首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monochamus alternatus is a destructive stem‐boring herbivore of Pinus massoniana, and the principal vector of pine wood nematode. To investigate the impacts of boring by M. alternatus larvae on the emission of volatile organic compounds (VOCs) from their host trees, the VOCs from uninfested and M. alternatus larvae infested P. massoniana trees were observed using a gas chromatograph–mass spectrometer. We detected 12, 9, 18 and 14 volatile organic compounds from infested xylem, infested phloem, uninfested xylem and uninfested phloem, respectively. In P. massoniana xylem, the boring of M. alternatus larvae induced cyclosativene, and inhibited 4‐carene, humulene, styrene, α‐phellandrene, β‐myrcene, β‐phellandrene and γ‐terpinene. The relative amounts of camphene, copacamphene, longicyclene, longifolene, tricyclene and α‐longipinene were significantly increased, and the relative amounts of α‐pinene and β‐pinene were significantly decreased by the boring behaviors of M. alternatus larvae. In P. massoniana phloem, the boring of M. alternatus larvae induced 2‐bornanone, copacamphene, longicyclene and α‐longipinene, and inhibited 2‐carene, 4‐carene, styrene, α‐phellandrene, β‐myrcene, β‐phellandrene, β‐pinene, γ‐terpinene and ο‐cymene. The relative amounts of camphene, caryophyllene and longifolene were significantly increased by the boring behaviors of M. alternatus larvae. The results indicate that the boring behaviors of M. alternatus larvae changed both the sorts and contents of the VOCs from P. massoniana trees.  相似文献   

2.
The volatile compounds from Peucedanum cervaria (Lap. ) L. were obtained by hydrodistillation (HD) and headspace solid‐phase microextraction techniques (HS‐SPME), and then analyzed by GC/MS methods. The composition of samples from a botanical garden was compared with plants collected in the wild. The main compounds of the essential oils of P. cervaria were identified as α‐pinene, sabinene, and β‐pinene (more than 80% of oil). The content of β‐myrcene, limonene+β‐phellandrene, and germacrene D was higher than 1%. The in vitro antibacterial activity of the essential oil was evaluated by the agar dilution method against ten reference strains of Gram‐positive and Gram‐negative bacteria.  相似文献   

3.
The needle‐terpene profiles of two natural Pinus peuce populations from the Scardo‐Pindic mountain system (Mt. O?ljak and Mt. Pelister) were analyzed. Among the 90 detected compounds, 87 were identified. The dominant constituents were α‐pinene (45.5%), germacrene D (11.1%), β‐pinene (10.8%), and camphene (10.3%). The following eight additional components were found to be present in medium‐to‐high amounts (0.5–10%): bornyl acetate (5.0%), β‐phellandrene (3.4%), β‐caryophyllene (2.9%), β‐myrcene (0.9%), germacrene D‐4‐ol (0.9%), tricyclene (0.7%), (E)‐hex‐2‐enal (0.7%), and bicyclogermacrene (0.6%). Although the general needle‐terpene profiles of the populations from Mt. O?ljak and Mt. Pelister were found to be similar to those of the populations from Zeletin, Sjekirica, and Mokra Gora (Dinaric Alps), principle component analysis (PCA) of eight terpenes (α‐pinene, β‐myrcene, α‐terpinolene, bornyl acetate, α‐terpinyl acetate, β‐caryophyllene, transβ‐farnesene, and germacrene D) in 139 tree samples suggested a divergence between the two population groups, i.e., the samples from the Scardo‐Pindic mountain system and those from the Dinaric Alps. Genetic analysis of the β‐pinene content demonstrated a partial divergence between the two geographical groups. The profiles of both population groups differed from those published for populations from the Balkan‐Rhodope mountains system (literature results), which were characterized by high contents of bornyl acetate and citronellol (Greek populations) or δ‐car‐3‐ene (Bulgarian populations).  相似文献   

