首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particulate antigen uptake by the mucosa of developing channel catfish was determined by immersing larvae and fry [2-day post-hatch (dph), 1-, 2-, 3-, 4-, and 8-week post-hatch (wph)] to two forms of fluorescent microspheres (FMS): blue FMS were carboxylated, and green FMS were coated via conjugation with a crude extract of Edwardsiella ictaluri outer membrane protein (OMP). Phagocytosis, destination, and clearance appeared similar for the two types of FMS used. In the older age classes, primary uptake was observed in epithelial cells of the torso, fins, nares and to a lesser extent the gills. Fluorescent microspheres were less frequently observed within mononuclear phagocytes in the epidermis, dermis and underlying connective tissue of the tissue mentioned above. Limited FMS trafficking was observed from 4- to 24-h post-immersion (hpi). Significantly higher numbers of FMS (blue and green)/mm(3) of tissue were observed in the posterior kidney of the 4- and 8-wph age classes and in the anterior kidney and spleen of the 8-wph age class when compared to younger age classes (p < 0.05). Significantly higher FMS (blue and green)/mm(3) of tissue were observed in the posterior kidney of 4- and 8-wph fish when compared to all other organs (p < 0.05). The present study indicates that FMS uptake increases with age in channel catfish. The younger age classes may possess an increased ability to exclude particulate antigen, or lack the specific mechanisms that needed to take up particulates in the form of FMS.  相似文献   

2.
Susceptibility of channel catfish to Channel Catfish Virus Disease (CCVD) has been generally considered to be inversely related to age. However, in experimental immersion challenges, we found that channel catfish fry, 3 to 8 d post hatch (dph), are most resistant to CCV and susceptibility increases with age. Initial studies involved 2 spawns that had high CCV carrier percentage. To determine if the resistance seen in the fry was related to the CCV carrier status of the parents, we selected 4 spawns from CCV negative parents and 2 spawns from CCV positive parents and immersion challenged them at 8, 23, 36 and 60 dph with 0, 2.5 x 10(4) or 2.5 x 10(6) plaque forming units (PFU) of CCV l(-1). Survivors of the low-dose exposed groups were rechallenged at 120 dph with 2.5 x 10(6) PFU CCV l(-1). Each brood demonstrated increasing susceptibility to CCVD with age and only the fish that were initially exposed at 60 dph developed protective immunity. Time course assays evaluating tissue levels of virus in channel catfish exposed to CCV at 7, 21 and 42 dph suggested that the resistance was an early event in the infection process. The resistance in fry was most pronounced in fish from CCV positive spawns and was correlated to neutralizing antibody titers in the maternal parent in the 8 dph challenge. However, other factors may be involved because all groups displayed the initial resistance and subsequent susceptibility to CCVD. The age effect may be an important influence on the progression of CCVD outbreaks and indicates the need to consider age for experimental challenges. Additionally, we documented the level of vertical transmission of CCV. Fry from the 4 positive spawns had a CCV prevalence of 40 to 75 %.  相似文献   

3.
4.
The internalization of virulent Chlamydia psittaci 6BC particles by wandering mononuclear phagocytes in the peritoneal cavity of intraperitoneally inoculated mice occurred asynchronously, i.e., fragile reticulate bodies (RB) appeared to be more readily phagocytized than the rigid elementary bodies (EB). Early damage of mononuclear phagocytes occurred after internalization of chlamydiae. This was followed by a decreased uptake of particles, and may explain the relatively long persistence (up to 6 h after inoculation) of free, extracellular, "swollen", and RB-like particles. Internalized particles within phagolysosomes showed varying degrees of disintegration. The subsequent influx of polymorphonuclear phagocytes and monocytes into the inflammed peritoneal cavity may explain the rapid disappearance of chlamydiae and their antigens from the peritoneal fluid. The alteration in ultrastructure of peritoneal cells and chlamydial parasites during the inflammatory process are discussed.  相似文献   

