首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The needle‐terpene profiles of two natural Pinus peuce populations from the Scardo‐Pindic mountain system (Mt. O?ljak and Mt. Pelister) were analyzed. Among the 90 detected compounds, 87 were identified. The dominant constituents were α‐pinene (45.5%), germacrene D (11.1%), β‐pinene (10.8%), and camphene (10.3%). The following eight additional components were found to be present in medium‐to‐high amounts (0.5–10%): bornyl acetate (5.0%), β‐phellandrene (3.4%), β‐caryophyllene (2.9%), β‐myrcene (0.9%), germacrene D‐4‐ol (0.9%), tricyclene (0.7%), (E)‐hex‐2‐enal (0.7%), and bicyclogermacrene (0.6%). Although the general needle‐terpene profiles of the populations from Mt. O?ljak and Mt. Pelister were found to be similar to those of the populations from Zeletin, Sjekirica, and Mokra Gora (Dinaric Alps), principle component analysis (PCA) of eight terpenes (α‐pinene, β‐myrcene, α‐terpinolene, bornyl acetate, α‐terpinyl acetate, β‐caryophyllene, transβ‐farnesene, and germacrene D) in 139 tree samples suggested a divergence between the two population groups, i.e., the samples from the Scardo‐Pindic mountain system and those from the Dinaric Alps. Genetic analysis of the β‐pinene content demonstrated a partial divergence between the two geographical groups. The profiles of both population groups differed from those published for populations from the Balkan‐Rhodope mountains system (literature results), which were characterized by high contents of bornyl acetate and citronellol (Greek populations) or δ‐car‐3‐ene (Bulgarian populations).  相似文献   

2.
The particular significance of the whitebark pine (Pinus heldreichii Christ.) stems from the fact that it is a tertiary relict and Balkanic subendemite covering a very narrow and intermittent area in Serbia. A representative pool of 48 adult trees originating from three populations, one recently discovered natural (Population I) and two planted populations (Populations II and III) was investigated in order to evaluate the intra- and interpopulation variability of the essential oil of the complete fund of P. heldreichii in Serbia. In the pine-needle-terpene profile, 104 compounds were detected, 84 of which could be identified. Among the essential-oil constituents, monoterpenes and sesquiterpenes dominated, comprising ca. 90% of the essential oil. The terpenic profile of Population I was characterized by a predominance of monoterpenes (e.g., limonene (1), α-pinene, and Δ(3) -carene (4)), while sesquiterpenes (e.g., germacrene D (2) and β-caryophyllene (3)) obviously preponderated in the profile of Populations II and III. This study also demonstrated that the abundance of whitebark pines in Serbia had significantly changed over the last few decades. The number of individuals in the natural population had increased, while the number of individuals in the planted populations had decreased. Today, the whitebark pine fund in Serbia comprises less than 250 trees.  相似文献   

3.
This is the first report of individual variability and population diversity of the contents of nonacosan‐10‐ol and n‐alkanes in the needle cuticular waxes of Bosnian pines originated from Montenegro, regarded as Pinus heldreichii var. leucodermis, and from Serbia, regarded as P. heldreichii var. pan?i?i. The amount of nonacosan‐10‐ol varied individually from 27.4 to 73.2% (55.5% in average), but differences between the four investigated populations were not statistically confirmed. The size of the n‐alkanes ranged from C18 to C33. The most abundant n‐alkanes were C23, C27, and C25 (12.2, 11.2, and 10.8% in average, resp.). The carbon preference index (CPI) of the n‐alkanes ranged from 0.8 to 3.1 (1.6 in average), while the average chain length (ACL) ranged from 20.9 to 26.5 (24.4 in average). Long‐chain and mid‐chain n‐alkanes prevailed (49.6 and 37.9% in average, resp.). It was also found that the populations of P. heldreichii var. leucodermis had predominantly a narrower range of n‐alkanes (C18? C31) than the trees of the variety pan?i?i (C18? C33). Differences between the varieties were also significant for most of the other characteristics of the n‐alkane pattern (e.g., most abundant n‐alkanes, CPI, ACL, and relative proportion of short‐, mid‐, and long‐chain n‐alkanes). The principle component and cluster analyses of eleven n‐alkanes confirmed the significant diversity of these two varieties.  相似文献   

