首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological and surface properties of electrospun chitosan nanofibers   总被引:2,自引:0,他引:2  
Desai K  Kit K  Li J  Zivanovic S 《Biomacromolecules》2008,9(3):1000-1006
Nonwoven fiber mats of chitosan with potential applications in air and water filtration were successfully made by electrospinning of chitosan and poly(ethyleneoxide) (PEO) blend solutions. Electrospinning of pure chitosan was hindered by its limited solubility in aqueous acids and high degree of inter- and intrachain hydrogen bonding. Nanometer-sized fibers with fiber diameter as low as 80 +/- 35 nm without bead defects were made by electrospinning high molecular weight chitosan/PEO (95:5) blends. Fiber formation was characterized by fiber shape and size and was found to be strongly governed by the polymer molecular weight, blend ratios, polymer concentration, choice of solvent, and degree of deacetylation of chitosan. Weight fractions of polymers in the electrospun nonwoven fibers mats were determined by thermal gravimetric analysis and were similar to ratio of polymers in the blend solution. Surface properties of fiber mats were determined by measuring the binding efficiency of toxic heavy metal ions like chromium, and they were found to be related with fiber composition and structure.  相似文献   

2.
Zhou Y  Yang D  Chen X  Xu Q  Lu F  Nie J 《Biomacromolecules》2008,9(1):349-354
Biocompatible carboxyethyl chitosan/poly(vinyl alcohol) (CECS/PVA) nanofibers were successfully prepared by electrospinning of aqueous CECS/PVA solution. The composite nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). SEM images showed that the morphology and diameter of the nanofibers were mainly affected by the weight ratio of CECS/PVA. XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CECS and PVA. The crystalline microstructure of the electrospun fibers was not well developed. The potential use of the CECS/PVA electrospun fiber mats as scaffolding materials for skin regeneration was evaluated in vitro using mouse fibroblasts (L929) as reference cell lines. Indirect cytotoxicity assessment of the fiber mats indicated that the CECS/PVA electrospun mat was nontoxic to the L929 cell. Cell culture results showed that fibrous mats were good in promoting the cell attachment and proliferation. This novel electrospun matrix would be used as potential wound dressing for skin regeneration.  相似文献   

3.
H Pan  Y Zhang  Y Hang  H Shao  X Hu  Y Xu  C Feng 《Biomacromolecules》2012,13(9):2859-2867
Microcomposite fibers of regenerated silk fibroin (RSF) and multiwalled carbon nanotubes (MWNTs) were successfully prepared by an electrospinning process from aqueous solutions. A quiescent blended solution and a three-dimensional Raman image of the composite fibers showed that functionalized MWNTs (F-MWNTs) were well dispersed in the solutions and the RSF fibers, respectively. Raman spectra and wide-angle X-ray diffraction (WAXD) patterns of RSF/F-MWNT electrospun fibers indicated that the composite fibers had higher β-sheet content and crystallinity than the pure RSF electrospun fibers, respectively. The mechanical properties of the RSF electrospun fibers were improved drastically by incorporating F-MWNTs. Compared with the pure RSF electrospun fibers, the composite fibers with 1.0 wt % F-MWNTs exhibited a 2.8-fold increase in breaking strength, a 4.4-fold increase in Young's modulus, and a 2.1-fold increase in breaking energy. Cytotoxicity test preliminarily demonstrated that the electrospun fiber mats have good biocompatibility for tissue engineering scaffolds.  相似文献   

4.
Nano-fibres containing quaternised chitosan (QCh) have been successfully prepared by electrospinning of QCh solutions mixed with poly(vinyl alcohol) (PVA). The average fibre diameter is in the range of 60-200 nm. UV irradiation of the composite electrospun nano-fibrous mats containing triethylene glycol diacrylate as cross-linking agent has resulted in stabilising of the nano-fibres against disintegration in water or water vapours. Microbiological screening has demonstrated the antibacterial activity of the photo-cross-linked electrospun mats against Staphylococcus aureus and Escherichia coli. The obtained nano-fibrous electrospun mats are promising for wound-healing applications.  相似文献   

