首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Förster resonance energy transfer (FRET) technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5) complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin. Avoiding the endocytosis pathway is essential for efficient delivery of intact DNA probes into cells.  相似文献   

2.
Fluorescence resonance energy transfer provides valuable long-range distance information about macromolecules in solution. Fluorescein and Cy3 are an important donor-acceptor pair of fluorophores; the characteristic F?rster length for this pair on DNA is 56 A, so the pair can be used to study relatively long distances. Measurement of FRET efficiency for a series of DNA duplexes terminally labeled with fluorescein and Cy3 suggests that the Cy3 is close to the helical axis of the DNA. An NMR analysis of a self-complementary DNA duplex 5'-labeled with Cy3 shows that the fluorophore is stacked onto the end of the helix, in a manner similar to that of an additional base pair. This provides a known point from which distances calculated from FRET measurements are measured. Using the FRET efficiencies for the series of DNA duplexes as restraints, we have determined an effective position for the fluorescein, which is maximally extended laterally from the helix. The knowledge of the fluorophore positions can now be used for more precise interpretation of FRET data from nucleic acids.  相似文献   

3.
Fluorescence resonance energy transfer (FRET) is an important source of long-range distance information in macromolecules. However, extracting maximum information requires knowledge of fluorophore, donor and acceptor, positions on the macromolecule. We previously determined the structure of the indocarbocyanine fluorophores Cy3 and Cy5 attached to DNA via three-carbon atom tethers, showing that they stacked onto the end of the helix in a manner similar to an additional basepair. Our recent FRET study has suggested that when they are attached via a longer 13-atom tether, these fluorophores are repositioned relative to the terminal basepair by a rotation of ~30°, while remaining stacked. In this study, we have used NMR to extend our structural understanding to the commonly used fluorophore sulfoindocarbocyanine-3 (sCy3) attached to the 5'-terminus of the double-helical DNA via a 13-atom flexible tether (L13). We find that L13-sCy3 remains predominantly stacked onto the end of the duplex, but adopts a significantly different conformation, from that of either Cy3 or Cy5 attached by 3-atom tethers, with the long axes of the fluorophore and the terminal basepair approximately parallel. This result is in close agreement with our FRET data, supporting the contention that FRET data can be used to provide orientational information.  相似文献   

4.
We use fluorescein as the energy donor and rhodamine as the acceptor to measure the efficiency of fluorescence resonance energy transfer (FRET) in a set of hybridized DNA constructs. The two fluorophores are covalently attached via linkers to two separate oligonucleotides with fluorescein at the 3' end of one oligonucleotide and rhodamine at the 5' end or in the middle of another nucleotide. For the FRET analysis both fluorophore-labeled oligonucleotides are hybridized to adjacent sections of the same DNA template to form a three-component duplex with a one base gap between the two labeled oligonucleotides. A similar configuration is implemented for a quantitative real-time polymerase chain reaction (PCR) with LightCycler technology, where a 1-5 base separation between donor and acceptor is recommended to optimize energy transfer efficiencies. Our constructs cover donor-acceptor separations from 2 to 17 base pairs (approximately 10-70 A). The results show that, when the two fluorophores are located at close distances (less than 8 base separation), FRET efficiencies are above 80%, although there may be ground-state interactions between fluorophores when the separation is under about 6 bases. Modeling calculations are used to predict the structure of these three-component constructs. The duplex mostly retains a normal double helical structure, although slight bending may occur near the unpaired base in the DNA template. Stable and reproducible energy transfer is also observed over the distance range investigated here in real-time thermal cycling. The study identifies important parameters that determine FRET response in applications such as real-time PCR.  相似文献   