4.
The composition and variability of the terpenes and their derivatives isolated from the needles of a representative pool of 114 adult trees originating from four natural populations of dwarf mountain pine (Pinus mugo Turra ) from the Julian Alps were investigated by GC‐FID and GC/MS analyses. In total, 54 of the 57 detected essential‐oil components were identified. Among the different compound classes present in the essential oils, the chief constituents belonged to the monoterpenes, comprising an average content of 79.67% of the total oil composition (74.80% of monoterpene hydrocarbons and 4.87% of oxygenated monoterpenes). Sesquiterpenes were present in smaller amounts (average content of 19.02%), out of which 16.39% were sesquiterpene hydrocarbons and 2.62% oxygenated sesquiterpenes. The most abundant components in the needle essential oils were the monoterpenes δ‐car‐3‐ene, β‐phellandrene, α‐pinene, β‐myrcene, and β‐pinene and the sesquiterpene β‐caryophyllene. From the total data set of 57 detected compounds, 40 were selected for principal‐component analysis (PCA), discriminant analysis (DA), and cluster analysis (CA). The overlap tendency of the four populations suggested by PCA, was as well observed by DA. CA also demonstrated similarity among the populations, which was the highest between Populations I and II.  相似文献   

5.
Abstract: Choice and no‐choice feeding assays on the twigs of three host species demonstrated the following feeding preference sequence by Monochamus alternatus: Pinus massoniana > Cedrus deodara > Pinus thunbergii. There were significant differences in the concentrations of α‐pinene, camphene, d ‐limonene, β‐phellandrene, longifolene and β‐caryophyllene in volatiles emitted by twigs among the three species. We tested the effects of six monoterpenes (α‐pinene, β‐pinene, 3‐carene, myrcene, limonene and β‐caryophyllene) added to an artificial diet consisting of bark from P. thunbergii on consumption rates by M. alternatus. The addition of α‐pinene at all four concentrations 0.4, 1.2, 3.6 and 10.8 μl/ml resulted in increases of a twofold greater consumption rate than the control at a concentration of 3.6 μl/ml. Limonene inhibited diet consumption at concentrations >0.4 μl/ml. The concentration of α‐pinene in volatiles emitted by twigs was significantly higher for P. massoniana than for P. thunbergii, whereas the reverse was true for limonene. There were no differences for any of the other host components, suggesting that α‐pinene and limonene may play an important role in the adult's selection and acceptance of suitable and unsuitable feed host. Mixed compounds promoted the consumption of artificial diet at a concentration of 0.4 μl/ml, whereas consumption was inhibited at a concentration of 10.8 μl/ml. There were significant linear correlations (β‐pinene: r2 = 0.930, P < 0.05; myrcene: r2 = 0.933, P < 0.05) between the amount of diets consumed and diet concentrations of β‐pinene and myrcene. In conclusion, host volatile terpenes may stimulate or repel M. alternatus depending on terpene concentrations they encounter during initial feeding and then possibly inhibit further feeding activity once concentrations increase to threshold levels.  相似文献   

6.
The composition of 109 samples of essential oil isolated from the needles of Juniperus communis ssp. alpina growing wild in Corsica was investigated by GC (in combination with retention indices), GC/MS, and 13C‐NMR. Forty‐four compounds accounting for 86.7–96.7% of the oil were identified. The oils consisted mainly of monoterpene hydrocarbons, in particular, limonene (9.2–53.9%), β‐phellandrene (3.7–25.2%), α‐pinene (1.4–33.7%), and sabinene (0.1–33.6%). The 109 oil compositions were submitted to k‐means partitioning and principal component analysis, which allowed the distinction of two groups within the oil samples. The composition of the major group (92% of the samples) was dominated by limonene and β‐phellandrene, while the second group contained mainly sabinene beside limonene and β‐phellandrene.  相似文献   