5.
The green sturgeon, Acipenser medirostris, is an anadromous species that migrates from freshwater (FW) to seawater (SW) relatively early in its life history, although the ages and sizes of juveniles at SW entry are not known. Developmental constraints of osmoregulatory organs may either prohibit (i.e., due to salinity tolerance limits) or minimize (i.e., due to substantial osmoregulatory or ionoregulatory energetic costs) SW entry in small fish. Interestingly, larger green sturgeon are often encountered in brackish water (BW) estuaries, perhaps due to an energetic advantage in occupying these near-isosmotic environments. To test hypotheses concerning fish-size effects on the energetic costs of occupying habitats of different salinities, we measured oxygen consumption rates in green sturgeon representing three age groups (100, 170, and 533 days post hatch; dph), which were acclimated for 5 weeks to one of three salinities (FW, <3‰; BW, 10‰; or SW, 33‰). Also, after 7 weeks, final wet masses were compared and blood and muscle tissue samples were taken to assess osmoregulatory abilities. There were no differences in body-mass-adjusted oxygen consumption rates between any salinities or ages, indicating that the energetic costs were not prohibitively high to occupy any of these salinities. The only mortalities occurred in the 100 dph SW group, where 23% of the fish died, from apparent starvation. Final wet masses were comparable between FW and BW for each age group and with the 533 dph SW group, but were lower in SW groups at 100 and 170 dph. Similarly, osmoregulatory abilities, in terms of plasma osmolality, Na+, K+, lactate, and protein concentrations, and muscle water content, were comparable in FW and BW groups at all ages, and with the SW group at 533 dph. These results indicated an age/body size effect in hyperosmotic adaptability, and that juvenile green sturgeon may be found in FW or BW at any age, but only have the ability to enter SW by 1.5 years (75 cm, 1.5 kg) of age.  相似文献   

6.
The effect of 17β‐oestradiol (E2) on the growth of the thymus and its regionalization into cortex and medulla was investigated in juvenile European sea bass Dicentrarchus labrax as they find themselves close to sources of oestrogenic pollution whilst residing in their estuarine nursery areas. While the exposure to 2, 20 and 200 ng l?1 in 60 days post‐hatch (dph) fish tended to cause a non‐monotonous dose–response curve with a significant difference of the cortex size between lowest and highest exposures, the exposure to 20 ng l?1 E2 from 90 dph onwards resulted in a distinct enlargement of the cortex. It is probable that the alteration of the cortex size also affects the T‐cell differentiation and proliferation.  相似文献   

7.
Ovarian differentiation of fathead minnow Pimephales promelas occurred at between 10 and 25 days post‐hatch (dph)(8–11 mm fork length, L F, and 7–12 mg), and was characterized by the presence of meiotic cells in the centre of the gonad, location of the somatic cells at the periphery of the gonad and the formation of an ovarian cavity. In contrast with the developing ovary, in the presumptive testis somatic cells were scattered throughout the gonads and this was evident from 25 dph (fish >10 mm and >11 mg). In males, at 60 dph (15–26 mm and 39–220 mg) the efferent ducts (sperm ducts) were apparent and the testis lobules started to form, but germ cells (spermatogonia) did not enter meiosis until between 90 and 120 dph. Fish of both sexes reached full sexual maturity at between 120 and 150 dph (males: 33–59 mm and 400–2895 mg; females: 24–48 mm and 160–1464 mg). Differences in body size ( L F and mass) between males and females were only apparent when the fish were approaching full sexual maturity (120 dph).  相似文献   