4.
The essential‐oil composition of six native populations of Sideritis scardica from Bulgaria was studied by GC‐FID and GC/MS analyses. Altogether, 37 components, representing 73.1 to 79.2% of the total oil content were identified. Among them, α‐pinene (4.4–25.1%), β‐pinene (2.8–18.0%), oct‐1‐en‐3‐ol (2.3–8.0%), phenylacetaldehyde (0.5–9.5%), β‐bisabolene (1.3–11.0%), benzyl benzoate (1.1–14.3%), and m‐camphorene ( 1 ; 0.3–12.4%) were the main compounds. All samples were characterized by low contents of oxygenated mono‐ and sesquiterpenes (≤1.6 and 2.3%, resp.). Principal component analysis (PCA) and cluster analysis (CA) showed a significant variability in the chemical composition of the studied samples as well as a correlation between the oil profiles and the ecological conditions of the natural habitats of S. scardica.  相似文献   

5.
Terpenes are often used as ecological and chemotaxonomic markers of plant species, as well as for estimation of geographic variability. Essential oils of relic and Balkan endemic/subendemic conifers, Picea omorika, Pinus heldreichii, and P. peuce, in central part of Balkan Peninsula (Serbia and Montenegro), on the level of terpene classes and common terpene compounds were investigated. In finding terpene combinations, which could show the best diversity between species and their natural populations, several statistical methods were applied. Apart from the content of different terpene classes (P. omorika has the most abundant O-containing monoterpenes and sesquiterpenes; P. heldreichii and P. peuce have the largest abundance of sesquiterpene and monoterpene hydrocarbons, resp.), the species are clearly separated according to terpene profile with 22 common compounds. But, divergences in their populations were established only in combination of several compounds (specific for each species), and they were found to be the results of geomorphologic, climatic, and genetic factors. We found similarities between investigated species and some taxa from literature with respect to terpene composition, possibly due to hybridization and phylogenetic relations. Obtained results are also important regarding to chemotaxonomy, biogeography, phylogeny, and evolution of these taxa.  相似文献   

6.
The essential-oil compositions of Pinus heldreichii Christ. from Montenegro and Serbia are reported at the population level. Whitebark pine is a sub-endemic high-mountain Balkan pine relict of an anthropogenically reduced area, with large morphological diversity and insufficiently clear taxonomic position. In the pine-needle terpene profile from three populations from Montenegro, and one from Serbia, 101 compounds were detected, 72 of which could be identified (Table 3). The dominant constituents are limonene (26.3%), alpha-pinene (17.5%), germacrene D (13.5%), and beta-caryophyllene (10.4%), comprising ca. 67.7% of the essential oil. Medium-to-high contents (0.5-10%) of the following 16 additional components were found: beta-pinene, beta-myrcene, alpha-humulene, delta-cadinene, alpha-muurolene, (E)-hex-2-enal, beta-gurjunene, gamma-muurolene, isopimarol, camphene, gamma-cadinene, aromadendrene, beta-bisabolene, trans-beta-farnesene, alpha-cadinene, and (Z)-hex-3-en-1-ol. The similarity of the populations and the within-population variability was visualized by principle-component analysis (PCA) of eleven selected terpenes in 97 tree samples. Cluster and genetic analyses suggest closest connection between the two spatially most-distant populations I (Montenegro) and IV (Serbia). Based on the profile of the main sesquiterpene components, the studied populations from Montenegro and Serbia are more similar to the populations from Greece and the Central Balkan peninsula (Bosnia and Serbia-Kosovo) than to those on the furthest eastern margin of their natural range (Bulgaria).  相似文献   

7.
The chemical compositions of the essential oils of seven natural populations of Seseli rigidum were analyzed. The essential‐oil yield ranged from 0.16 to 2.09%. Analysis of variance (ANOVA) revealed that there were no statistically significant differences in the mean essential‐oil yields between the populations, and no significant influence of the climate or soil type on the oil yield was observed. In all 67 analyzed samples, the polyacetylene falcarinol was the main compound, followed by octanal, methyl linoleate, α‐muurolene, 3‐butylphthalide, falcarinone, muurola‐4,10(14)‐dien‐1β‐ol, β‐sesquiphellandrene, salvial‐4(14)‐en‐1‐one, δ‐amorphene, spathulenol, and isospathulenol. The principal component analysis (PCA), the canonical discriminant analysis (CDA), and the cluster analysis (CA) revealed differentiation between the populations based on the climate. Three groups of populations were formed; the first group was composed of samples growing in regions with a humid climate, with oils having high falcarinol and low sesquiterpene contents, and the second and third groups comprised samples exposed to semi‐arid climate, with oils characterized by a lower falcarinol and higher α‐muurolene, δ‐amorphene, β‐sesquiphellandrene, and salvial‐4(14)‐en‐1‐one contents. The semi‐arid populations were divided into two groups, which were distinguished based on the oil contents of sesquiterpenes, falcarinone, and 3‐butylphthalide. On the other hand, no clear separation between populations based on the different soil types could be observed.  相似文献   

