首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.

Using DNA and RNA heptanucleotides containing an unnatural L-nucleotides as well as the complementary strands, effects of the introduction of an L-nucleotide on the structure of DNA/DNA, RNA/RNA, and DNA/RNA duplexes were investigated by circular dichroism experiments and RNase H-mediated RNA strand cleavage reaction. The results suggested that the substitution of the central D-nucleotide with an L-nucleotide in the duplexes causes the significant structural alterations as the duplex structures change to conformations with more B-form similarities.  相似文献   

2.
3.
We develop a statistical mechanical model for RNA/RNA complexes with both intramolecular and intermolecular interactions. As an application of the model, we compute the free energy landscapes, which give the full distribution for all the possible conformations, for U4/U6 and U2/U6 in major spliceosome and U4atac/U6atac and U12/U6atac in minor spliceosome. Different snRNA experiments found contrasting structures, our free energy landscape theory shows why these structures emerge and how they compete with each other. For yeast U2/U6, the model predicts that the two distinct experimental structures, the four-helix junction structure and the helix Ib-containing structure, can actually coexist and specifically compete with each other. In addition, the energy landscapes suggest possible mechanisms for the conformational switches in splicing. For instance, our calculation shows that coaxial stacking is essential for stabilizing the four-helix junction in yeast U2/U6. Therefore, inhibition of the coaxial stacking possibly by protein-binding may activate the conformational switch from the four-helix junction to the helix Ib-containing structure. Moreover, the change of the energy landscape shape gives information about the conformational changes. We find multiple (native-like and misfolded) intermediates formed through base-pairing rearrangements in snRNA complexes. For example, the unfolding of the U2/U6 undergoes a transition to a misfolded state which is functional, while in the unfolding of U12/U6atac, the functional helix Ib is found to be the last one to unfold and is thus the most stable structural component. Furthermore, the energy landscape gives the stabilities of all the possible (functional) intermediates and such information is directly related to splicing efficiency.  相似文献   

4.
It is a great privilege to contribute to the Reflections essays. In my particular case, this essay has allowed me to weave some of my major scientific contributions into a tapestry held together by what I have learned from three colleagues (Robert Letsinger, Gobind Khorana, and George Rathmann) who molded my career at every important junction. To these individuals, I remain eternally grateful, as they always led by example and showed many of us how to break new ground in both science and biotechnology. Relative to my scientific career, I have focused primarily on two related areas. The first is methodologies we developed for chemically synthesizing DNA and RNA. Synthetic DNA and RNA continue to be an essential research tool for biologists, biochemists, and molecular biologists. The second is developing new approaches for solving important biological problems using synthetic DNA, RNA, and their analogs.  相似文献   

5.
A powerful new approach has become much more widespread and offers insights into aspects of DNA repair unattainable with billions of molecules. Single molecule techniques can be used to image, manipulate or characterize the action of a single repair protein on a single strand of DNA. This allows search mechanisms to be probed, and the effects of force to be understood. These physical aspects can dominate a biochemical reaction, where at the ensemble level their nuances are obscured. In this paper we discuss some of the many technical advances that permit study at the single molecule level. We focus on DNA repair to which these techniques are actively being applied. DNA repair is also a process that encompasses so much of what single molecule studies benefit – searching for targets, complex formation, sequential biochemical reactions and substrate hand-off to name just a few. We discuss how single molecule biophysics is poised to transform our understanding of biological systems, in particular DNA repair.  相似文献   

6.
Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) has gained popularity as a facile method of examining RNA structure both in vitro and in vivo, exploiting accessibility of the ribose 2′-OH to acylation by N-methylisatoic anhydride (NMIA) in unpaired or flexible configurations. Subsequent primer extension terminates at the site of chemical modification, and these products are fractionated by high-resolution gel electrophoresis. When applying SHAPE to investigate structural features associated with the wild-type and analog-substituted polypurine tract (PPT)–containing RNA/DNA hybrids, their size (20–25 base pairs) rendered primer extension impractical. As an alternative method of detection, we reasoned that chemical modification could be combined with tandem mass spectrometry, relying on the mass increment of RNA fragments containing the NMIA adduct (Mr = 133 Da). Using this approach, we demonstrate both specific modification of the HIV-1 PPT RNA primer and variations in its acylation pattern induced by replacing template nucleotides with a non-hydrogen-bonding thymine isostere. Our selective 2′-hydroxyl acylation analyzed by mass spectrometry strategy (SHAMS) should find utility when examining the structure of small RNA fragments or RNA/DNA hybrids where primer extension cannot be performed.  相似文献   