8.
In bay snook (Petenia splendida) larvae the histological development of the digestive system and swim bladder, and their relative timing of differentiation were studied from hatching to 45 days post‐hatch (dph) at 29°C. Newly hatched larvae showed a simple digestive tract, which appeared as a straight undifferentiated tube lined by a single layer of columnar epithelial cells (future enterocytes). The anatomical and histological differentiation of the digestive tract and accessory glands was a very intense, asynchronous process, proceeding from the distal to the anterior part. The intestine was the first region to differentiate (9 days post‐hatch – dph, 6.5 mm SL), and the oesophagus the last (21 dph, 8.4 mm SL). At the onset of feeding, the digestive system was organized into different functional and histologically differentiated sections, such as the buccopharynx, oesophagus, glandular stomach, and anterior and posterior intestine. This organization resembled that of the juveniles, with the exception of pharyngeal teeth and buccopharyngeal as well as oesophageal goblet cells, which proliferated later during the mixed feeding period. Histological observations revealed that bay snook larvae retained endogenous yolk reserves until 24 dph (8.9 ± 0.4 mm SL), which might be helpful for weaning this species onto a compound diet. The important lipidic accumulation observed in the intestinal mucosa, liver, and pancreas in fish fed a compound trout diet indicated that although fish were able to digest and absorb lipids, the diet formulation did not fit the nutritional requirements of early juveniles of this species. The ontogeny of the digestive system followed the same general pattern as in most cichlid species described to date. However, we detected species‐specific differences in the timing of differentiation that were related to their reproductive guild. According to the histological results, some recommendations regarding the intensive culture of this species are also provided.  相似文献   

9.
The morphological development of larval cobia Rachycentron canadum from 3 days post hatch (dph) until weaning (27 dph) was examined using S.E.M. Two groups of fish were studied: a control group (CF), reared under standard feeding protocol, and a group in which prey items were enriched with supplemental taurine (4 g l(-1) day(-1) ; TF). TF fish grew faster (P < 0·001), attained greater size (mean ±s.e. 55·1 ± 1·5 v. 33·9 ± 1·0 mm total length) and had better survival (mean ±s.e. 29·3 ± 0·4 v. 7·1 ± 1·2 %) than CF fish. Canonical variance analysis confirmed findings with respect to differences in growth between the treatment groups with separation being explained by two cranial measurements. S.E.M. revealed that 3 dph larvae of R. canadum (in both groups) possess preopercular spines, superficial neuromasts on the head and body, taste buds in the mouth, an olfactory epithelium which takes the form of simple concave depressions, and primordial gill arches. Gill filaments start to form as early as 6 dph and lamellae buds are visible at 8 dph in both groups. In CF fish, the cephalic lateral line system continues its development at 12-14 dph with invagination of both supra- and infraorbital canals. At the same time, a thorn-like or acanthoid crest forms above the eye. At 14 dph, invaginations of the mandibular and preopercular canals are visible and around 22 dph enclosure of all cranial canals nears completion. In CF larvae, however, completely enclosed cranial canals were not observed within the course of the trial, i.e. 27 dph. In TF larvae, grooves of the cephalic lateral line system form 4 days earlier than observed in CF larvae of R. canadum (i.e. at 8 dph), with enclosure commencing at 16 dph, and completed by 27 dph. Along the flanks of 6 dph larvae of either treatment, four to five equally spaced neuromasts delineate the future position of the trunk lateral line. As myomeres are added to the growing larvae, new neuromasts appear such that at 16 dph a neuromast is associated with each myomere. By 27 dph, the trunk lateral line starts to invaginate in CF larvae, while it initiates closure in TF larvae. These findings elucidate important features of the larval development of R. canadum and show that dietary taurine supplementation benefits larval development, growth and survival in this species. Moreover, they suggest a conditional requirement for taurine in larval R. canadum.  相似文献   

10.
The present study described the neuro‐anatomy of a larval coral reef fish Amphiprion ocellaris and hypothesized that morphological changes during the transition from the oceanic environment to a reef environment (i.e. recruitment) have the potential to be driven by changes to environmental conditions and associated changes to cognitive requirements. Quantitative comparisons were made of the relative development of three specific brain areas (telencephalon, mesencephalon and cerebellum) between 6 days post‐hatch (dph) larvae (oceanic phase) and 11 dph (at reef recruitment). The results showed that 6 dph larvae had at least two larger structures (telencephalon and mesencephalon) than 11 dph larvae, while the size of cerebellum remained identical. These results suggest that the structure and organization of the brain may reflect the cognitive demands at every stage of development. This study initiates analysis of the relationship between behavioural ecology and neuroscience in coral reef fishes.  相似文献   

