首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membranes derived from NR-6 cells, a variant line of Swiss mouse 3T3 cells that does not have cell surface receptors for epidermal growth factor (EGF), inhibited EGF-induced stimulation of DNA synthesis by 50% in serum-starved, subconfluent 3T3 cells. Membranes derived from SV3T3 cells were much less effective in inhibiting EGF-induced DNA synthesis. This inhibition on DNA synthesis by NR-6 membranes was not a direct effect of membranes on EGF, nor could it be overcome by high concentrations of EGF. NR-6 membranes were most effective when added 3 h before EGF addition and had little effect when added 2 h or more after EGF. NR-6 membranes also reduced the stimulation of DNA synthesis induced by platelet-derived growth factor or fibroblast growth factor in serum-starved 3T3 cells. These findings indicate that membrane- membrane interactions between nontransformed cells may diminish their ability to proliferate in response to serum polypeptide growth factors.  相似文献   

2.
A Swiss-Webster 3T3 variant, called 3T3-ENR7, unable to divide in response to epidermal growth factor was isolated by the mitogen-colchicine selection technique. Like the other EGF non-proliferative variants (3T3-NR6 and 3T3-TNR2), 3T3-ENR7 was unable to bind 125I-EGF. Pairwise co-culture of the three independently isolated EGF non-responsive variants did not restore mitogenic responsiveness to EGF.  相似文献   

3.
Growth regulators such as epidermal growth factor (EGF) and type beta transforming growth factor (TGF-beta) regulate the synthesis and secretion of certain proteins by cells in culture. The secretion pattern of each cell line and the effect of growth regulators on the secretion pattern are unique. EGF increased the secreted and intracellular levels of mitogen-regulated protein (MRP) and major excreted protein (MEP) by Swiss 3T3 cells. MRP is related by sequence to prolactin. MEP is a thiol protease located intracellularly in the lysosomes. EGF also selectively induced a 52,000-dalton mitogen-induced protein (MIP 52) secreted by human fibroblasts. Two types of TGF-betas were tested for their effects on the expression of secreted proteins in mouse and human fibroblasts: TGF-beta from human platelets and a growth inhibitor (GI/TGF-beta) secreted by BSC-1 cells. Each selectively decreased the levels of the two secreted proteins induced by growth factors in mouse embryo 3T3 cells and one secreted protein induced by growth factors in human fibroblasts. Platelet TGF-beta and GI/TGF-beta also induced one 48,000-dalton protein secreted by human fibroblasts. Synthesis of DNA and the incorporation of [35S]methionine into total protein in Swiss 3T3 cells were not affected by platelet TGF-beta or GI/TGF-beta. Thus, the inhibitory effect of platelet TGF-beta on the synthesis and secretion of these three proteins is due to a specific effect of platelet TGF-beta on the regulation of MRP and MEP that does not interfere with the ability of EGF to stimulate DNA or protein synthesis.  相似文献   

4.
Effect of 3T3 plasma membranes on cells exposed to epidermal growth factor   总被引:3,自引:0,他引:3  
Epidermal growth factor (EGF) induced DNA synthesis in non-confluent, G0-arrested Swiss 3T3 fibroblasts is partially blocked by plasma membranes isolated from the EGF receptor deficient NR-6 Swiss 3T3 cell line. This inhibition could be due to either a steric block of the receptor by the membranes, a membrane induced down regulation of the EGF receptor, or a signal generated by membrane binding which is antagonistic towards the mitogenic signal generated by EGF. Binding measurements utilizing 125I-labeled EGF demonstrated that membranes do not block either the EGF induced down regulation of the receptor or alter the number of receptors on the surface. These results suggest that the membranes exert their inhibitory effect via generation of a signal which is antagonistic to the EGF induced mitogenic signal, with the result expressed as a reduced mitogenic response.  相似文献   

5.
The G protein-coupled thrombin receptor can induce cellular responses in some systems by transactivating the epidermal growth factor (EGF) receptor. This is in part due to the stimulation of ectoproteases that generate EGF receptor ligands. We show here that this cannot account for the stimulation of proliferation or migration by thrombin of Swiss 3T3 cells. Thrombin has no direct effect on the activation state of the EGF receptor or of its downstream effectors. However, thrombin induces the subcellular clustering of the EGF receptor at filamentous actin-containing structures at the leading edge and actin arcs of migrating cells in association with other signaling molecules, including Shc and phospholipase Cgamma1. In these thrombin-primed cells, the subsequent migratory response to EGF is potentiated. Thrombin did not potentiate the EGF-stimulated EGF receptor phosphorylation. Thus, in Swiss 3T3 cells the G protein-coupled thrombin receptor can potentiate the EGF tyrosine kinase receptor response when activated by EGF, and this appears to be due to the subcellular concentration of the receptor with downstream effectors and not to the overall ability of EGF to induce receptor transphosphorylation. Thus, the EGF receptor subcellular localization which is altered by thrombin appears to be an important determinant of the efficacy of downstream EGF receptor signaling in cell migration.  相似文献   

