首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli NADP+-dependent isocitrate dehydrogenase (IDH; EC 1.1.1.42), encoded by an icd gene, is a tricarboxylic acid (TCA) cycle enzyme responsible for the oxidative decarboxylation of isocitrate to α-ketoglutarate. In order to examine how the icd gene expression is regulated, an icd-lacZ reporter fusion was constructed. While the icd gene was induced in exponential growth phase, it was repressed in stationary growth phase. Genetic inactivation of an rpoS gene, whose product is an alternative sigma factor, induced the icd gene expression approximately 4.8 times more in the stationary phase and the IDH enzyme activity in the rpoS mutant was 3.2 times higher than that in the wild type, indicating that the RpoS factor acts as a negative regulator of the icd gene expression in the stationary phase.  相似文献   

2.
3.
It is now well established that the σS subunit of RNA polymerase is a master regulator in a complex regulatory network that governs the expression of many stationary-phase-inducible genes in Escherichiacoli. In this review, more recent findings will be summarized that demonstrate that σS also acts as a global regulator for the osmotic control of gene expression, and actually does so in exponentially growing cells. Thus, many σS-dependent genes are induced during entry into stationary phase as well as in response to osmotic upshift. K+ glutamate, which accumulates in hyperosmotically stressed cells, seems to specifically stimulate the activity of σS-containing RNA polymerase at σS-dependent promoters. Moreover, osmotic upshift results in an elevated cellular σS level similar to that observed in stationary-phase cells. This increase is the result of a stimulation of rpoS translation as well as an inhibition of the turnover of σS, which in exponentially growing non-stressed cells is a highly unstable protein. Whereas the RNA-binding protein HF-I, previously known as a host factor for the replication of phage Qβ RNA, is essential for rpoS translation, the recently discovered response regulator RssB, and ClpXP protease, have been shown to be required for σS degradation. The finding that the histone-like protein H-NS is also involved in the control of rpoS translation and σS turnover, sheds new light on the function of this protein in osmoregulation. Finally, preliminary evidence suggests that additional stresses, such as heat shock and acid shock, also result in increased cellular σS levels in exponentially growing cells. Taken together, σS function is clearly not confined to stationary phase. Rather, σS may be regarded as a sigma factor associated with general stress conditions.  相似文献   

4.
5.
6.
The rpoS-encoded σS subunit of RNA polymerase regulates the expression of stationary phase and stress response genes in Escherichia coli. Recent study of our DNA microarray analysis suggested that the rpoS expression is affected by multiple two-component systems. In this study, we identified two-component-system mutants in which the rpoS expression increased. The regulatory manner of the systems on rpoS expression is suggested.  相似文献   

7.
In this study, rpoS gene was identified from Edwardsiella tarda EIB202 and its functional role was analyzed by using an in-frame deletion mutant ∆rpoS and the complemental strain rpoS +. Compared with the wild type and rpoS +, ∆rpoS was impaired in terms of the ability to survive under oxidative stress and nutrient starvation, as well as the resistance to 50% serum of Scophthalmus maximus in 3 h, demonstrating essential roles of RpoS in stress adaptation. The rpoS mutant also displayed markedly increased chondroitinase activity and biofilm formation. Real-time polymerase chain reaction revealed that the expression level of quorum sensing autoinducer synthetase genes luxS and edwI was increased by 3.7- and 2.5-fold in the rpoS mutant strain. Those results suggested that rpoS might be involved in the negative or positive regulation of chondroitinase and biofilm formation, or quorum sensing networks in E. tarda, respectively. Although there were no obvious differences between the wild-type and the rpoS mutant in adherence of epithelioma papulosum cyprini (EPC) cell and in the lethality on fish model, rpoS deletion leads to the drastically reduced capacity for E. tarda to internalize in EPC cells, indicating that RpoS was, while not the main, the factor required for the virulence network of E. tarda.  相似文献   

