen synthesis in these non-growing muscles occurred at 0.59%/day in each of the two skeletal muscles and at 0.88%/day in the cardiac muscle. During hypertrophy the collagen content of the anterior muscle increased, but not as fast as intracellular protein, so that after 58 days the concentration had fallen from 22.8 to 14.4% of total protein. This may have resulted from an incomplete production of the epimysial sheath, since the concentration of internal collagen did not fall and as a result accounted for over 80% of the total in the enlarged muscle. Collagen synthesis increased 8-fold during the first week of the hypertrophy, but never amounted to more than 4% of the total muscle protein synthesis. When the net accumulation of collagen is compared with the increased rate of synthesis it is concluded that between 30 and 70% of the newly synthesized collagen may have been degraded.  相似文献   

13.
An improved procedure was developed to extract prolyl hydroxylase from tendon cells of chick embryos with detergent, and improved assays were developed for both the activity of the enzyme and the amount of enzyme protein. Freshly isolated tendon cells were found to contain approx. 100 μg of enzyme protein per 108 cells and 40–50% of the enzyme protein was active. When the cells were cultured, they were found to contain the same amount of enzyme protein by only 15–20% of the enzyme protein was active. Gel filtration of cell extracts indicated that the active form of prolyl hydroxylase in freshly isolated tendon cells and in cultured tendon cells had the same apparent size and the same activity per μg of immunoreactive protein as enzyme which was shown to be a tetramer. The inactive form was found to have about the same apparent size as subunits of the enzyme.When freshly isolated cells were incubated for 2 h in the presence of 40 μg per ml of ascorbate, there was a slight increase in the rate of hydroxyproline synthesis. In cultured cells, ascorbate at a concentration of 40 μg per ml caused a 2-fold increase in the rate of hydroxyproline synthesis within 30 min. However, ascorbate did not increase the activity of prolyl hydroxylase in extracts from either cell system. Therefore it appears that the influence of ascorbate on synthesis of procollagen hydroxyproline by the cells studied here must be ascribed to a cofactor effect on the hydroxylation reaction similar to that observed with purified enzyme, and it does not involve “activation” of inactive enzyme protein to active enzyme as has been observed in cultures of L-929 and 3T6 mouse fibroblasts.  相似文献   

14.
Cultured normal human skin fibroblasts were incubated with [14C]proline in the presence and absence of 1.0 mM p-nitrophenyl-β-D-xylose. Formation of non-dialyzable hydroxyproline was used as a measure of collagen synthesis. Although total [14C]proline incorporation was similar in the two cultures, [14C]hydroxyproline formation was significantly decreased in the β-xyloside-treated cultures. Increasing the period of incubation increased the radioactivity of the insoluble collagen fraction in untreated fibroblasts, however, in β-xyloside-treated cultures no such increase was observed. In contrast to the decreased production of collagen, growth of cells in the presence of the β-xyloside induced the synthesis of high levels of soluble glycosaminoglycans as measured by 35SO4 incorporation into isolated polysaccharide.  相似文献   

15.
An improved procedure was used to assay prolyl hydroxylase activity in both early-log and late-log L-929 fibroblasts grown on plastic surfaces. When 40 μg/ml of ascorbate was added to early-log phase cultures, the rate of hydroxy-[14C] proline synthesis increased 2-fold within 4 h, but there was no change in prolyl hydroxylase activity per cell. The results indicated therefore that ascorbate did not “activate” prolyl hydroxylase in the sense of converting inactive enzyme protein to active enzyme protein. Instead ascorbate appeared to increase hydroxyproline synthesis in early-log L-929 fibroblasts because the prolyl hydroxylase reaction in such cells was limited by the availability of ascorbate or a similar cofactor. When 40 μg/ml of ascorbate was added to late-log phase cultures, there was essentially no effect on the rate of hydroxyl[14C]-proline synthesis or prolyl hydroxylase activity. The late-log phase cells, however, contained three times more enzyme activity and about two times more immuno-reactive enzyme protein than early-log phase cells. In addition, the rate of protein synthesis per cell in late-log phase cells was only one-tenth the rate in early-log phase cells. The results suggested that as the cells grew to confluency, collagen polypeptides were more completely hydroxylated in part because the rate of polypeptide synthesis decreased and at the same time prolyl hydroxylase activity per cell increased. The results appear to provide an alternate explanation for previous observations on the effects of ascorbate and “crowding” on hydroxy[roline synthesis in cultures of L-929 fibroblasts.  相似文献   