5.
There has been little study on the effect of composition or molecular weight on the biodegradation rate of photo-cross-linked biodegradable aliphatic polyesters though such information is important for tissue engineering scaffolds. We have synthesized a new series of photopolymerizable linear poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylates with different molecular weights (Mn = 1800, 4800, and 9300 Da) and compositions (20%, 40%, and 60% epsilon-CL) and studied their biodegradation rates. The resultant oligomers were amorphous and appeared as viscous liquids at room temperature. Liquid-to-solid polymerization was carried out by UV irradiation in the presence of a photoinitiator. The photocuring yield was high (greater than 95%), and the photo-cross-linked polymers were amorphous and rubbery. Mechanical measurements showed that the polymers can be stretchable or rigid; the high molecular weight/low epsilon-CL network has a strain of 176% and a modulus of 1.66 MPa while the low molecular weight/high epsilon-CL network has a strain of 21% and a modulus of 12.3 MPa. In a 10 week in vitro biodegradation study, the polymers exhibited a two-stage degradation behavior. In the first stage, the polymer weight and strain remained almost constant, but a linear decrease in the Young's modulus (E) and ultimate stress (sigma) were observed. Lower oligomer molecular weight or epsilon-CL content correlated with a faster decrease in Young's modulus. In the second stage, which began when the Young's modulus dropped below 1 MPa, there was rapid weight loss and strain increase. The lower the epsilon-CL content, the earlier the second stage happened. Low molecular weight and high epsilon-CL content correlated with a longer modulus half-life (time for the modulus to degrade to 50% of its initial value). The degradation results suggest principles that may be helpful in predicting the biodegradation behavior of similar polymeric cross-linked networks. Films formed from these new polymers have excellent biocompatibility with smooth muscle cells.  相似文献   

6.
Novel cross-linked chitosan-based films were prepared using the solution casting technique. A naturally occurring and nontoxic cross-linking agent, genipin, was used to form the chitosan and chitosan/poly(ethylene oxide) (PEO) blend networks, where two types of PEO were used, one with a molecular weight of 20 000 g/mol (HPEO) and the other of 600 g/mol (LPEO). Genipin is used in traditional Chinese medicine and extracted from gardenia fruit. Importantly, it overcomes the problem of physiological toxicity inherent in the use of some common synthetic chemicals as cross-linking agents. The mechanical properties and the stability in water of cross-linked and un-crosslinked chitosan and chitosan/PEO blend films were investigated. It was shown that, compared to the transparent yellow, un-cross-linked chitosan/PEO blend films, the genipin-cross-linked chitosan-based film, blue in color, was more elastic, was more stable, and had better mechanical properties. Genipin-cross-linking produced chitosan networks that were insoluble in acidic and alkaline solutions but were able to swell in these aqueous media. The swelling characteristics of the films exhibit sensitivity to the environmental pH and temperature. The surface properties of the films were also examined by contact angle measurements using water and mixtures of water/ethanol. The results showed that, with the one exception of cross-linked pure chitosan in 100% water, the cross-linked chitosan and chitosan/PEO blends were more hydrophobic than un-crosslinked ones.  相似文献   

7.
Defect free mats containing a cationic polysaccharide, chitosan derivative such as N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (HTCC), have been prepared using electrospinning of an aqueous solution of poly(vinyl alcohol) (PVA)-HTCC blends. HTCC, a water-soluble derivative of chitosan, was synthesized via the reaction between glycidyl-trimethylammonium chloride and chitosan. Solutions of PVA-HTCC Blends were electrospun. The morphology, diameter and structure of the produced electrospun nanofibres were examined by scanning electron microscopy (SEM). The average fibre diameter was in the range of 200-600 nm. SEM images showed that the morphology and diameter of the nanofibres were mainly affected by weight ratio of the blend and applied voltage. The results revealed that increasing HTCC content in the blends decreases the average fibre diameter. These observations were discussed on the basis of shear viscosities and conductivities of the spinning solutions. Microbiological assessment showed that the PVA-HTCC mats have a good antibacterial activity against Gram-positive bacteria, Staphylococcus aureus, and Gram-negative bacteria, Escherichia coli.  相似文献   