8.
9.
Shigella flexneri grown to stationary phase has the ability to survive for several hours at pH 2.5. This acid resistance, which may contribute to the low infective dose associated with shigellosis, is dependent upon the expression of the stationary-phase-specific sigma factor σs. Using random TnphoA and TnlacZ mutagenesis we isolated five acid-sensitive mutants of S. flexneri, which had lost their ability to survive at pH 2.5 for 2 h in vitro. Each transposon insertion with flanking S. flexneri DNA was cloned and sequenced. Database searches indicated that two TnlacZ mutants had an insertion within the hdeA gene, which is the first gene in the hdeAB operon. Acid resistance was restored in one of these mutants by a plasmid carrying the entire hdeAB operon. Further sequence analysis from the remaining TnlacZ and two TnphoA mutants demonstrated that they all had insertions within a previously unidentified open reading frame (ORF), which is directly downstream from the gadB gene. This putative ORF encodes a protein that has homology to a number of inner membrane amino acid antiporters. A 1.8 kb polymerase chain reaction (PCR) product containing this gene was cloned, which was able to restore acid resistance in each mutant. These fusions were induced during entry into late exponential phase and were positively regulated by RpoS. We confirmed that the expression of the acid-resistance phenotype in acidified minimal media was dependent upon the supplementation of glutamic acid and that this glutamate-dependent system was RpoS regulated. Southern hybridization revealed that both the gadC and hdeAB loci are absent in Salmonella. An rpoS deletion mutant of S. flexneri was also constructed to confirm the important role played by this gene in acid resistance. This rpoS ? derivative was extremely acid sensitive. Two-dimensional gel electrophoresis of this mutant revealed that it no longer expressed 27 proteins in late log phase that were present in its isogenic parent. These data indicate that the expression of acid resistance in S. flexneri may be multifactorial and involve proteins located at different subcellular locations.  相似文献   

10.
Magnaporthe oryzae chrysovirus 1 strain A (MoCV1‐A) is the causal agent of growth repression and attenuated virulence (hypovirulence) of the rice blast fungus, M. oryzae. We have previously reported that heterologous expression of MoCV1‐A ORF4 in Saccharomyces cerevisiae results in growth defects, a large central vacuole and other cytological changes. In this study, the effects of open reading frame (ORF) 4 expression in Cryptococcus neoformans, a human pathogenic fungus responsible for severe opportunistic infection, were investigated. Cells expressing the ORF4 gene in C. neoformans showed remarkably enlarged vacuoles, nuclear diffusion and a reduced growth rate. In addition, expression of ORF4 apparently suppressed formation of the capsule that surrounds the entire cell wall, which is one of the most important components of expression of virulence. After 5‐fluoroorotic acid treatment of ORF4‐expressing cells to remove the plasmid carrying the ORF4 gene, the resultant plasmid‐free cells recovered normal morphology and growth, indicating that heterologous expression of the MoCV1‐A ORF4 gene induces negative effects in C. neoformans. These data suggest that the ORF4 product is a candidate for a pharmaceutical protein to control disease caused by C. neoformans.  相似文献   

11.
12.
13.
Colonization on a solid surface is influenced by the cell surface appendages such as flagella and curli, of which expressions are regulated by rpoS gene encoding a sigma factor. In this study, we investigated the effect of rpoS or yggE (a rpoS‐related and stress‐responsive gene) deficiency on the colonization of Escherichia coli BW25113. Under a static condition, the deletion of rpoS or yggE induced 3.9‐ and 3.7‐fold higher colonization as compared to wild‐type cells, respectively, on the solid surfaces. However, under a liquid flow condition, only ΔyggE cells maintained the stable colonization on the surface, and the values of cell layer thickness and cell coverage on the surface were 17 and 9.2 times as high as those of wild‐type cells, respectively. Gene expression analyses revealed that the deletion of rpoS or yggE positively impacted the expressions of genes involved in flagellum formation. On the other hand, curli assembly was severely prohibited by the rpoS deficiency. Here, we proposed that the plentiful flagella on the ΔrpoS and ΔyggE cell surfaces facilitated mainly the colonization under the static condition. Meanwhile, curli existing on the ΔyggE cell surface played an important role in keeping stable cell attachment and developing attached colonies under the flow stress condition. Biotechnol. Bioeng. 2013; 110: 1050–1056. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
The protein RpoS is responsible for mediating cell survival during the stationary phase by conferring cell resistance to various stressors and has been linked to biofilm formation. In this study, the role of the rpoS gene in Escherichia coli O157:H7 biofilm formation and survival in water was investigated. Confocal scanning laser microscopy of biofilms established on coverslips revealed a nutrient-dependent role of rpoS in biofilm formation, where the biofilm biomass volume of the rpoS mutant was 2.4- to 7.5-fold the size of its rpoS+ wild-type counterpart in minimal growth medium. The enhanced biofilm formation of the rpoS mutant did not, however, translate to increased survival in sterile double-distilled water (ddH2O), filter-sterilized lake water, or unfiltered lake water. The rpoS mutant had an overall reduction of 3.10 and 5.30 log10 in sterile ddH2O and filter-sterilized lake water, respectively, while only minor reductions of 0.53 and 0.61 log10 in viable counts were observed for the wild-type form in the two media over a 13-day period, respectively. However, the survival rates of the detached biofilm-derived rpoS+ and rpoS mutant cells were comparable. Under the competitive stress conditions of unfiltered lake water, the advantage conferred by the presence of rpoS was lost, and both the wild-type and knockout forms displayed similar declines in viable counts. These results suggest that rpoS does have an influence on both biofilm formation and survival of E. coli O157:H7 and that the advantage conferred by rpoS is contingent on the environmental conditions.  相似文献   