6.
In many cellular systems, activation with more than one ligand can produce a cellular response that is greater than the sum of the individual responses to the ligands. This synergy is sometimes referred to as coactivation. In Swiss 3T3 fibroblasts, activation of the epidermal growth factor (EGF) receptor produces a weak induction of DNA synthesis. Insulin has no stimulatory effect on this response. However, in combination, EGF and insulin synergize to cause a large induction of S phase. The underlying cellular biochemistry of this effect has been examined. The data indicate that phospholipase C activation is a major component of agonist-induced DNA synthesis. In contrast, activation of p70 S6 kinase by single agonists was inversely related to their ability to stimulate DNA synthesis. Therefore, it was examined whether stimulation of Swiss 3T3 cells with insulin causes changes in the subcellular distribution of EGF receptors and phospholipase Cgamma1 that could potentially explain the observed synergy or costimulation. It was found that insulin effectively induced the accumulation of EGF receptors on the actin arc of cells without activation of the EGF receptor. In contrast, EGF, when added for several hours, did not cause accumulation of the EGF receptor at this site. However, both EGF and insulin stimulated the accumulation of phospholipase Cgamma1 at the actin arc, which was coincident with the EGF receptor in the case of insulin- stimulated cells. Therefore, it is suggested that the insulin-induced coclustering of the EGF receptor with phospholipase Cgamma1 at the actin arc may allow for greater efficiency of signal transduction, resulting in the synergy observed for these two hormones in stimulation of DNA synthesis.  相似文献   

7.
Incubation of Swiss mouse 3T3 cells at 37 degrees C with bovine brain-derived growth factor (BDGF) decrease the cell surface 125I-EGF binding activity of these cells by 70-80%. This down-modulation of the EGF receptor by BDGF was time, temperature, and dose dependent. Scatchard plot analysis indicated that BDGF binding led to a selective decrease in the number of high-affinity EGF receptors. The BDGF-induced down-modulation of the EGF receptor was completely blocked by protamine, a potent inhibitor of receptor binding and mitogenic activities of BDGF. BDGF down-modulated the EGF receptor in phorbol myristic acetate (PMA)-pretreated cells, as well as in control cells. Furthermore, PMA-pretreated cells responded mitogenically to BDGF, whereas PMA itself failed to stimulate the mitogenic response of PMA-pretreated cells. This BDGF-induced down-modulation of the EGF receptor in PMA-desensitized cells suggests that BDGF down-regulates the EGF receptor by a mechanism distinct from that of PMA. Incubation of cells with compounds which are known to inhibit pinocytosis blocked the down-modulation induced either by BDGF or by platelet-derived growth factor (PDGF) but had no effect on the PMA-induced down-modulation. Incubation of cells with inhibitors of receptor recycling enhanced the BDGF-induced down-modulation of the EGF receptor. These results suggest that BDGF and PDGF induce down-modulation of the EGF receptor by increasing the internalization of cell surface high-affinity receptors and that the internalization process may not be required for down-modulation induced by PMA.  相似文献   

8.
The mitogen requirement and proliferative response of Swiss 3T3 cells in serum-free, chemically defined culture medium were compared with those of early-passage human diploid fibroblasts. The effects of platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin, transferrin, and dexamethasone on cell-cycle parameters were measured using 5'-bromo-deoxyuridine-Hoechst flow cytometry. Swiss 3T3 cells differ from human fibroblasts in several ways: (1) Swiss 3T3 cells showed a much higher dependence on PDGF than human fibroblasts; the growth of the latter, but not of the former, could be stimulated by the combination of EGF, insulin, and dexamethasone to the full extent of that when PDGF was present; (2) in the absence of PDGF, insulin was an absolute requirement for Swiss 3T3 cells to initiate DNA synthesis, while a substantial proportion of human fibroblasts could enter DNA synthesis without exogenous insulin or IGF-I; and (3) in the absence of PDGF, increasing insulin concentration increased the cycling fraction of Swiss 3T3 cells without an appreciable effect on the rate of cell exit from G0/G1, while under similar culture conditions, insulin showed its major effect on regulation of the G1 exit rate of human fibroblasts, without much effect on the cycling fraction. In addition, the proliferative response of high-density versus low-density, arrested Swiss 3T3 cells showed that the interaction of mitogens varied with cell density. At high cell density, the PDGF requirement was consistent with the "competence/progression" cell-cycle model. This growth response was not seen, however, when cells were plated at low density.  相似文献   