8.
The essential oils of 25 populations of Dalmatian sage (Salvia officinalis L.) from nine Balkan countries, including 17 indigenous populations (representing almost the entire native distribution area) and eight non‐indigenous (cultivated or naturalized) populations were analyzed. Their essential‐oil yield ranged from 0.25 to 3.48%. Within the total of 80 detected compounds, ten (β‐pinene, 1,8‐cineole, cis‐thujone, trans‐thujone, camphor, borneol, trans‐caryophyllene, α‐humulene, viridiflorol, and manool) represented 42.60 to 85.70% of the components in the analyzed essential oils. Strong positive correlations were observed between the contents of trans‐caryophyllene and α‐humulene, α‐humulene and viridiflorol, and viridiflorol and manool. Principal component analysis (PCA) on the basis of the contents of the ten main compounds showed that four principal components had an eigenvalue greater than 1 and explained 79.87% of the total variation. Performing cluster analysis (CA), the sage populations could be grouped into four distinct chemotypes (AD). The essential oils of 14 out of the 25 populations of Dalmatian sage belonged to Chemotype A and were rich in cis‐thujone and camphor, with low contents of trans‐thujone. The correlation between the essential‐oil composition and geographic variables of the indigenous populations was not significant; hence, the similarities in the essential‐oil profile among populations could not be explained by the physical proximity of the populations. Additionally, the southeastern populations tended to have higher EO yields than the northwestern ones.  相似文献   

9.
10.
The chemical composition of the essential oils isolated from the aerial parts of Senecio vulgaris plants collected in 30 Corsican localities was characterized using GC‐FID and GC/MS analyses. Altogether, 54 components, which accounted for 95.2% of the total oil composition, were identified in the 30 essential‐oil samples. The main compounds were α‐humulene ( 1 ; 57.3%), (E)‐β‐caryophyllene ( 2 ; 5.6%), terpinolene ( 3 ; 5.3%), ar‐curcumene ( 4 ; 4.3%), and geranyl linalool ( 5 ; 3.4%). The chemical composition of the essential oils obtained from separate organs and during the complete vegetative cycle of the plants were also studied, to gain more knowledge about the plant ecology. The production of monoterpene hydrocarbons, especially terpinolene, seems to be implicated in the plant‐flowering process and, indirectly, in the dispersal of this weed species. Comparison of the present results with the literature highlighted the originality of the Corsican S. vulgaris essential oils and indicated that α‐humulene might be used as taxonomical marker for the future classification of the Senecio genus. A study of the chemical variability of the 30 S. vulgaris essential oils using statistical analysis allowed the discrimination of two main clusters according to the soil nature of the sample locations. These results confirmed that there is a relation between the soil nature, the chemical composition of the essential oils, and morphological plant characteristics. Moreover, they are of interest for commercial producers of essential oil in selecting the most appropriate plants.  相似文献   

11.
The n‐alkane composition and the nonacosan‐10‐ol content in the needle cuticular waxes of Serbian spruce (Picea omorika), Bosnian pine (Pinus heldreichii), and Macedonian pine (Pinus peuce) were compared. The amount of nonacosan‐10‐ol in the needle waxes of P. omorika was higher than those in P. heldreichii and P. peuce. The range of n‐alkanes was also wider in P. omorika (C18–C35) than in P. heldreichii and P. peuce (C18–C33). The dominant n‐alkanes were C29 in the needle waxes of P. omorika, C23, C27, and C25 in those of P. heldreichii, and C29, C25, C27, and C23 in those of P. peuce. The waxes of P. omorika contained higher amounts of n‐alkanes C29, C31, and C33, while those of P. heldreichii and P. peuce had higher contents of n‐alkanes C21, C22, C23, C24, and C26. The principal component analysis of the contents of nine n‐alkanes showed a clear separation of the Serbian spruce populations from those of the two investigated pine species, which partially overlapped. The separation of the species was due to high contents of the n‐alkanes C29 and C31 (P. omorika), C19, C20, C21, C22, C23, and C24 (P. heldreichii), and C28 (P. peuce). Cluster analysis also showed a clear separation between the P. omorika populations on one side and the P. heldreichii and P. peuce populations on the other side. The n‐alkane and terpene compositions are discussed in the light of their usefulness in chemotaxonomy as well as with regard to the biogeography and phylogeny of these rare and endemic conifers.  相似文献   