5.
We report on a novel technique to develop an optical immunosensor based on fluorescence resonance energy transfer (FRET). IgG antibodies were labeled with acceptor fluorophores while one of three carrier molecules (protein A, protein G, or F(ab')2 fragment) was labeled with donor fluorophores. The carrier molecule was incubated with the antibody to allow specific binding to the Fc portion. The labeled antibody-protein complex was then exposed to specific and nonspecific antigens, and experiments were designed to determine the 'in solution' response. The paper reports the results of three different donor-acceptor FRET pairs, fluorescein isothiocyanate/tetramethylrhodamine isothiocyanate, Texas Red/Cy5, and Alexa Fluor 546/Alexa Fluor 594. The effects of the fluorophore to protein conjugation ratio (F/P ratio) and acceptor to donor fluorophore ratios between the antibody and protein (A/D ratio) were examined. In the presence of specific antigens, the antibodies underwent a conformational change, resulting in an energy transfer from the donor to the acceptor fluorophore as measured by a change in fluorescence. The non-specific antigens elicited little or no changes. The Alexa Fluor FRET pair demonstrated the largest change in fluorescence, resulting in a 35% change. The F/P and A/D ratio will affect the efficiency of energy transfer, but there exists a suitable range of A/D and F/P ratios for the FRET pairs. The feasibility of the FRET immunosensor technique was established; however, it will be necessary to immobilize the complexes onto optical substrates so that consistent trends can be obtained that would allow calibration plots.  相似文献   

6.
Single molecule fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy were used to investigate DNA looping by NgoMIV restriction endonuclease. Using a linear double-stranded DNA (dsDNA) molecule labeled with a fluorescence donor molecule, Cy3, and fluorescence acceptor molecule, Cy5, and by varying the concentration of NgoMIV endonuclease from 0 to 3 x 10(-6) M, it was possible to detect and determine diffusion properties of looped DNA/protein complexes. FRET efficiency distributions revealed a subpopulation of complexes with an energy transfer efficiency of 30%, which appeared upon addition of enzyme in the picomolar to nanomolar concentration range (using 10(-11) M dsDNA). The concentration dependence, fluorescence burst size analysis, and fluorescence correlation analysis were all consistent with this subpopulation arising from a sequence specific interaction between an individual enzyme and a DNA molecule. A 30% FRET efficiency corresponds to a distance of approximately 65 A, which correlates well with the distance between the ends of the dsDNA molecule when bound to NgoMIV according to the crystal structure of this complex. Formation of the looped complexes was also evident in measurements of the diffusion times of freely diffusing DNA molecules with and without NgoMIV. At very high protein concentrations compared to the DNA concentration, FRET and fluorescence correlation spectroscopy results revealed the formation of larger DNA/protein complexes.  相似文献   

7.
Hohng S  Joo C  Ha T 《Biophysical journal》2004,87(2):1328-1337
Fluorescence resonance energy transfer (FRET) measured at the single-molecule level can reveal conformational changes of biomolecules and intermolecular interactions in physiologically relevant conditions. Thus far single-molecule FRET has been measured only between two fluorophores. However, for many complex systems, the ability to observe changes in more than one distance is desired and FRET measured between three spectrally distinct fluorophores can provide a more complete picture. We have extended the single-molecule FRET technique to three colors, using the DNA four-way (Holliday) junction as a model system that undergoes two-state conformational fluctuations. By labeling three arms of the junction with Cy3 (donor), Cy5 (acceptor 1), and Cy5.5 (acceptor 2), distance changes between the donor and acceptor 1, and between the donor and acceptor 2, can be measured simultaneously. Thus we are able to show that the acceptor 1 arm moves away from the donor arm at the same time as the acceptor 2 arm approaches the donor arm, and vice versa, marking the first example of observing correlated movements of two different segments of a single molecule. Our data further suggest that Holliday junction does not spend measurable time with any of the helices unstacked, and that the parallel conformations are not populated to a detectable degree.  相似文献   