15.
The rpoS gene from Pseudomonas sp. M18, which encodes predicted protein (an alternative sigma factor s, σS, or σ38) with 99.5% sequence identity with RpoS from Pseudomonas aeruginosa PAO1, was first cloned. In order to investigate the mechanism of rpoS expression, an rpoS null mutant, named M18S, was constructed with insertion of aacC1 cassette bearing a gentamycin resistance gene. With introduction of a plasmid containing an rpoS′–′lacZ translational fusion (pMERS) to wild-type strain M18 or M18S, it was first found that β-galactosidase activity expressed in strain M18S (pMERS) decreased to fourfold of that expressed in the strain M18 (pMERS). When strain M18S (pMERS) was introduced with another plasmid pBBS containing the wild-type rpoS gene, its β-galactosidase expression level was enhanced and almost restored to that in strain M18 (pMERS). Similarly, expression of β-galactosidase from a chromosomal fusion of the promoter of the wild-type rpoS gene with lacZ (rpoSlacZ) was enhanced fivefold in the presence of a plasmid with the wild-type rpoS gene. With these findings, it is suggested that RpoS sigma factor may be involved in autoinducing its own gene expression in Pseudomonas sp. M18.  相似文献   

16.
The RNA polymerase associated with RpoS transcribes many genes related to stationary phase and stress survival in Escherichia coli. The DNA sequence of rpoS exhibits a high degree of polymorphism. A C to T transition at position 99 of the rpoS ORF, which results in a premature amber stop codon often found in E. coli strains. The rpoSam mutant expresses a truncated and partially functional RpoS protein. Here, we present new evidence regarding rpoS polymorphism in common laboratory E. coli strains. One out of the six tested strains carries the rpoSam allele, but expressed a full-length RpoS protein owing to the presence of an amber supressor mutation. The rpoSam allele was transferred to a non-suppressor background and tested for RpoS level, stress resistance and for the expression of RpoS and sigma70-dependent genes. Overall, the rpoSam strain displayed an intermediate phenotype regarding stress resistance and the expression of σS-dependent genes when compared to the wild-type rpoS + strain and to the rpoS null mutant. Surprisingly, overexpression of rpoSam had a differential effect on the expression of the σ70-dependent genes phoA and lacZ that, respectively, encode the enzymes alkaline phosphatase and β-galactosidase. The former was enhanced while the latter was inhibited by high levels of RpoSam.  相似文献   

17.
18.
Escherichia coli WC196, which was obtained from the strain W3110 by nitrosoguanidine mutagenesis as an overproducer of lysine, produced approximately twenty times more cadaverine than did W3110, and had a twenty fold higher level of rpoS gene product, σ38, than in W3110. Both WC196 and W3110 had a stop codon (TAG) in rpoS at position which corresponds to the 33th residue of σ38 protein. In addition, WC196 but not W3110 had a mutation in the gene encoding Ser-tRNA (SerU), called, supD. Analysis of the amino acid sequence of a σ38 preparation from WC196 showed that the 33th residue of σ38 is a serine residue. The ΔrpoS ΔcadA mutant of E. coli W3110 harboring the plasmid containing rpoS, in which the TAG codon was converted to a TCG codon for serine-33 residue of σ38, expressed a significant amount of Ldc and accumulated a large amount of σ38. However, the ΔrpoS ΔcadA mutant of W3110 with the plasmid containing the intact rpoS from W3110 could synthesize neither σ38 nor Ldc significantly.  相似文献   

19.
20.
Summary The structural gene for the Bacillus stearothermophilus glycogen branching enzyme (glgB) was cloned in Escherichia coli. Nucleotide sequence analysis revealed a 1917 nucleotide open reading frame (ORF) encoding a protein with an Mr of 74787 showing extensive similarity to other bacterial branching enzymes, but with a shorter N-terminal region. A second ORF of 951 nucleotides encoding a 36971 Da protein started upstream of the glgB gene. The N-terminus of the ORF2 gene product had similarity to the Alcaligenes eutrophus czcD gene, which is involved in cobalt-zinc-cadmium resistance. The B. stearothermophilus glgB gene was preceded by a sequence with extensive similarity to promoters recognized by Bacillus subtilis RNA polymerase containing sigma factor H (E - H). The glgB promoter was utilized in B. subtilis exclusively in the stationary phase, and only transcribed at low levels in B. subtilis spoOH, indicating that sigma factor H was essential for the expression of the glgB gene in B. subtilis. In an expression vector, the B. stearothermophilus glgB gene directed the synthesis of a thermostable branching enzyme in E. coli as well as in B. subtilis, with optimal branching activity at 53° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号