7.
The southern pine beetle (Dendroctonus frontalis) and western pine beetle (Dendroctonus brevicomis) cause significant mortality to pines in the southern and western United States. The effectiveness of commercial lures at capturing these bark beetles in Arizona has not been tested and may vary from other regions of their distribution. We conducted experiments using baited Lindgren funnel traps to investigate (i) if D. frontalis is more attracted to the standard commercial lure for D. brevicomis (frontalin + exo‐brevicomin + myrcene) than the D. frontalis lure (frontalin + terpene blend), (ii) whether replacement of myrcene with α‐pinene changes trap catches of Dendroctonus and associated insects, and (iii) whether the attraction to these lures varies across the geographical range of ponderosa pine forests throughout Arizona. In 2005, we tested various combinations of frontalin, exo‐brevicomin, myrcene and α‐pinene to D. frontalis, D. brevicomis and associated species. Dendroctonus frontalis, D. brevicomis and the predator Temnochila chlorodia were most attracted to lures with exo‐brevicomin. The replacement of the myrcene component with α‐pinene in the D. brevicomis lure resulted in the capture of twice as many bark beetles and Elacatis beetles. However, T. chlorodia did not differentiate between monoterpenes. In 2006, traps were set up in 11 locations around Arizona to test the relative attraction of lure combinations. In 9 out 11 locations, the D. brevicomis lure with α‐pinene was more attractive than the lure with myrcene or a terpene blend. These results suggest that the D. brevicomis lure with α‐pinene rather than myrcene is more effective lure to capture D. brevicomis and D. frontalis in Arizona. However, geographical variation in attractiveness to lures is evident even within this region of the beetles’ distributions. Differential attraction of Dendroctonus and their predators to these lures suggests potential use in field trapping and control programmes.  相似文献   

8.
The essential oils from needles, twigs, bark, wood, and cones of Pinus cembra were analyzed by GC‐FID, GC/MS, and 1H‐NMR spectroscopy. More than 130 compounds were identified. The oils differed in the quantitative composition. The principal components of the oil from twigs with needles were α‐pinene (36.3%), limonene (22.7%) and β‐phellandrene (12.0%). The needle oil was dominated by α‐pinene (48.4%), whereas in the oil from bark and in the oil from twigs without needles there were limonene (36.2% and 33.6%, resp.) and β‐phellandrene (18.8% and 17.1%, resp.). The main constituents of the wood oil as well as cone oil were α‐pinene (35.2% and 39.0%, resp.) and β‐pinene (10.4% and 18.9%, resp.). The wood oil and the cone oil contained large amounts of oxygenated diterpenes in comparison with needle, twig, and bark oils.  相似文献   

9.
The chemical composition of trunk bark oil from Cleistopholis patens (Benth .) Engl . & Diels , growing wild in Côte d'Ivoire, has been investigated by GC (FID) in combination with retention indices, GC/MS and 13C‐NMR. Moreover, one oil sample has been subjected to CC and all the fractions analyzed by GC (RI) and 13C‐NMR. In total, 61 components have been identified, including various sesquiterpene esters scarcely found in essential oils. 13C‐NMR was particularly efficient for the identification of a component not eluted on GC and for the quantification of heat‐sensitive compounds. Then, 36 oil samples, isolated from trunk bark harvested in six Ivoirian forests have been analyzed. The content of the main components varied drastically from sample to sample: (E)‐β‐caryophyllene (0.4 – 69.1%), β‐pinene (0 – 57%), α‐phellandrene (0 – 33.2%), α‐pinene (0.1 – 30.6%), β‐elemol (0.1 – 29.9%), germacrene D (0 – 25.4%), juvenile hormone III (0 – 22.9%), germacrene B (0 – 20.6%) and sabinene (tr‐20.3%). Statistical analysis, hierarchical clustering and principal components analysis, carried out on the 36 compositions evidenced a fair chemical variability of the stem bark oil of this species. Indeed, three clusters have been distinguished: the composition of group I (ten samples) was dominated by β‐pinene and α‐pinene, group II (nine samples) was represented by α‐phellandrene and p‐cymene and group III (16 samples) by β‐elemol. A sample displayed an atypical composition dominated by (E)‐β‐caryophyllene.  相似文献   

10.
The chemical composition of 50 samples of leaf oil isolated from Algerian Juniperus phoenicea var. turbinata L. harvested in eight locations (littoral zone and highlands) was investigated by GC‐FID (in combination with retention indices), GC/MS, and 13C‐NMR analyses. The composition of the J. phoenicea var. turbinata leaf oils was dominated by monoterpenes. Hierarchical cluster and principal component analyses confirmed the chemical variability of the leaf oil of this species. Indeed, three clusters were distinguished on the basis of the α‐pinene, α‐terpinyl acetate, β‐phellandrene, and germacrene D contents. In most oil samples, α‐pinene (30.2–76.7%) was the major compound, associated with β‐phellandrene (up to 22.5%) and α‐terpinyl acetate (up to 13.4%). However, five out of the 50 samples exhibited an atypical composition characterized by the predominance of germacrene D (16.7–22.7%), α‐pinene (15.8–20.4%), and α‐terpinyl acetate (6.1–22.6%).  相似文献   