8.
The present investigation describes the synthesis and characterization of novel biodegradable nanoparticles based on chitosan. Poly(ethylene glycol) dicarboxylic acid was used for intramolecular cross-linking of the chitosan linear chains. The condensation reaction of carboxylic groups and pendant amino groups of chitosan was performed by using water-soluble carbodiimide. The prepared nanosystems were stable in aqueous media. The structure of the products was determined by nuclear magnetic resonance (NMR) spectroscopy, and the particle size was identified by dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. It was found that biodegradable cross-linked chitosan nanoparticles experienced considerable swelling because of the length and flexibility of the cross-linking agent. The aqueous solutions or dispersions of nanoparticles were stable and clear or mildly opalescent systems depending on the ratio of cross-linking and molecular weight of chitosan, findings consistent with values of transmittance above 75%. Particle size measured by TEM varied in the range of 4-24 nm. In the swollen state, the average size of the individual particles measured by DLS was in the range of 50-120 nm depending on the molecular weight of chitosan and the ratio of cross-linking.  相似文献   

9.
The cross-linked microspheres using chitosan with different molecular weights and degree of deacetylation have been prepared in presence of sodium hexameta polyphosphate (SHMP) as physical cross-linker. The degree of cross-linking through electrostatic interactions in chitosan microspheres has been evaluated by varying the charge density on chitosan and varying degree of dissociation of sodium hexameta polyphosphate by solution pH. The degree of deacetylation and molecular weight of chitosan has controlled electrostatic interactions between hexameta polyphosphate anions and chitosan, which played significant role in swelling, loading and release characteristics of chitosan microspheres for centchroman. The microspheres prepared by hexameta polyphosphate anions cross-linker were compact and more hydrophobic than covalently cross-linked microspheres, which has been attributed to the participation of all amino groups of chitosan in physical cross-linking with added hexameta polyphosphate anions. The microspheres prepared under different experimental conditions have shown an initial step of burst release, which was followed by a step of controlled release for centchroman. The extent of drug release in these steps has shown dependence on properties of chitosan and degree of cross-linking between chitosan and added polyanions. The degree of swelling and release characteristics of microspheres was also studied in presence of organic and inorganic salts, which shown significant effect on controlled characteristics of microspheres due to variations in ionic strength of the medium. The initial step of drug release has followed first order kinetics and become zero order after attaining an equilibrium degree of swelling in these microspheres. The microspheres prepared using chitosan with 62% (w/w) degree of deacetylation and molecular weight of 1134 kg mol−1 have shown a sustained release for centchroman for 50 h at 4% (w/w) degree of cross-linking with SHMP.  相似文献   

10.
A novel method is described to synthesize quaternary salts of chitosan with dimethylsulfate and subsequently cast films. In an attempt to improve both mechanical and hydrophobic characteristics, the chitosan was previously modified by N-alkylation, introducing 4, 8 and 12 carbons moieties into the polymeric chain. Analysis by FTIR and solid-state CP-MAS (13)C NMR spectroscopy confirmed the success of both alkylation and quaternization processes. The average degree of quaternization of these N-methylated derivatives was calculated to be 35%. DMA measurements indicated that chitosan and its derivative films are typically brittle materials, exhibiting similar non-linear viscoelastic behaviors. The films of unmodified chitosan have a very small strain (approximately 2.8%), though they were the most resistant films (Young's modulus=2283 MPa; tensile strength >44.0 MPa). In general, the alkyl-chitosan derivatives appear to be more plastic than chitosan films but less resistant, e.g., for butyl chitosan: maximum strain=13.1%; tensile strength=13.4 MPa and Young's modulus=171 MPa. Conversely the quaternization reaction increased the hardness of the parent sample, viz. for quaternary salt of dodecyl chitosan: maximum strain=2.6%; tensile strength=38.3 MPa and Young's modulus=1792 MPa.  相似文献   

11.
Glutaraldehyde and glyoxal cross-linked microspheres were prepared using chitosan with different molecular weights (MWs) and degrees of deacetylation (DDAs) for sustained release of centchroman under physiological conditions. The DDA in chitosan was determined by different methods, and the samples were categorized as chitosan with low (48%), medium (62%), and high (75%) DDA. The size and shape of the microspheres were determined by scanning electron microscopy (SEM), and hydrophobicity was determined by adsorption of Rose Bengal dye on microspheres cross-linked with glutaraldehyde or glyoxal. The effect of MW, DDA, and degree of cross-linking in microspheres was studied on the degree of swelling, as well as by the loading and release of centchroman. The glyoxal cross-linked microspheres were more compact and hydrophobic and showed better sustained release in companion to chitosan microspheres and glutaraldehyde cross-linked microspheres. The linear fractional release of centchroman with the square root of time indicated a Fickian behavior of centchroman, and the microspheres also showed zero-order release kinetics for centchroman.  相似文献   