11.
Despite a long history of rearing Atlantic salmon in hatcheries in Norway, knowledge of molecular and physiological aspects of juvenile development is still limited. To facilitate introduction of alternative feed ingredients and feed additives during early phases, increased knowledge regarding the ontogeny of the digestive apparatus in salmon is needed. In this study, we characterized the development of the gastrointestinal tract and accessory digestive organs for five months following hatch by using histological, biochemical and molecular methods. Furthermore, the effects of a diet containing 16.7% soybean meal (SBM) introduced at start-feeding were investigated, as compared to a fishmeal based control diet. Salmon yolk sac alevins and fry were sampled at 18 time points from hatch until 144 days post hatch (dph). Histomorphological development was investigated at 7, 27, 46, 54 and 144 dph. Ontogenetic expression patterns of genes encoding key digestive enzymes, nutrient transporters, gastrointestinal peptide hormones and T-cell markers were analyzed from 13 time points by qPCR. At 7 dph, the digestive system of Atlantic salmon alevins was morphologically distinct with an early stomach, liver, pancreas, anterior and posterior intestine. About one week before the yolk sac was internalized and exogenous feeding was started, gastric glands and developing pyloric caeca were observed, which coincided with an increase in gene expression of gastric and pancreatic enzymes and nutrient transporters. Thus, the observed organs seemed ready to digest external feed well before the yolk sac was absorbed into the abdominal cavity. In contrast to post-smolt Atlantic salmon, inclusion of SBM did not induce intestinal inflammation in the juveniles. This indicates that SBM can be used in compound feeds for salmon fry from start-feeding to at least 144 dph and/or 4-5 g body weight.  相似文献   

12.
The ontogeny of larval body density and the morphological and histological events during swimbladder development were investigated in two cohorts of yellowtail kingfish Seriola lalandi larvae to understand the relationship between larval morphology and body density. Larvae <3 days post hatch (dph) were positively buoyant with a mean ± s.d . body density of 1·023 ± 0·001 g cm?3. Histological evidence demonstrated that S. lalandi larvae are initially transient physostomes with the primordial swimbladder derived from the evagination of the gut ventral to the notochord and seen at 2 dph. A pneumatic duct connected the swimbladder to the oesophagus, but degenerated after 5 dph. Initial swimbladder (SB) inflation occurred on 3 dph, and the inflation window was 3–5 dph when the pneumatic duct was still connected to the gut. The swimbladder volume increased with larval age and the epithelial lining on the swimbladder became flattened squamous cells after initial inflation. Seriola lalandi developed into a physoclist with the formation of the rete mirabile and the gas‐secreting gland comprised low‐columnar epithelial cells. Larvae with successfully inflated swimbladders remained positively buoyant, whereas larvae without SB inflation became negatively buoyant and their body density gradually reached 1·030 ± 0·001 g cm?3 by 10 dph. Diel density changes were observed after 5 dph, owing to day time deflation and night‐time inflation of the swimbladder. These results show that SB inflation has a direct effect on body density in larval S. lalandi and environmental factors should be further investigated to enhance the rate of SB inflation to prevent the sinking death syndrome in the early life stage of the fish larvae.  相似文献   