11.
The composition of oil samples isolated from needles of Pinus halepensis growing in three locations in Corsica (Saleccia, Capo di Feno, and Tre Padule) has been investigated by combination of chromatographic (GC with retention indices) and spectroscopic (MS and 13C‐NMR) techniques. In total, 35 compounds that accounted for 77 – 100% of the whole composition have been identified. α‐Pinene, myrcene, and (E)‐β‐caryophyllene were the major component followed by α‐humulene and 2‐phenylethyl isovalerate. Various diterpenes have been identified as minor components. 47 Oil samples isolated from pine needles have been analyzed and were differentiated in two groups. Oil samples of the first group (15 samples) contained myrcene (M = 28.1 g/100 g; SD = 10.6) and (E)‐β‐caryophyllene (M = 19.0 g/100 g; SD = 2.2) as major components and diterpenes were absent. All these oil samples were isolated from pine needles harvested in Saleccia. Oil samples of the second group (32 samples) contained mostly (E)‐β‐caryophyllene (M = 28.7 g/100 g; SD = 7.9), α‐pinene (M = 12.3 g/100 g; SD = 3.6), and myrcene (M = 11.7 g/100 g; SD = 7.3). All these oil samples were isolated from pine needles harvested in Capo di Feno and Tre Padule.  相似文献   

12.
The hydrodistilled essential oils obtained from aerial flowering parts of Teucrium stocksianum ssp. stocksianum (TSS) and T. stocksianum ssp. gabrielae (TSG) from Iran were analyzed by capillary GC and GC/MS. The oil analysis of two subspecies led to the identification of 65 compounds that accounted for 93.3 and 95.1% of the total oil compositions, respectively. Sesquiterpenoids (52.9%) constituted the main compounds in the essential oil of TSS represented mainly by cis‐sesquisabinene hydrate (12.0%), followed by epiβ‐bisabolol (6.6%), guaiol (5.4%), and β‐eudesmol (4.4%), whilst monoterpenoids (61.2%) were found to be the major components of the oil of TSG, represented by α‐pinene (23.0%), β‐pinene (13.0%), myrcene (6.3%), and sabinene (6.3%). The principal component in both subspecies, TSS and TSG, was α‐pinene (22.0 and 23.0%, resp.) and β‐pinene (6.5 and 13.0%, resp.). epiα‐Cadinol, myrcene, and sabinene, which were detected as principal compounds of TSG, were characterized in lower amounts (<1.5%) in the oil of TSS. Seven components were identified in the oil of TSS corresponding to 25.9% of total oil, which were totally absent in the oil of TSG, of which cis‐sesquisabinene hydrate (12.0%), guaiol (5.4%), and β‐eudesmol (4.4%) were in considerable amounts. Taxonomic position of the subspecies is discussed on the basis of phytochemical data.  相似文献   

13.
The chemical composition of 48 leaf oil samples isolated from individual plants of Cleistopholis patens (Benth .) Engl. et Diels harvested in four Ivoirian forests was investigated by GC‐FID (determination of retention indices), GC/MS, and 13C‐NMR analyses. The main components identified were β‐pinene (traces–59.1%), sabinene (traces–54.2%), (E)‐β‐caryophyllene (0.3–39.3%), linalool (0.1–38.5%), (E)‐β‐ocimene (0.1–33.2%), germacrene D (0.0–33.1%), α‐pinene (0.1–32.3%), and germacrene B (0–21.2%). The 48 oil compositions were submitted to hierarchical clustering and principal components analyses, which allowed the distinction of three groups within the oil samples. The oil composition of the major group (Group I, 33 samples) was dominated by (E)‐β‐caryophyllene and linalool. The oils of Group II (eight samples) contained mainly β‐pinene and α‐pinene, while those of Group III (seven samples) were dominated by sabinene, limonene, and β‐phellandrene. Moreover, the compositions of the Ivoirian C. patens leaf oils differed from those of Nigerian and Cameroonian origins.  相似文献   