7.
In mammals, NAD represents a nodal point for metabolic regulation, and its availability is critical to genome stability. Several NAD-consuming enzymes are induced in various stress conditions and the consequent NAD decline is generally accompanied by the activation of NAD biosynthetic pathways to guarantee NAD homeostasis. In the bacterial world a similar scenario has only recently begun to surface. Here we review the current knowledge on the involvement of NAD homeostasis in bacterial stress response mechanisms. In particular, we focus on the participation of both NAD-consuming enzymes (DNA ligase, mono(ADP-ribosyl) transferase, sirtuins, and RNA 2′-phosphotransferase) and NAD biosynthetic enzymes (both de novo, and recycling enzymes) in the response to DNA/RNA damage. As further supporting evidence for such a link, a genomic context analysis is presented showing several conserved associations between NAD homeostasis and stress responsive genes.  相似文献   

8.
Abstract

Electron holes are known to migrate along the DNA or RNA duplexes and to localize preferentially on successive guanines. The stationary point conformations of Gua pairs that can trap or let pass these holes have been characterized by quantum chemistry calculations. Here we show their recurrent occurrence in DNA and RNA X-ray structures, often in quadruplex conformations or in interaction with proteins, ligands or metal ions. These findings give support to the biological, possibly regulatory, roles of charge migration in cell functioning.  相似文献   

9.
Chakraborty S  Krishnan Y 《Biochimie》2008,90(7):1088-1095
We have constructed and characterized a long-lived hybrid DNA(2)-RNA(2) i-motif that is kinetically formed by mixing equivalent amount of C-rich RNA (R) and C-rich DNA (D). Circular dichroism shows that these hybrids are distinct from their parent DNA(4) or RNA(4) i-motif. pH dependent CD and UV thermal melting experiments showed that the complexes were maximally stable at pH 4.5, the pK(a) of cytosine, consistent with the complex being held by CH(+)-C base pairs. Fluorescence studies confirmed their tetrameric nature and established the relative strand polarities of the RNA and DNA strands in the complex. These showed that in a hybrid D(2)R(2) i-motif two DNA strands occupy one narrow groove and the two RNA strands occupy the other. This suggests that even the sugar-sugar interactions are highly specific. Interestingly, this hybrid slowly disproportionates into DNA(4) i-motifs and ssRNA which would be valuable to study intermediates in DNA(4) i-motif formation.  相似文献   

10.
BACKGROUND: Targeted gene correction provides a potentially powerful method for gene therapy. RNA/DNA chimeric oligonucleotides were reported to be able to correct a point mutation with a high efficiency in cultured rodent cells, in the body of mice and rats, and in plants. The efficiency of correction in the liver of rats was claimed to be as high as 20% after tail-vein injection. However, several laboratories have failed to reproduce the high efficiency. METHODS: In order to sensitively detect and measure sequence changes by the chimeric oligonucleotides, we used Muta Mouse, a transgenic mouse system for mutation detection in vivo. It carries, on its chromosome, multiple copies of the lambda phage genome with the lacZ(+) gene. Two chimeric oligonucleotides were designed to make a point mutation at the active site of the LacZ gene product. They were injected into the liver with HVJ liposomes, which were demonstrated to allow reliable gene delivery. One week later, DNA was extracted from the liver, and lambda::lacZ particles were recovered by in vitro packaging. The lacZ-negative phage was detected by selection with phenyl-beta-D-galactoside. RESULTS: The mutant frequency of the injected mice was at the same level as the control mouse (approximately 1/10000). Our further restriction analysis and sequencing did not detect the designed mutations. CONCLUSIONS: Gene correction frequency in mouse liver by these oligonucleotides was shown to be less than 1/20000 in our assay with the Muta Mouse system.  相似文献   