9.
Confluent quiescent Swiss mouse 3T3 cells can be stimulated to initiate DNA synthesis and to divide by epidermal growth factor (EGF) and prostaglandin F2 alpha (PGF2 alpha), two mitogens of unrelated structure. Heat treatment at 46 degrees C for up to 20 min of confluent quiescent cells, which has no mitogenic effect, can enhance the stimulatory effect of suboptimal concentrations of EGF or PGF2 alpha on the initiation of DNA synthesis. Furthermore, insulin, which is not mitogenic in these cells, enhances the effect of these mitogens, but this effect is not further enhanced by heat treatment. Likewise the combination of EGF and PGF2 alpha is synergistic on DNA synthesis, and this effect is also not enhanced by the heat treatment. Incubation at 46 degrees C for longer than 20 min was inhibitory in all cases. These results suggest that heat treatment induces events which affect the regulation of the initiation of DNA synthesis in a manner depending on the duration of the heat treatment and the stimulation of the cells.  相似文献   

10.
Quiescent Swiss mouse 3T3 cells react to a heat treatment at 46°C for 20 min by changing their flat, well-extended morphology to a round appearance with retracted cytoplasmic processes during the subsequent 2 h at 37°C. The percentage of morphologically changed cells was used to quantify changes in heat sensitivity, or resistance, in response to mitogenic stimulation. Stimulating quiescent cells with serum or with the specific growth factors epidermal growth factor (EGF) and prostaglandin F (PGF) markedly increased the heat resistance to a 46°C treatment, but only when the heat treatment, but only when the heat treatment was applied within 2–3 h after the addition. When insulin (which is not mitogenic, but synergistic with EGF and PGF in these cells) was added alone or in combination with either EGF or PGF, it had no effect on the development of heat resistance. Neither did cycloheximide nor tunicamycin inhibit heat resistance induced by EGF, and cycloheximide even enhanced it after 2–4 h. However, adding colcemid before or at the beginning of the heat treatment abolished the increased heat resistance. The results indicate that the resistance to a single heat treatment at 46°C may be related to changes in the metabolic state after mitogenic stimulation, even though these changes need not be reflected in the rate of entry into S phase. Furthermore, the cytoskeletal organization appears to be a crucial component in heat resistance of Swiss 3T3 cells.  相似文献   

11.
The addition of platelet-derived growth factor (PDGF) to many types of cells causes a rapid decrease in high affinity binding of 125I-epidermal growth factor (EGF), a process which has been termed transmodulation. Treatment with the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) also results in the transmodulation of the EGF receptor in many cell types. PDGF can transmodulate EGF binding through a mechanism that is not dependent on protein kinase C activity. A recent report (Wattenberg, E. V., McNeil, P. L., Fujiki, H., and Rosner, M. R. (1989) J. Biol. Chem. 264, 213-219) described the requirement for a sodium ion influx in the down-modulation of the EGF receptor stimulated by a non-TPA-type tumor promoter, palytoxin, in Swiss 3T3 cells. We tested for a similar sodium requirement in Balb/c/3T3 and Swiss 3T3 cells stimulated by PDGF or TPA in Balb cells treated with TPA for prolonged periods to down-regulate protein kinase C activity. Our results clearly show that the PDGF- and TPA-stimulated transmodulation of the EGF receptor does not require external sodium nor is the process affected by amiloride. In each of these experiments, the loss of 125I-EGF binding occurred to a similar extent and at a similar rate in the presence or absence of sodium. Intracellular pH also did not appear to have a role in the response. The sodium ionophore, monensin, was previously shown to bring about the down-modulation of 125I-EGF binding in Swiss cells. However, our results indicate that monensin-induced transmodulation of the EGF receptor occurs with or without external sodium, suggesting that the loss of binding is not the result of a sodium ion influx. These findings demonstrate that an increase in intracellular sodium does not cause nor is it required for PDGF- or TPA-stimulated EGF receptor transmodulation.  相似文献   