14.
The needle‐terpene profiles of two natural Pinus heldreichii populations from Mts. O?ljak and Gali?ica (Scardo‐Pindic mountain system) were analyzed. Among the 68 detected compounds, 66 were identified. The dominant constituents were germacrene D (28.7%), limonene (27.1%), and α‐pinene (16.2%). β‐Caryophyllene (6.9%), β‐pinene (5.2%), β‐myrcene (2.3%), pimaric acid (2.0%), α‐humulene (1.2%), and seven additional components were found to be present in medium‐to‐high amounts (0.5–10%). Although the general needle‐terpene profile of the population from Gali?ica was similar to those of the populations from Lov?en, Zeletin, Bjelasica, and Zlatibor‐Pe?ter (belonging to the Dinaric Alps), the principle‐component analysis (PCA) of seven terpenes (β‐myrcene, limonene, β‐elemene, β‐caryophyllene, α‐humulene, δ‐cadinene, and germacrene D‐4‐ol) in 121 tree samples suggested a partial divergence in the needle‐terpene profiles between the populations from the Scardo‐Pindic mountain system and the Dinaric Alps. According to previously reported data, the P. heldreichii samples from the Balkan‐Rhodope mountains lack β‐caryophyllene and germacrene D, but contain γ‐muurolene in their terpene profile. Differences in the terpene composition between populations growing in the three above‐mentioned mountain systems were compared and discussed.  相似文献   

15.
In the present work, the leaf essential oil from 97 individuals of Juniperus phoenicea var. turbinata (Guss .) Parl . from the Balkan Peninsula was analyzed. The essential oil was dominated by monoterpene hydrocarbons (45.5 – 71.8%), of which α‐pinene was the most abundant in almost all of the samples (38.2 – 55.8%). Several other monoterpenes and sesquiterpenes were also present in relatively high abundances in samples such as myrcene, δ‐3‐carene, β‐phellandrene, α‐terpinyl acetate, (E)‐caryophyllene and germacrene D. Multivariate statistical analysis suggested the existence of three possible chemotypes based on the abundance of the four components. Even though the intrapopulation variability was high, discriminant analysis (DA) was able to separate populations. DA showed high separation between western and eastern populations but also grouped geographically closer populations along the west Balkan shoreline. The potential influence of the climate on the composition of the essential oil was also studied.  相似文献   

16.
  • 1 Bark beetles are significant mortality agents of conifers. Four beetle species, the pine engraver Ips pini, the six‐spined pine engraver Ips calligraphus sub. ponderosae, the southern pine beetle Dendroctonus frontalis, and the western pine beetle Dendroctonus brevicomis, cohabitate pines in Arizona.
  • 2 A pheromone trapping study in ponderosa forests of Arizona determined the attraction of beetles to conspecific and heterospecific pheromone components in the presence and absence of host volatiles, and tested whether predators differ in their attraction to combinations of pheromone components and tree monoterpenes.
  • 3 All four bark beetle species differed in their responses to heterospecific lures and monoterpenes. Ips calligraphus was the only species that increased in trap catches when heterospecific lures were added. Heterospecific lures did not inhibit the attraction of either Dendroctonus or Ips species. The replacement of myrcene with α‐pinene increased the attraction of Dendroctonus, whereas the addition of α‐pinene had mixed results for Ips. The prominent predators Temnochila chlorodia and Enoclerus lecontei were more attracted to the I. pini lure than the D. brevicomis lure, and the combination of the two lures with α‐pinene was most attractive to both predator species.
  • 4 Cross attraction and limited inhibition of bark beetles to heterospecific pheromones suggest that some of these species might use heterospecific compounds to increase successful location and colonization of trees. Predator responses to treatments suggest that tree volatiles are used to locate potential prey and predators are more responsive to Ips than to Dendroctonus pheromone components in Arizona.
  相似文献   