11.
12.
While it is generally accepted that the functional tertiary structures formed by RNA cannot be replicated by a deoxy version of the same sequence, here we demonstrate conservation of function for a DNA homolog of an RNA aptamer. Using fluorescence anisotropy experiments, this work demonstrates that the all-DNA version of the RNA dopamine aptamer is able to bind dopamine with improved affinity and similar specificity relative to the RNA aptamer. Mutation studies suggest that the binding site is maintained in both structure types. These findings will help to elucidate what sequences and secondary structures allow for retention of function in both RNA and DNA.  相似文献   

13.
In this report, we describe the circularly polarized luminescence (CPL) of the RNA duplexes having one to four 2′‐O‐pyrene modified uridines ( Upy ) and the DNA duplexes having two, four, and six pyrene modified non‐nucleosidic linkers ( Py ). Both the pyrene π‐stack arrays formed on the RNA and DNA double helical structures exhibited pyrene excimer fluorescence. In the pyrene‐modified RNA systems, the RNA duplex having four Upy s gives CPL emission with glum value of <0.01 at 480 nm. The structure of pyrene stacks on the RNA duplex may be rigidly regulated with increase in the Upy domains, which resulted in the CPL emission. In the DNA systems, the pyrene‐modified duplexes containing two and four Pys exhibited CPL emission with glum values of <0.001 at 505 nm. The pyrene π‐stack arrays presented here show CPL emission. However, the glum values are relatively small when compared with our previous system consisting of the pyrene‐zipper arrays on RNA.  相似文献   

14.
15.
RNA polymerase II is recruited to DNA double-strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage-induced long non-coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA-like molecules or degraded by different ribonucleases. They can also form double-stranded RNAs or DNA:RNA hybrids. The DNA:RNA hybrids formed at DSBs contribute to the recruitment of repair factors during the early steps of homologous recombination (HR) and, in this way, contribute to the accuracy of the DNA repair. However, if not resolved, the DNA:RNA hybrids are highly mutagenic and prevent the recruitment of later HR factors. Here recent discoveries about the synthesis, processing, and degradation of dilncRNAs are revised. The focus is on RNA clearance, a necessary step for the successful repair of DSBs and the aim is to reconcile contradictory findings on the effects of dilncRNAs and DNA:RNA hybrids in HR.  相似文献   

16.
Poly(ADP-ribose) polymerase 1 (PARP-1) is an abundant nuclear protein that binds chromatin and catalyzes the transfer of ADP-ribose groups to itself and to numerous target proteins upon interacting with damaged DNA. The molecular basis for the dual role of PARP-1 as a chromatin architectural protein and a first responder in DNA repair pathways remains unclear. Here, we quantified the interactions of full-length PARP-1 and its N-terminal half with different types of DNA damage and with defined nucleosome substrates. We found that full-length PARP-1 prefers nucleosomes with two linker DNA extensions over any other substrate (including several free DNA models) and that the C-terminal half of PARP-1 is necessary for this selectivity. We also measured the ability of various substrates to activate PARP-1 activity and found that the most important feature for activation is one free DNA end rather than tight interaction with the activating nucleic acid. Our data provide insight into the different modes of interaction of this multidomain protein with nucleosomes and free DNA.  相似文献   

17.
The hepatitis C virus (HCV) non-structural protein 5B (NS5B) is an RNA-dependent RNA polymerase that is essentially required for viral replication. Although previous studies revealed important properties of static NS5B-RNA complexes, the nature and relevance of dynamic interactions have yet to be elucidated. Here, we devised a single molecule Förster Resonance Energy Transfer (SM-FRET) assay to monitor temporal changes upon binding of NS5B to surface immobilized RNA templates. The data show enzyme association-dissociation events that occur within the time resolution of our setup as well as FRET-fluctuations in association with stable binary complexes that extend over prolonged periods of time. Fluctuations are shown to be dependent on the length of the RNA substrate, and enzyme concentration. Mutations in close proximity to the template entrance (K98E, K100E), and in the center of the RNA binding channel (R394E), reduce both the population of RNA-bound enzyme and the fluctuations associated to the binary complex. Similar observations are reported with an allosteric nonnucleoside NS5B inhibitor. Our assay enables for the first time the visualization of association-dissociation events of HCV-NS5B with RNA, and also the direct monitoring of the interaction between HCV NS5B, its RNA template, and finger loop inhibitors. We observe both a remarkably low dissociation rate for wild type HCV NS5B, and a highly dynamic enzyme-RNA binary complex. These results provide a plausible mechanism for formation of a productive binary NS5B-RNA complex, here NS5B slides along the RNA template facilitating positioning of its 3′ terminus at the enzyme active site.  相似文献   