12.
In order to develop a model system for identifying signaling pathways and cell cycle events involved in gastrin-mediated mitogenesis, we have used high efficiency retroviral-mediated transfection of cholecystokinin (CCK)(B)/gastrin receptor into Swiss 3T3 cells. The retrovirally-transfected CCK(B)/gastrin receptor binds 125I-CCK-8 with high affinity (Kd = 1.1 nM) and is functionally coupled to intracellular signaling pathways including rapid and transient increase in Ca2+ fluxes, protein kinase C-dependent protein kinase D activation, and MEK-dependent ERK1/2 activation. In the presence of insulin, CCK-8 or gastrin induced a 66.5 +/- 8.8-fold (mean +/- SEM, n = 24 in eight independent experiments) increase in cellular DNA synthesis, reaching a level similar to that achieved by stimulation with a saturating concentration of fresh serum, and much greater than the response to each agonist added alone. CCK-8 also induced a striking increase in the expression of cyclins D1, D3, and E and hyperphosphorylation of Rb acting synergistically with insulin. Similar effects were observed when CCK(B)/gastrin receptor was activated in the presence of EGF or bombesin. Our results demonstrate that activation of CCK(B)/gastrin receptor retrovirally-transfected into Swiss 3T3 induces a potent synergistic effect on DNA synthesis, accumulation of cyclins D1, D3, and E and hyperphosphorylation of Rb in combination with insulin, EGF, or bombesin. Thus, the CCK(B)/gastrin receptor transfected into Swiss 3T3 cells provides a novel model system to elucidate mitogenic signal transduction pathways and cell cycle events activated via this receptor.  相似文献   

13.
The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS-PAGE, suggesting receptor association and activation. Heregulin-alpha1 and -beta1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these growth factor receptors.  相似文献   

14.
To study the relationship between oncogenesis by v-src and normal cellular signalling pathways, we determined the effects of v-src on 3T3-TNR9 cells, a Swiss 3T3 variant which does not respond mitogenically to tumor promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We found that src was unable to transform these variant cells, whether the oncogene was introduced by infection with a murine retrovirus vector or by transfection with plasmid DNA. 3T3-TNR9 cells were not inherently resistant to transformation, since infection with similar recombinant retroviruses containing either v-ras or v-abl did induce transformation. Further analysis of Swiss 3T3 and 3T3-TNR9 cell populations infected with the v-src-containing retrovirus revealed that although the amount of v-src DNA in each was approximately the same, the level of the v-src message and protein and the overall level of phosphotyrosine expressed in the infected variants was much less than in infected parental cells. Cotransfection experiments using separate v-src and neo plasmids revealed a decrease in the number of G418-resistant colonies when transfections of TNR9 cells occurred in the presence of the src-containing plasmid, suggesting a growth inhibitory effect of v-src on 3T3-TNR9 cells, as has also been found for TPA itself. Since v-src cannot transform this variant cell line, which does not respond mitogenically to the protein kinase C agonist TPA, we suggest that src makes use of the protein kinase C pathway as part of its signalling activities.  相似文献   

15.
A transformed variant derived as a clone from normal 3T3 cells infected with simian virus 40 (SV40) has been found to possess a phenotype intermediate between that of normal cells and that characteristic of the transformed state, yet cells of the variant still test positively for the SV40-specific nuclear T-antigen. The variant exercises growth control, although not as stringently as do normal cells. Its cell size more closely resembles that of normal cells than of transformed cells. The variant also exhibits levels of spontaneous agglutination that are in line with those characteristic of the normal cells from which it was derived, and far higher than corresponding values for cells exhibiting the fully transformed phenotype. Plasma membranes of variant cells more closely resemble those of transformed cells than of normal cells as estimated by polyacrylamide gel electrophoresis. Perhaps the most distinguishing characteristic of the transformed variant is its complete immunity to agglutination by concanavalin A (Con A), even at concentrations of the lectin as high as 500 mug/ml. Moreover, trypsinization does not render variant cells as agglutinable in the presence of Con A as are untreated fully transformed cells. By contrast the variant displays a low tolerance of Con A toxicity, as monitored by ability to grow after treatment with the lectin, and on this count resembles transformed cells. Moreover a survey of several normal cell lines has revealed that even they do not consistently show resistance to Con A toxicity. These observations indicate that Con A-mediated agglutination and inability to grow after treatment with Con A are quite independent and do not bear a cause and effect relationship.  相似文献   

16.
We have previously isolated 3T3 cell variants unable to respond to specific mitogens. In this report we analyze the dominant and/or recessive nature of these variants. Two independently isolated EGF nonproliferative variants are unable to bind EGF. Hybrids between 3T3R5 cells (thymidine kinase deficient, ouabain-resistant) and these variants express EGF receptors; the "EGF receptorless" phenotype of these variants is recessive. Hybrids between these two variants do not bind EGF; they are defective in a common, non-complementing function. A TPA nonproliferative 3T3 variant is also recessive; hybrids with 3T3R5 mount a mitogenic response to TPA. In contrast a fourth variant, which can neither bind labeled EGF nor respond to TPA, is dominant for both characteristics. Hybrids between this latter variant and 3T3R5 can neither bind EGF nor mount a mitogenic response to TPA.  相似文献   