8.
9.
Microscopy-based fluorescence resonance energy transfer (FRET) experiments measure donor and acceptor intensities by isolating these signals with a series of optical elements. Because this filtering discards portions of the spectrum, the observed FRET efficiency is dependent on the set of filters in use. Similarly, observed FRET efficiency is also affected by differences in fluorophore quantum yield. Recovering the absolute FRET efficiency requires normalization for these effects to account for differences between the donor and acceptor fluorophores in their quantum yield and detection efficiency. Without this correction, FRET is consistent across multiple experiments only if the photophysical and instrument properties remain unchanged. Here we present what is, to our knowledge, the first systematic study of methods to recover the true FRET efficiency using DNA rulers with known fluorophore separations. We varied optical elements to purposefully alter observed FRET and examined protein samples to achieve quantum yields distinct from those in the DNA samples. Correction for calculated instrument transmission reduced FRET deviations, which can facilitate comparison of results from different instruments. Empirical normalization was more effective but required significant effort. Normalization based on single-molecule photobleaching was the most effective depending on how it is applied. Surprisingly, per-molecule γ-normalization reduced the peak width in the DNA FRET distribution because anomalous γ-values correspond to FRET outliers. Thus, molecule-to-molecule variation in gamma has an unrecognized effect on the FRET distribution that must be considered to extract information on sample dynamics from the distribution width.  相似文献   

10.
Iqbal A  Wang L  Thompson KC  Lilley DM  Norman DG 《Biochemistry》2008,47(30):7857-7862
Fluorescence resonance energy transfer, FRET, can be used to obtain long-range distance information for macromolecules and is particularly powerful when used in single-molecule studies. The determination of accurate distances requires knowledge of the fluorophore position with respect to the macromolecule. In this study we have used NMR to determine the structure of the commonly used fluorophore indocarbocyanine-5 (Cy5) covalently attached to the 5'-terminus of double-helical DNA. We find that Cy5 is predominantly stacked onto the end of the duplex, in a manner similar to an additional base pair. This is very similar to the behavior of Cy3 terminally attached to DNA and suggests that the efficiency of energy transfer between Cy3 and Cy5, that are attached to nucleic acids in this way, will exhibit significant dependence on fluorophore orientation.  相似文献   

11.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

12.
Fluorescence resonance energy transfer (FRET) is a technique used to measure the interaction between two molecules labeled with two different fluorophores (the donor and the acceptor) by the transfer of energy from the excited donor to the acceptor. In biological applications, this technique has become popular to qualitatively map protein-protein interactions, and in biophysical projects it is used as a quantitative measure for distances between a single donor and acceptor molecule. Numerous approaches can be found in the literature to quantify and map FRET, but the measures they provide are often difficult to interpret. We propose here a quantitative comparison of these methods by using a surface FRET system with controlled amounts of donor and acceptor fluorophores and controlled distances between them. We support the system with a Monte Carlo simulation of FRET, which provides reference values for the FRET efficiency under various experimental conditions. We validate a representative set of FRET efficiencies and indices calculated from the different methods with different experimental settings. Finally, we test their sensitivity and draw conclusions for the preparation of FRET experiments in more complex and less-controlled systems.  相似文献   

13.
We have developed and optimized a stopped-flow fluorescence assay for use in studying DNA unwinding catalyzed by Escherichia coli RecBCD helicase. This assay monitors changes in fluorescence resonance energy transfer (FRET) between a pair of fluorescent probes (Cy3 donor and Cy5 acceptor) placed on opposite sides of a nick in duplex DNA. As such, this is an "all-or-none" DNA unwinding assay. Single turnover DNA unwinding experiments were performed using a series of eight fluorescent DNA substrates containing duplex DNA regions ranging from 24 bp to 60 bp. The time-courses obtained by monitoring Cy3 fluorescence display a distinct lag phase that increases with increasing duplex DNA length, reflecting the transient formation of partially unwound DNA intermediates. These Cy3 FRET time-courses are identical with those obtained using a chemical quenched-flow kinetic assay developed previously. The signal from the Cy5 fluorescence probe shows additional effects that appear to specifically monitor the RecD helicase subunit. The continuous nature of this fluorescence assay enabled us to acquire more precise time-courses for many more duplex DNA lengths in a significantly reduced amount of time, compared to quenched-flow methods. Global analysis of the Cy3 and Cy5 FRET time-courses, using an n-step sequential DNA unwinding model, indicates that RecBCD unwinds duplex DNA with an average unwinding rate constant of kU = 200(+/-40) steps s(-1) (mkU = 680(+/-12)bp s(-1)) and an average kinetic step size, m = 3.4 (+/-0.6) bp step(-1) (5 mM ATP, 10 mM MgCl(2), 30 mM NaCl, pH 7.0, 5% (v/v) glycerol, 25.0 degrees C), in excellent agreement with the kinetic parameters determined using quenched-flow techniques. Under these same conditions, the RecBC enzyme unwinds DNA with a very similar rate. These methods will facilitate detailed studies of the mechanisms of DNA unwinding and translocation of the RecBCD and RecBC helicases.  相似文献   