12.
Nanocomposite fibers of Bombyx mori silk and single wall carbon nanotubes (SWNT) were produced by the electrospinning process. Regenerated silk fibroin dissolved in a dispersion of carbon nanotubes in formic acid was electrospun into nanofibers. The morphology, structure, and mechanical properties of the electrospun nanofibers were examined by field emission environmental scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and microtensile testing. TEM of the reinforced fibers shows that the single wall carbon nanotubes are embedded in the fibers. The mechanical properties of the SWNT reinforced fiber show an increase in Young's modulus up to 460% in comparison with the un-reinforced aligned fiber, but at the expense of the strength and strain to failure.  相似文献   

13.
Ultrafine fibers of cellulose acetate/poly(butyl acrylate) (CA/PBA) composite in which PBA acted as an adhesive and CA acted as a matrix, were successfully prepared as fibrous mat via electrospinning. The morphology observation from the electrospun CA/PBA composite fibers, after treatment with heat hardener, revealed that the fibers were cylindrical and had point-bonded structures. SEM, FT-IR spectra, Raman spectra, TGA analysis, and mechanical properties measurement were used to study the different properties of hybrid mats. The tensile strength of blend fibrous electrospun mats was found to be effectively increased. This resultant enhancement of the mechanical properties of polymer fibrous mats, caused by generating the point-bonded structures (due to adhesive), could increase the number of potential applications of mechanically weak electrospun CA fibers.  相似文献   

14.
Chitosan is an abundantly common, naturally occurring, polysaccharide biopolymer. Its biocompatible, biodegradable, and antimicrobial properties have led to significant research toward biological applications such as drug delivery, artificial tissue scaffolds for functional tissue engineering, and wound-healing dressings. For applications such as tissue scaffolding, formation of highly porous mats of nanometer-sized fibers, such as those fabricated via electrospinning, may be quite important. Previously, strong acidic solvents and blending with synthetic polymers have been used to achieve electrospun nanofibers containing chitosan. As an alternative approach, in this work, polyethylene oxide (PEO) has been used as a template to fabricate chitosan nanofibers by electrospinning in a core-sheath geometry, with the PEO sheath serving as a template for the chitosan core. Solutions of 3 wt % chitosan (in acetic acid) and 4 wt % PEO (in water) were found to have matching rheological properties that enabled efficient core-sheath fiber formation. After removing the PEO sheath by washing with deionized water, chitosan nanofibers were obtained. Electron microscopy confirmed nanofibers of approximately 250 nm diameter with a clear core-sheath geometry before sheath removal, and chitosan nanofibers of approximately 100 nm diameter after washing. The resultant fibers were characterized with IR spectroscopy and X-ray diffraction, and the mechanical and electrical properties were evaluated.  相似文献   

15.
The production of chitosan nanofiber mats by electrospinning presents serious difficulties due to the lack of suitable solvents and the strong influence of processing parameters on the fiber properties. Two are the main problems to be solved: to control the properties of the solution in order to obtain large area uniform fiber mats by having a stable flow rate and to avoid sparks during the process, damaging the fiber mats. In this work chitosan electrospun mats have been prepared form solutions of trifluoroacetic acid/dichloromethane mixtures, allowing solving the aforementioned problems. Mats with uniform fibers of submicron diameters without beads were obtained. Further, the influence of the different solution and process parameters on the mean fiber diameter and on the width of the distribution of the fiber sizes has been assessed. Solvent composition, needle diameter, applied voltage and traveling distance were the parameters considered in this study.  相似文献   