12.
The chemical compositions of 25 Corsican Limbarda crithmoides ssp. longifolia essential oils were investigated for the first time using GC‐FID, GC/MS, and NMR analyses. Altogether, 65 compounds were identified, accounting for 90.0–99.3% of the total oil compositions. The main components were p‐cymene ( 1 ; 15.1–34.6%), 3‐methoxy‐p‐cymenene ( 4 ; 11.8–28.5%), 2,5‐dimethoxy‐p‐cymenene ( 5 ; 5.9–16.4%), thymol methyl ether ( 6 ; 1.3–14.9%), α‐phellandrene ( 2 ; 0.9–11.9%), and α‐pinene ( 3 ; 0.2–13.4%). The chemical variability of the Corsican oil samples was studied using multivariate statistical analysis, which allowed the discrimination of two main clusters. A direct correlation between the water salinities of the plant locations and the chemical compositions of the L. crithmoides essential oils was evidenced. Indeed, essential oils rich in 1 (30.4–34.6%) were found in samples growing in the wetlands of the southern oriental coast, which exhibit high salinity levels (24.4±0.2–33.9±0.2 ppt), and essential oils with lower contents of 1 (15.1–27.3%) were isolated form samples growing in the wetlands of northern Corsica, which exhibit lower salinity levels (10.90±0.20–15.47±0.15 ppt). The antioxidant potential of L. crithmoides essential oil was also investigated, by assessing the DPPH.‐ and ABTS.+‐scavenging activities and the reducing power of ferric ions, and was found to be interesting. Moreover, using bioassay‐guided fractionation of the essential oil, a higher antioxidant activity was obtained for the oxygenated fraction and both ester and alcohol subfractions.  相似文献   

13.
Composition of the essential oils of Rosmarinus officinalis of ten populations from the Balkan Peninsula were determined by GC/FID and GC/MS. The main constituents were 1,8‐cineole, camphor, α‐pinene, and borneol. Multivariate statistical analysis (UPGMA cluster analysis and principal‐component analysis (PCA)) revealed two major types of rosemary oil, i.e., 1,8‐cineole and camphor‐type, and two intermediate types, i.e., camphor/1,8‐cineole/borneol type and 1,8‐cineole/camphor type. The regression analyses (simple linear regression and stepwise multiple regression) have shown that, with respect to basic geographic, orographic, and 19 bioclimatic characteristics of each population, bioclimatic factor temperature of habitat represented the dominant abiogenetic factor, which, in chemical sense, led to differentiation of populations in the studied region. Also, the regression analysis have shown that some constituents of essential oils are independent of any single bioclimatic factors. However, some constituents display statistically significant correlations with some abiotic factors.  相似文献   

14.
The essential‐oil compositions of one Croatian and three Serbian populations of Juniperus deltoides R.P.Adams have been determined by GC/MS analysis. In total, 147 compounds were identified, representing 97.3–98.3% of the oil composition. The oils were dominated by monoterpenes, which are characteristic components for the species of the section Juniperus. Two monoterpenes, α‐pinene and limonene, were the dominant constituents, with a summed‐up average content of 49.45%. Statistical methods were used to determine the diversity of the terpene classes and the common terpenes between the newly described J. deltoides populations from Serbia and Croatia. Only reports on several specimens from this species have been reported so far, and there are no studies that treat population diversity. Cluster analysis of the oil contents of 21 terpenes showed high correlation with the geographical distribution of the populations, separating the Croatian from the Serbian populations. The comparison of the essential‐oil compositions obtained in the present study with literature data, showed the separation of J. deltoides and J. oxycedrus ssp. oxycedrus from the western Mediterranean region.  相似文献   

15.
The chemical composition of the essential oils and aromatic waters isolated from six Italian Anthemis maritima populations was determined by GC‐FID and GC/MS analyses. In total, 122 and 100 chemical compounds were identified in the essential oils and the aromatic waters, respectively. The main compound classes represented in the oils were monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, and terpene esters. Multivariate chemometric techniques such as cluster analysis (CA) and principal coordinate analysis (PCO) were used to classify the samples according to the geographical origin. Statistical analysis allowed the attribution of the analyzed populations to different chemotype groups.  相似文献   