14.
Förster resonant energy transfer (FRET) measurements are widely used to obtain information about molecular interactions and conformations through the dependence of FRET efficiency on the proximity of donor and acceptor fluorophores. Fluorescence lifetime measurements can provide quantitative analysis of FRET efficiency and interacting population fraction. Many FRET experiments exploit the highly specific labelling of genetically expressed fluorescent proteins, applicable in live cells and organisms. Unfortunately, the typical assumption of fast randomization of fluorophore orientations in the analysis of fluorescence lifetime‐based FRET readouts is not valid for fluorescent proteins due to their slow rotational mobility compared to their upper state lifetime. Here, previous analysis of effectively static isotropic distributions of fluorophore dipoles on FRET measurements is incorporated into new software for fitting donor emission decay profiles. Calculated FRET parameters, including molar population fractions, are compared for the analysis of simulated and experimental FRET data under the assumption of static and dynamic fluorophores and the intermediate regimes between fully dynamic and static fluorophores, and mixtures within FRET pairs, is explored. Finally, a method to correct the artefact resulting from fitting the emission from static FRET pairs with isotropic angular distributions to the (incorrect) typically assumed dynamic FRET decay model is presented.   相似文献   

15.
荧光共振能量转移(fluorescenceresonanceenergytransfer,FRET),是指能量从一种受激发的荧光基团(fluorophore)以非辐射的方式转移到另一种荧光基团的物理现象.FRET的能量转移效率是两个荧光基团间距离的函数,并对此距离十分敏感,它的有效响应距离一般在1~10nm之间,因而可被用于测定原子间及分子间的距离.这一特点使FRET技术在大分子构象变化、大分子之间相互作用、细胞信号通路等研究中发挥重要作用,成为生物医学研究中的重要方法.但细胞内的生物学过程常常涉及多于两个的大分子间相互作用,二色荧光基团的FRET技术不能满足这种生物学研究的需求.最近,两个研究小组在这方面取得突破,建立了分别基于共聚焦显微镜和流式细胞仪的三色荧光级联FRET技术.这一技术的出现将会极大地促进生物学及相关研究领域的发展.  相似文献   

16.
Bera S  Vora AC  Chiu R  Heyduk T  Grandgenett DP 《Biochemistry》2005,44(46):15106-15114
The integration of retroviral DNA by the viral integrase (IN) into the host genome occurs via assembled preintegration complexes (PIC). We investigated this assembly process using purified IN and viral DNA oligodeoxynucleotide (ODN) substrates (93 bp in length) that were labeled with donor (Cy3) and acceptor fluorophores (Cy5). The fluorophores were attached to the 5' 2 bp overhangs of the terminal attachment (att) sites recognized by IN. Addition of IN to the assay mixture containing the fluorophore-labeled ODN resulted in synaptic complex formation at 14 degrees C with significant fluorescence resonance energy transfer (FRET) occurring between the fluorophores in close juxtaposition (from approximately 15 to 100 A). Subsequent integration assays at 37 degrees C with the same ODN (32P-labeled) demonstrated a direct association of a significant FRET signal with concerted insertion of the two ODNs into the circular DNA target, here termed full-site integration. FRET measurements (deltaF) show that IN binds to a particular set of 3' OH recessed substrates (type I) generating synaptic complexes capable of full-site integration that, as shown previously, exhibit IN mediated protection from DNaseI digestion up to approximately 20 bp from the ODN att ends. In contrast, IN also formed complexes with nonspecific DNA ends and loss-of-function att end substrates (type II) that had significantly lower deltaF values and were not capable of full-site integration, and lacked the DNaseI protection properties. The type II category may exemplify what is commonly understood as "nonspecific" binding by IN to DNA ends. Two IN mutants that exhibited little or no integration activity gave rise to the lower deltaF signals. Our FRET analysis provided the first direct physical evidence that IN forms synaptic complexes with two DNA att sites in vitro, yielding a complex that exhibits properties comparable to that of the PIC.  相似文献   