16.
The relative rate of collagen synthesis in the free-living nematode Panagrellus silusiae during postembryonic development was found to be discontinuous by measuring either the incorporation of tritium into material extracted as collagen or the amount of collagen-bound tritiated proline and hydroxyproline after 2-hr incubations of whole worms with [3H]proline. A peak of collagen production preceded each of the three molts that were examined. Moreover, protocollagen prolyl hydroxylase activity during each intermolt period paralleled the pattern of collagen synthesis. On the other hand, a triphasic pattern was not observed when noncollagenous proteins were labeled with either [3H]tryptophan or [3H]leucine. In addition, the level of soluble radioactive proline that accumulates in whole organisms after 2-hr incubation periods did not fluctuate appreciably during postembryonic development. The mean ratio of hydroxy-proline to proline in a number of collagen samples extracted at various times during the maturation phase was 0.113 ± 0.040. Pulse and chase experiments with [3H]proline indicated that most of the collagen synthesized during a peak period is lost after the second ecdysis following the labeling interval. In contrast, a considerable proportion of the collagen synthesized during nonpeak periods is retained throughout the postembryonic period. It is postulated that the modulated pattern of collagen biosynthesis in Panagrellus reflects, for the most part, a quantitative regulation of the production of cuticular collagen during postembryonic development.  相似文献   

17.
Characteristic features of collagen metabolism in human skin fibroblasts were studied in relation to cell density. Measuring peptide-bound hydroxyproline we found that collagen synthesis per cell decreased when cultures approached confluency. On the other hand, the relative rate of collagen synthesis (collagen/total protein) was higher in quiescent than in proliferating cultures. With increasing cell density the proportion of type III collagen in comparison with type I was found to be slightly increased. In addition, in low-density cultures [alpha I(I)]3 collagen trimers were produced in considerable amounts, whereas they were no longer detected in cultures with a high cell density. Although hydroxylation of proline residues was normal in all cell stages, conversion of procollagen into collagen was found to depend strongly on the density at which the cells were investigated. Almost no cleavage of procollagen peptides was observed in rapidly growing cells, whereas highly confluent cell cultures converted most of the newly synthesized procollagen molecules.  相似文献   

18.
A specific and sensitive method is described for the isolation and quantitation of [14C]proline and [14C]hydroxyproline from uterine collagen of the immature rat. Selectivity is achieved in this isolation by using a protease-free bacterial collagenase. There is complete release of hydroxyproline from uterine protein if the latter is suspended by sonication prior to treatment with collagenase. There is a consistent recovery of [14C]proline and [14C]hydroxyproline when they are added to protein hydrolysates of uterus and then subjected to the procedures required for their isolation and quantitation. It is possible using this method to determine the incorporation of [14C]proline into collagen of the rat uterus and to quantitate its conversion to [14C]hydroxyproline. Coupled with the colorimetric methods for proline and hydroxyproline, it is also possible to determine their specific activity.  相似文献   

19.
Significant levels of prolyl hydroxylase activity (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase; EC 1.14.11.2) have been found in freshly isolated hepatocytes prepared from normal or regenerated adult rat liver and primary non-proliferating monolayer cultures of these cells. Four days after partial hepatectomy, the intact regenerated liver contained two times the normal level of prolyl hydroxylase activity. Freshly isolated hepatocytes contained 24% of the total prolyl hydroxylase activity in normal liver and 47% of that in regenerated liver. Upon incubation of hepatocytes for 24 h in a chemically defined culture medium containing insulin, prolyl hydroxylase activity rose 2- to 3-fold, and gradually declined during the next 48 h. The rise in prolyl hydroxylase activity was blocked by addition of cycloheximide to the culture medium. The presence of prolyl hydroxylase activity in hepatocyte cultures was not likely due to contamination with non-parenchymal liver cells. The latter cells contained less than 20% of the total enzyme activity recovered in all cells isolated from the liver. Furthermore, prolyl hydroxylase was localized by immunofluorescence uniformly to the hepatocytes in culture. Cultured hepatocytes converted [14C]proline to [14C]hydroxyproline at rates comparable to those reported for whole liver. However, only a small portion of the hydroxyproline containing product was present as collagen protein, suggesting its rapid degradation in culture. We conclude that the liver parenchymal cell may actively participate in collagen synthesis and possibly in collagen degradation.  相似文献   

20.
We assessed the effect of streptozotocin-diabetes on in vivo collagen metabolism in skin, aorta and intestine by injecting [3H]proline into rats, 20 days after administering the diabetogen, streptozotocin. One day after [3H]proline injection, diabetic and control animals were killed, their tissues analyzed for both 3H-labeled and unlabeled hydroxyproline and results expressed per entire tissue. Thereby, the effect of diabetes on net collagen synthesis and tissue collagen mass, respectively, was evaluated.Diabetes resulted in a lower content of [3H]collagen in skin and aorta, suggesting decreased net collagen synthesis. This decrease in net synthesis was accompanied by a decrease of collagen mass in skin, whereas aortic collagen mass was unaffected. Consequently, an acceleration of collagen degradation in skin is postulated to have accompanied the expected depression of collagen synthesis; alterations of the physiochemical properties of skin from diabetic rats support this interpretation. For intestine, both net collagen synthesis and mass increased in diabetic rats, reflecting increased collagen synthesis—possibly associated with polyphagy.In conclusion, with regard to collagen metabolism, representative connective tissues respond differently to experimental diabetes, and we suggest that this insight will be useful in future studies aimed at understanding the pathophysiology of connective tissues affected by diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号