13.
Research at the Key Lake uranium mill (Saskatchewan, Canada) suggests effluent discharged from the mill affects energy stores of resident fish, but the mechanisms by which energy homeostasis is affected and the subsequent effects on swimming performance are unknown. In the present study larvae were collected from laboratory raised adult fathead minnow (Pimephales promelas) exposed to 5% diluted uranium mill effluent or control (dechlorinated municipal) water, and reared in the same treatments to 60 days post hatch (dph). Critical swimming speed (Ucrit) was significantly lower in effluent exposed 60 dph fish compared to control fish. Fish used in tests were considered fatigued and compared to fish without swim testing (non-fatigued). There were no differences in whole body glycogen or triglyceride concentrations between effluent exposed versus control fish. However, fatigued fish from both treatments had significantly lower triglycerides, but not glycogen, compared to non-fatigued fish from the same treatment. Whole body β–hydroxyacyl coenzymeA dehydrogenase activity was similar in fish from both treatments, but citrate synthase activity was significantly lower in effluent exposed fish. Our results suggest uranium mill effluent exposure in the laboratory affects aerobic energy metabolism and swimming performance in juvenile fathead minnow, which could affect wild fish survivability.  相似文献   

14.
Ages, growth and hatch dates of ingressing Brevoortia tyrannus larvae were determined in a 3 year sampling survey at the mouth of the Chesapeake Bay, U.S.A. To determine if otolith‐aged cohorts had variable relative survival, hatch dates of summer‐caught young‐of‐the‐year (YOY) juveniles collected throughout the Chesapeake Bay were compared with hatch dates of ingressing larvae. Modal total length of ingressing larvae was similar among years: 28 mm in 2005–2006 and 2007–2008, and 30 mm in 2006–2007. Ages of ingressing larvae ranged from 9 to 96 days post hatch (dph); mean ages were similar among years, but significantly older in 2006–2007 (50 dph) than in 2005–2006 (44 dph) and 2007–2008 (46 dph). Larval growth rates differed among years. Earliest growth, when larvae were offshore (0–20 dph), was faster in 2006–2007 (0·62 mm day?1), than in 2005–2006 and 2007–2008 (0·55 mm day?1 in these years). Subsequently, from 30 to 80 dph, growth was slowest in 2006–2007. Hatch dates of ingressing larvae occurred from September to March and 90% (2007–2008) to 98% (2006–2007) had hatched prior to 31 December. In contrast, most surviving YOY juvenile B. tyrannus had hatched in January to February, suggesting selective mortality of early‐hatched individuals, apparently during the overwinter, larval to juvenile transition period.  相似文献   

15.
Prior to anthropogenic modifications, the historic Missouri River provided ecological conditions suitable for reproduction, growth, and survival of pallid sturgeon Scaphirhynchus albus. However, little information is available to discern whether altered conditions in the contemporary Missouri River are suitable for feeding, growth and survival of endangered pallid sturgeon during the early life stages. In 2004 and 2007, nearly 600 000 pallid sturgeon free embryos and larvae were released in the upper Missouri River and survivors from these releases were collected during 2004–2010 to quantify natural growth rates and diet composition. Based on genetic analysis and known‐age at release (1–17 days post‐hatch, dph), age at capture (dph, years) could be determined for each survivor. Totals of 23 and 28 survivors from the 2004 and 2007 releases, respectively, were sampled. Growth of pallid sturgeon was rapid (1.91 mm day?1) during the initial 13–48 dph, then slowed as fish approached maximum length (120–140 mm) towards the end of the first growing season. The diet of young‐of‐year pallid sturgeon was comprised of Diptera larvae, Diptera pupae, and Ephemeroptera nymphs. Growth of pallid sturgeon from ages 1–6 years was about 48.0 mm year?1. This study provides the first assessment of natural growth and diet of young pallid sturgeon in the wild. Results depict pallid sturgeon growth trajectories that may be expected for naturally produced wild stocks under contemporary habitat conditions in the Missouri River and Yellowstone River.  相似文献   