18.
Bacteriophage T4 gene 32 protein (gp32) is a well-studied representative of the large family of single-stranded DNA (ssDNA) binding proteins, which are essential for DNA replication, recombination and repair. Surprisingly, gp32 has not previously been observed to melt natural dsDNA. At the same time, *I, a truncated version of gp32 lacking its C-terminal domain (CTD), was shown to decrease the melting temperature of natural DNA by about 50 deg. C. This profound difference in the duplex destabilizing ability of gp32 and *I is especially puzzling given that the previously measured binding of both proteins to ssDNA was similar. Here, we resolve this apparent contradiction by studying the effect of gp32 and *I on the thermodynamics and kinetics of duplex DNA melting. We use a previously developed single molecule technique for measuring the non-cooperative association constants (K(ds)) to double-stranded DNA to determine K(ds) as a function of salt concentration for gp32 and *I. We then develop a new single molecule method for measuring K(ss), the association constant of these proteins to ssDNA. Comparing our measured binding constants to ssDNA for gp32 and *I we see that while they are very similar in high salt, they strongly diverge at [Na+] < 0.2 M. These results suggest that intact protein must undergo a conformational rearrangement involving the CTD that is in pre-equilibrium to its non-cooperative binding to both dsDNA and ssDNA. This lowers the effective concentration of protein available for binding, which in turn lowers the rate at which it can destabilize dsDNA. For the first time, we quantify the free energy of this CTD unfolding, and show it to be strongly salt dependent and associated with sodium counter-ion condensation on the CTD.  相似文献   

19.
mRNA quantification has become a research hotspot. Quantitative real-time RT-PCR is a popular method but is known to lack precision. To rapidly monitor the kinetics of mRNA levels for the control of microbial fermentation processes, we developed an SYBR Green I-based universal method to directly quantify mRNA from fermentation samples. After total RNA was extracted, the mRNA was hybridized and protected by a longer DNA oligonucleotide. The probe length determined the strength of signal amplification. S1 nuclease and RNase A were used to remove excess probe, single-stranded RNA, and mis-matched RNA/DNA hybrids. Finally, the perfect-matched RNA/DNA hybrid was quantified by SYBR Green I dye. The conditions of liquid hybridization and enzyme digestion were systemically optimized. The kinetic tendency of phzC mRNA levels during phenazine-1-carboxylic acid fermentation was consistent with the results from MB hybridization in our previous report. The detection of mRNA levels of ten genes in Pseudomonas sp. M18G proved that this method is universal and feasible for mRNA quantification, and has great potential for application in mRNA quantification in various organisms.  相似文献   

20.
This study presents an indirect method for estimating growth rates of young-of-the-year (YOY) tautog, Tautoga onitis, based on laboratory calibration experiments and nucleic acid-based indices. Field-collected tautog were held in the laboratory at 3 temperatures over a 17-day period. Four feeding levels were used to produce a range of growth rates. An ultraviolet absorption assay was used to measure nucleic acid concentrations in white muscle tissue. The strength of the relationship between growth rate and three nucleic acid-based parameters (RNA concentration, DNA concentration, RNA/DNA ratio (R/D)) was tested. Correlation results indicated a significant positive relationship between R/D and weight-based instantaneous growth rate (G) (r = 0.68; p < 0.001). Both R/D (r = − 0.55; p < 0.006) and RNA (r = − 0.56; p < 0.005) were highly negatively correlated with temperature (T). Multiple linear regression showed that R/D and temperature explained 61% of the variability in growth, resulting in the model G = 0.01285(R/D) + 0.00057(T) − 0.03205 (p < 0.0001). This R/D-temperature model can be used to evaluate recent growth rates in YOY tautog under field conditions and has applications for aquaculture when comparing growth rates of fish held under different culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号