17.
The essential oils from needles, twigs, bark, wood, cones and young shoots of Pinus mugo were analyzed by GC, GC/MS, and 1H‐NMR spectroscopy. More than 130 compounds were identified. The oils differed in the quantitative composition. The principal components of the oil from twigs with needles were 3‐carene (23.8 %), myrcene (22.3 %), and α‐pinene (10.3 %). The needle oil contained mainly α‐pinene (18.6 %), 3‐carene (11.3 %), and bornyl acetate (8.3 %). The oils from twigs without needles, young shoots, bark, and wood were dominated by 3‐carene (28.6 %, 15.0 %, 18.5 %, and 34.6 %, respectively) and myrcene (23.4 %, 24.0 %, 24.6 %, and 9.4 %, respectively). In the cone oil (E)‐β‐caryophyllene was the main constituent (24.0 %).  相似文献   

18.
A chemical analysis of essential oils from leaves of eleven Eucalyptus L’Herit taxa, grown in Viçosa, Brazil were carried out. The identification and quantification of essential oils constituents were carried out by GC‐FID and GC/MS. The leaves of E. camaldulensis and E. tereticornis presented the highest oil content (3.00% and 2.30% respectively). In total, 48 compounds were identified in the oils. Higher levels of 1,8‐cineole were found for oils produced by E. microcorys (66.2%), E. urophylla (65.4%) and E. camaldulensis (44.8%) and the hybrid E. urophylla × E. grandis (33.0%). The oil from E. saligna was composed mainly by α‐pinene (92.3%). High concentrations of α‐phellandrene were found in the oils produced by E. camaldulensis (22.9%) and E. robusta (36.6%). The oils from E. grandis and E. pilularis were rich in p‐cymene (59.5% and 46.0%, respectively). Samples with high levels of 1,8‐cineole were classified by principal component analysis (PCA) using the accumulated variance of the PC1 and PC2 into major groups. Other samples were grouped based on their content of p‐cymene; α‐phellandrene, α‐ and β‐eudesmol; α‐pinene. The PCA allowed the separation and classification of samples with the highest levels of different compounds, a procedure that can help in the decision of grouping oils from different sources for industrial use.  相似文献   

19.
The chemical composition of 42 essential‐oil samples isolated from the leaves of Xylopia quintasii harvested in three Ivoirian forests was investigated by GC‐FID, including the determination of retention indices (RIs), and by 13C‐NMR analyses. In total, 36 components accounting for 91.9–92.6% of the oil composition were identified. The content of the main components varied drastically from sample to sample: (E)‐β‐caryophyllene (0.9–56.9%), (Z)‐β‐ocimene (0.3–54.6%), β‐pinene (0.8–27.9%), α‐pinene (0.1–22.8%), and furanoguaia‐1,4‐diene (0.0–17.6%). The 42 oil compositions were submitted to hierarchical cluster and principal components analysis, which allowed the distinction of three groups within the oil samples. The composition of the oils of the major group (22 samples) was dominated by (E)‐β‐caryophyllene. The oils of the second group (12 samples) contained β‐pinene and α‐pinene as the principal compounds, while the oils of the third group (8 samples) were dominated by (Z)‐β‐ocimene, germacrene D, (E)‐β‐ocimene, and furanoguaia‐1,4‐diene. The oil samples of Group I and II came from clay‐soil forests, while the oil samples belonging to Group III were isolated from leaves harvested in a sandy‐soil forest.  相似文献   

20.
The chemical composition of 48 essential‐oil samples isolated from the leaves of Xylopia aethiopica harvested in six Ivoirian forests was investigated by GC‐FID and 13C‐NMR analyses. In total, 23 components accounting for 82.5–96.1% of the oil composition were identified. The composition was dominated by the monoterpene hydrocarbons β‐pinene (up to 61.1%) and α‐pinene (up to 18.6%) and the sesquiterpene hydrocarbon germacrene D (up to 28.7%). Hierarchical cluster and principal component analyses allowed the distinction of two groups on the basis of the β‐pinene and germacrene D contents. The chemical composition of the oils of Group I (38 oil samples) was clearly dominated by β‐pinene, while those of Group II (10 samples) were characterized by the association of β‐pinene and germacrene D. The leaves collected in the four inland forests produced β‐pinene‐rich oils (Group I), while the oil samples belonging to Group II were isolated from leaves harvested in forests located near the littoral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号