16.
17.
Ontogeny of B and T cells in sea bass (Dicentrarchus labrax, L.)   总被引:2,自引:0,他引:2  
Monoclonal antibodies specific to sea bass Ig heavy (WDI 1) and light (WDI 3) chains and T cells (DLT15) were used in an ontogenetic study of sea bass by flow cytometry and immunocytochemistry. The influence of weight and age, as well as season, on B cell development was studied in the fastest and slowest growing offspring from the same spawn (5-305 days post hatch: dph). Additionally, B and T cell development was followed in samples of different offspring (5-137 dph). The results suggest that DLT15 recognises very early (pre-?) T cells as well as mature T cells and that these very early T cells might have their origin in a different compartment and subsequently mature in the thymus. They also appeared much earlier in ontogeny (between 5-12 dph onwards) than pre-B cells having cytoplasmic Ig (from 52 dph onwards). With the monoclonal antibodies used, adult levels of T and B cells were both reached between 137-145 dph, suggesting that sea bass is immunologically mature from at least that age onwards. As in other teleosts, the thymus appears to be the primary organ for T lymphocytes and head kidney the primary organ for B lymphocytes. For sea bass, age seems to be more important in determining B cell maturation than body weight.  相似文献   

18.
A series of experiments was carried out in which genetically female Nile tilapia (Oreochromis niloticus) fry were treated with Fadrozole, a nonsteroidal aromatase inhibitor (AI), in the diet during the period of sexual differentiation. Batches of tilapia fry treated with AI during the first 30 days following yolk-sac resorption (7-37 days post hatch, dph) showed a dose-dependent increase in the percentage of males from 0 to 200 mg. kg(-1). The percentage of males remained approximately constant (92.5-96.0%) from 200 to 500 mg. kg(-1). Any continuous 2- or 3-week treatment with 500 mg. kg(-1) AI in this 4-week period successfully masculinized the majority of the treated fish (>80%). Treatments of 1 week duration revealed that the most sensitive time to AI lies in the first week (between 7 and 14 dph). Progeny testing of males from AI-treated groups gave results indicating that these were XX males, as expected. These experiments strongly implicate aromatase activity as a key factor in sexual differentiation in the Nile tilapia.  相似文献   

19.
Morphological development, allometric growth and behaviour of hatchery-reared California halibut Paralichthys californicus were studied from hatching to metamorphosis (42 days post hatch, dph) at 187° C. Mean standard length ( L S) of larvae and juveniles increased from 2.1 mm at hatching to 10.5 mm at metamorphosis with the increase in length being approximately linear. Stages of morphological development were described using the alphabetic staging (A–I) used for other flatfish species. Organogenesis and differentiation were more rapid and complex in yolk-sac (hatching, stage A–3 dph, stage B), preflexion (3–19 dph, stages B–C), and flexion larvae (from 20 to 23 dph, stages D–E), as larvae developed most of their sensory, feeding, respiratory and swimming systems. After notochord flexion at 24–25 dph (stage F), most morphological changes were related to the progressive transformation from a bilateral symmetrical larva to an asymmetrical benthic juvenile (42 dph, stages G–I).  相似文献   

20.
采用酶学和形态学测定方法, 研究在投喂卤虫条件下长吻(鱼危)仔鱼4种主要消化酶: 胃蛋白酶、胰蛋白酶、脂肪酶和淀粉酶的活性变化以及长吻(鱼危)仔鱼口宽、全长变化。实验共进行13d, 实验结果表明: (1)长吻(鱼危)仔鱼全长、口宽的发育与其日龄表现出明显的线性正相关(RTL2=0.974, RMW2=0.964)。口宽与全长比值(MW/TL)在仔鱼开口后急剧下降, 并自7日龄开始维持在0.07—0.08, 口宽和全长处于同步发育期并表现出明显的相关性(R2=0.948), 说明7日龄(/h, days post hatching)后口宽和全长处于同步发育期, 标志仔鱼转食的开始。(2)长吻(鱼危)仔鱼初次开口时即可检测出四种消化酶的活性。5—7/h时胰蛋白酶显著高于初孵仔鱼, 与此时仔鱼开始开口摄食的行为相一致。胃蛋白酶、脂肪酶活性在仔鱼孵化后第7天即开口的第3天, 淀粉酶活性在孵化后第6天, 显著高于初次孵化出来的仔鱼。8—13/h时, 胃蛋白酶、胰蛋白酶、脂肪酶和淀粉酶活性均在较高水平平稳的波动, 标志着消化道发育逐渐健全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号