16.
The effect of the distillation time on the yield and chemical composition of the bark essential oil of Cedrelopsis grevei Baill. was investigated. Distillation kinetics were determined for three batches of bark sampled from two sites, i.e., Itampolo (batches IT1 and IT2) and Salary (SAL), located in a region in the south of Madagascar with characteristically large populations of C. grevei. The bark samples were subjected to steam distillation, and the essential oil was collected at 3‐h intervals. The total yield (calculated after 14 h of distillation) varied from 0.9 to 1.7%, according to the batch tested. Moreover, the essential oils obtained were characterized by GC‐FID and GC/MS analyses. During the course of the distillation, the relative percentages of the most volatile components (monoterpenes and sesquiterpene hydrocarbons) diminished progressively, whereas the least volatile ones (oxygenated derivatives) increased at a consistent rate. Principal component analysis (PCA) and agglomerative hierarchical clustering analysis (AHC) of the results, performed on 13 principal components, allowed distinguishing three chemical groups, corresponding to the three batches, irrespective of the distillation time. This indicated that the chemical variability currently observed with commercial samples is not mainly linked to the experimental conditions of the extraction process, as the distillation time did not significantly alter the chemical composition of the essential oils.  相似文献   

17.
The chemical composition of 48 essential‐oil samples isolated from the leaves of Xylopia aethiopica harvested in six Ivoirian forests was investigated by GC‐FID and 13C‐NMR analyses. In total, 23 components accounting for 82.5–96.1% of the oil composition were identified. The composition was dominated by the monoterpene hydrocarbons β‐pinene (up to 61.1%) and α‐pinene (up to 18.6%) and the sesquiterpene hydrocarbon germacrene D (up to 28.7%). Hierarchical cluster and principal component analyses allowed the distinction of two groups on the basis of the β‐pinene and germacrene D contents. The chemical composition of the oils of Group I (38 oil samples) was clearly dominated by β‐pinene, while those of Group II (10 samples) were characterized by the association of β‐pinene and germacrene D. The leaves collected in the four inland forests produced β‐pinene‐rich oils (Group I), while the oil samples belonging to Group II were isolated from leaves harvested in forests located near the littoral.  相似文献   

18.
The chemical composition of 50 samples of leaf oil isolated from Algerian Juniperus phoenicea var. turbinata L. harvested in eight locations (littoral zone and highlands) was investigated by GC‐FID (in combination with retention indices), GC/MS, and 13C‐NMR analyses. The composition of the J. phoenicea var. turbinata leaf oils was dominated by monoterpenes. Hierarchical cluster and principal component analyses confirmed the chemical variability of the leaf oil of this species. Indeed, three clusters were distinguished on the basis of the α‐pinene, α‐terpinyl acetate, β‐phellandrene, and germacrene D contents. In most oil samples, α‐pinene (30.2–76.7%) was the major compound, associated with β‐phellandrene (up to 22.5%) and α‐terpinyl acetate (up to 13.4%). However, five out of the 50 samples exhibited an atypical composition characterized by the predominance of germacrene D (16.7–22.7%), α‐pinene (15.8–20.4%), and α‐terpinyl acetate (6.1–22.6%).  相似文献   

19.
Satureja khuzistanica is an endemic herb growing wild in Iran with interesting pharmacological and biological properties. Here, as an initial step of the domestication process, the variability of phytochemical and morphological traits among 69 individuals of eight natural populations of the plant was studied. The investigated characteristics were the essential oil content and composition, the rosmarinic acid (RA) content, and the leaf and flower morphologies. The Abdanan and Kaver populations showed the highest oil contents. The characterization by GC-FID and GC/MS analyses of the oils revealed that all 69 sampled individuals had carvacrol as the main component with very high contents (89.59-95.41%). The content of RA of the MeOH extracts of S. khuzistanica showed a high level of variability (coefficient of variation (CV) 50.0%) ranging from 0.59% (w/w) in the Paalam population to 1.81% (w/w) in the Abdanan population. The peduncle length and the leaf surface area (CVs of 47.39 and 47.21%, resp.) were the most variable morphological characteristics among the examined populations. The high level of phytochemical and morphological variability among the studied populations suggests a breeding approach during the domestication, to gain new, promising, and homogenous cultivars, attractive for the industry and agriculture.  相似文献   

20.
The species differentiation between Chamaecyparis formosensis, C. obtusa var. formosana, and C. obtusa, based on the composition of the leaf essential oils, was studied. The characterization of the oils by GC-FID and GC/MS analyses showed remarkable differences between these three essential oils. Cluster analysis (CA) and principal-component analysis (PCA) distinguished three groups of essential oils. The C. formosensis oil was dominated by α-pinene while those isolated from C. obtusa var. formosana and C. obtusa were characterized by high levels of (-)-thujopsene and α-terpinyl acetate, respectively. Moreover, the phylogenetic relationships of the genus Chamaecyparis were in agreement with previous findings based on morphological and molecular evidence. In addition, the essential oils from C. obtusa var. formosana could be classified into three chemical types, according to their different characteristic main compounds (β-elemol, (-)-thujopsene, and cis-thujopsenal). The biochemical correlations between the major constituents of the Chamaecyparis species were examined and their relationship is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号