16.
Novel protein fibers from wheat gluten   总被引:1,自引:0,他引:1  
Reddy N  Yang Y 《Biomacromolecules》2007,8(2):638-643
Protein fibers with mechanical properties similar to those of wool and better than those of soyprotein and zein fibers have been produced from 100% wheat gluten. Wheat gluten is a low cost, abundantly available, and renewable resource suitable for fiber production. A simple production method has been developed to obtain high-quality wheat gluten fibers, and the structure and properties of the fibers have been studied. Wheat gluten fibers have breaking tenacity of about 115 MPa, breaking elongation of 23%, and a Young's modulus of 5 GPa, similar to those of wool. Wheat gluten fibers have better tensile properties than soyprotein- and casein-based biomaterials. In addition, the wheat gluten fibers have resistance similar to that of PLA fibers to water in weak alkaline and slightly lower resistance in weak acidic conditions at high temperatures.  相似文献   

17.
A poly(vinylalcohol) (PVA) electrospun/magnetic/chitosan nanocomposite fibrous cross-linked network was fabricated using in situ cross-linking electrospinning technique and used for bovine serum albumin (BSA) loading and release applications. Sodium tripolyphosphate (TPP) and glutaraldehyde (GA) were used as cross-linkers which modified magnetic-Fe3O4 chitosan as Fe3O4/CS/TPP and Fe3O4/CS/GA, respectively. BSA was used as a model protein drugs which was encapsulated to form Fe3O4/CS/TPP/BSA and Fe3O4/CS/GA/BSA nanoparticles. The composites were electrospun with PVA to form nanofibers. Nanofibers were characterized by field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The characterization results suggest that Fe3O4 nanoparticles with average size of 45 nm were successfully bound on the surface of chitosan. The cross-linked nanofibers were found to contain uniformly dispersed Fe3O4 nanoparticles. The size and morphology of the nanofibers network was controlled by varying the cross-linker type. FTIR data show that these two polymers have intermolecular interactions. The sample with TPP cross-linker showed an enhancement of the controlled release properties of BSA during 30-h experimental investigation.

Graphical Abstract

Open in a separate windowᅟKEY WORDS: cross-linker, electrospun, magnetite, mano-composite, protein loading  相似文献   

18.
Various block copolymers of poly(ethylene glycol) and poly(epsilon-caprolactone) (PEG-b-PCL) with molecular weights between 7000 and 26,900 g/mol were synthesized, and melt electrospun at temperatures between 60 degrees C and 90 degrees C. Two types of fibers were collected, including excellent quality fibers - highly coiled and continuous, with a constant diameter and relatively defect free. Such fibers, termed "solid fibers", were sufficiently cooled during their path between the spinneret and the collector that the symmetric fiber shape is maintained after landing on the collector. The second type of melt electrospun fiber were poor quality, large diameter fibers, flattened on the collector - termed "molten fibers". The solid and molten fibers were morphologically distinct from each other as determined from scanning electron microscopy (SEM). Using an SEM imaging method to assess the regional variations of collected electrospun material, we found the spinneret pump rate largely influenced the fiber quality. The polymer flow rate to the spinneret and the molecular weight of PEG-b-PCL had the greatest effect on the electrospun fibers collected, with an optimum rate of 0.05-0.1 mL/h for the highest molecular weight copolymers. The lowest molecular weight PEG-b-PCL tended to electrospray, while the material collected from higher molecular weight copolymers were conducive to fiber formation. The highest quality fibers were PEG-b-PCL block copolymers (22,000 and 26,900 g/mol) melt electrospun at temperatures of 85 degrees C and 90 degrees C, corresponding to shear viscosities of the polymer of between 28.1 and 39.4 Pa.S.  相似文献   

19.
Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy.  相似文献   

20.
Mechanical properties of polyelectrolyte multilayer films were studied by nanoindentation using the atomic force microscope (AFM). Force-distance measurements using colloidal probe tips were systematically obtained for supported films of poly(L-lysine) and hyaluronan that are suited to bio-application. Both native and covalently cross-linked films were studied as a function of increasing layer number, which increases film thickness. The effective Young's modulus perpendicular to the film, Eperpendicular, was determined to be a function of film thickness, cross-linking, and sample age. Thick PEM films exhibited a lower Eperpendicular than thinner PEM, whereas the Young's modulus of cross-linked films was more than 10-fold larger than native films. Moduli range from approximately 20 kPa for native films up to approximately 800 kPa for cross-linked ones. Young's moduli increased slightly with sample age, plateauing after approximately 4 weeks. Spreading of smooth muscle cells on these substrates with pre-attached collagen proved to be highly dependent on film rigidity with stiffer films giving greater cell spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号