17.
Two types of reporters for optical sensing of NF-kappaB p50 protein-oligodeoxyribonucleotide (ODN) duplex interactions were designed and compared in vitro. The reporters were based on the effect of fluorescence resonance energy transfer (FRET) between the pair donor Cy5.5 near-infrared (NIR) fluorochrome and either 800CW emitting fluorescence dye acceptor (800CW-Cy), or a nonemitting QSY 21 dye quencher (QSY-Cy). The donor and the acceptor dyes were covalently linked to the complementary oligonucleotides, respectively: Cy dye was conjugated to 3'-thiol, whereas 800CW or QSY21 were conjugated to a hydrophilic internucleoside phosphate amino linker. The reporters were tested initially using recombinant NF-kappaB p50 protein binding assays. Both reporters were binding p50 protein, which protected oligonucleotide duplex from degradation in the presence of exonuclease.The incubation of 800CW-Cy reporter in the presence of control or IL-1beta treated human endothelial cells showed the uptake of the reporter in the cytoplasm and the nucleus. The measurement of NIR fluorescence ratio (i.e. Cy5.5/800CW) showed a partial loss of FRET and the increased Cy5.5 fluorescence in nontreated, control cells. Thus, the specific p50 binding to ODN duplex reporters affected the donor-acceptor fluorochrome pair. NF-kappaB p50 exhibited the protective effect on FRET between NIR fluorochromes linked to the complementary strands of the reporter duplex.  相似文献   

18.
We studied the fluorescence resonance energy transfer (FRET) efficiency of different donor-acceptor labeled model DNA systems in aqueous solution from ensemble measurements and at the single molecule level. The donor dyes: tetramethylrhodamine (TMR); rhodamine 6G (R6G); and a carbocyanine dye (Cy3) were covalently attached to the 5'-end of a 40-mer model oligonucleotide. The acceptor dyes, a carbocyanine dye (Cy5), and a rhodamine derivative (JA133) were attached at modified thymidine bases in the complementary DNA strand with donor-acceptor distances of 5, 15, 25 and 35 DNA-bases, respectively. Anisotropy measurements demonstrate that none of the dyes can be observed as a free rotor; especially in the 5-bp constructs the dyes exhibit relatively high anisotropy values. Nevertheless, the dyes change their conformation with respect to the oligonucleotide on a slower time scale in the millisecond range. This results in a dynamic inhomogeneous distribution of donor/acceptor (D/A) distances and orientations. FRET efficiencies have been calculated from donor and acceptor fluorescence intensity as well as from time-resolved fluorescence measurements of the donor fluorescence decay. Dependent on the D/A pair and distance, additional strong fluorescence quenching of the donor is observed, which simulates lower FRET efficiencies at short distances and higher efficiencies at longer distances. On the other hand, spFRET measurements revealed subpopulations that exhibit the expected FRET efficiency, even at short D/A distances. In addition, the measured acceptor fluorescence intensities and lifetimes also partly show fluorescence quenching effects independent of the excitation wavelength, i.e. either directly excited or via FRET. These effects strongly depend on the D/A distance and the dyes used, respectively. The obtained data demonstrate that besides dimerization at short D/A distances, an electron transfer process between the acceptor Cy5 and rhodamine donors has to be taken into account. To explain deviations from FRET theory even at larger D/A distances, we suggest that the pi-stack of the DNA double helix mediates electron transfer from the donor to the acceptor, even over distances as long as 35 base pairs. Our data show that FRET experiments at the single molecule level are rather suited to resolve fluorescent subpopulations in heterogeneous mixture, information about strongly quenched subpopulations gets lost.  相似文献   

19.
BackgroundFörster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.MethodsWe demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.ResultspEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.ConclusionsFRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.General significanceShows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.  相似文献   

20.
Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET) experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX) technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF) microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号