17.
The growth stimulating-/cholecystokinin (CCK) releasing-peptide (monitor peptide) is a peptide purified from rat bile-pancreatic juice on the basis of its stimulatory activity toward pancreatic enzyme secretion. Its multiple functions and peptide sequence suggested that it is distinct from epidermal growth factor (EGF). However, we found that the peptide competes with [125I]-EGF in the binding to Swiss 3T3 fibroblast cells to almost the same extent as unlabeled EGF does. [125I]-EGF binding was inhibited by 50% by the peptide at 82.8 ng/ml and by unlabeled EGF at 71.4 ng/ml. This suggests that the growth stimulating effect of the peptide on 3T3 fibroblasts is mediated via the EGF receptor, and also suggests that the partial homologous sequence between monitor peptide and EGF is required for the receptor binding, or that the EGF receptor has a broad ligand specificity.  相似文献   

18.
We investigated the role of the L3T4 molecule in mitogen and antigen-initiated signal transduction in the L3T4(+) murine T cell hybridoma, 3DT52.5.9 and an L3T4(-) variant, 3DT52.5.24. Both Concanavalin A (Con A) and specific antigen stimulated increases in cytosolic-free calcium ([Ca2+]i), phosphatidylinositol turnover, and interleukin-2 (IL-2) production in both cell lines. About 85% of the stimulated rise in [Ca2+]i was from an extracellular source. Anti-L3T4 monoclonal antibody (MAb) inhibited 90% of antigen- and 50% of Con A-stimulated increases in [Ca2+]i and IL-2 production but had no effect on the ability of either activation signal to stimulate phosphatidylinositol turnover in the parent L3T4(+) cells. Stimulus-response coupling in the L3T4(-) cells was unaffected by the MAb. The anti-L3T4-insensitive increase in [Ca2+]i induced by Con A was inhibited by EGTA, suggesting that this mitogen also stimulated an influx of Ca2+ via an additional transport mechanism distinct from that stimulated by antigen. The fact that anti-L3T4 antibodies inhibit antigen and Con A-stimulated Ca2+ transport and IL-2 production without affecting phosphatidylinositol turnover suggests that L3T4 may play a critical role in modulating the activation of the T cell receptor-associated Ca2+ transporter in T cell stimulus-response coupling.  相似文献   

19.
In studying reovirus interactions with lymphocytes, we have found that reovirus type 3, but not type 1, inhibits the in vitro proliferative response of murine splenic lymphocytes to concanavalin A (Con A). By analyzing recombinant clones containing genes from both reovirus types 1 and 3, we found that the S1 gene, the gene that encodes the viral hemagglutinin, is responsible for the inhibitory effect. In addition we found that type 3, but not type 1, generates suppressor T cells in vitro capable of suppressing Con A proliferation. By analyzing recombinant clones, we also found that the viral hemagglutinin is responsible for the generation of suppressor T cells by reovirus type 3. These effects were observed whether UV-inactivated or live virus was used. Reovirus type 3 inhibition of the proliferative response of murine splenic lymphocytes to Con A was blocked by anti-reovirus type 3 antibody but not by anti-reovirus type 1 antibody. Antiviral antibody had no effect on the ability of reovirus type 3 induced suppressor cells to inhibit Con A proliferation. We have previously demonstrated a receptor on murine lymphocytes for the hemagglutinin of reovirus type 3, and our results suggest that the in vitro suppression of Con A proliferation of murine lymphocytes by reovirus type 3 is secondary to the interaction of the viral hemagglutinin with a receptor on the surface of murine lymphocytes, which results in the generation of functionally active suppressor T cells.  相似文献   

20.
Preincubation of Swiss 3T3 cells or human fibroblasts with purified platelet-derived growth factor (PDGF) at 4 degrees C or 37 degrees C rapidly inhibits subsequent binding of 125I-epidermal growth factor (125I-EGF). The effect does not result from competition by PDGF for binding to the EGF receptor since (a) very low concentrations of PDGF are effective, (b) cells with EGF receptors but no PDGF receptors are not affected, and (c) the inhibition persists even if the bound PDGF is eluted before incubating the cells with 125I-EGF. PDGF does not affect 125I-insulin binding nor does EGF affect 125I-PDGF binding under these conditions. Endothelial cell-derived growth factor also competes for binding to PDGF receptors and inhibits 125I-EGF binding. The inhibition demonstrated by PDGF seems to result from an increase in the Kd for 125I-EGF binding with no change in the number of EGF receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号