首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ailanthus altissima Mill. Swingle (Simaroubaceae), also known as tree of heaven, is used in the Chinese traditional medicine as a bitter aromatic drug for the treatment of colds and gastric diseases. In Tunisia, Ailanthus altissima is an exotic tree, which was introduced many years ago and used particularly as a street ornamental tree. Here, the essential oils of different plant parts of this tree, viz., roots, stems, leaves, flowers, and samaras (ripe fruits), were obtained by hydrodistillation. In total, 69 compounds, representing 91.0–97.2% of the whole oil composition, were identified in these oils by GC‐FID and GC/MS analyses. The root essential oil was clearly distinguishable for its high content in aldehydes (hexadecanal ( 1 ); 22.6%), while those obtained from flowers and leaves were dominated by oxygenated sesquiterpenes (74.8 and 42.1%, resp.), with caryophyllene oxide ( 4 ) as the major component (42.5 and 22.7%, resp.). The samara oil was rich in the apocarotenoid derivative hexahydrofarnesyl acetone ( 6 ; 58.0%), and the oil obtained from stems was characterized by sesquiterpene hydrocarbons (54.1%), mainly β‐caryophyllene (18.9%). Principal component and hierarchical cluster analyses separated the five essential oils into four groups, each characterized by the major oil constituents. Contact tests showed that the germination of lettuce seeds was totally inhibited by all the essential oils except of the samara oil at a dose of 1 mg/ml. The flower oil also showed a significant phytotoxic effect against lettuce germination at 0.04 and 0.4 mg/ml (?55.0±3.5 and ?85.0±0.7%, resp.). Moreover, the root and shoot elongation was even more affected by the oils than germination. The inhibitory effect of the shoot and root elongation varied from ?9.8 to ?100% and from ?38.6 to ?100%, respectively. Total inhibition of the elongation (?100%) at 1 mg/ml was detected for all the oils, with the exception of the samara oil (?74.7 and ?75.1% for roots and shoots, resp.).  相似文献   

2.
In Tunisia, Tipuana tipu (Benth .) Kuntze is an exotic tree, which was introduced many years ago and planted as ornamental street, garden, and park tree. The present work reported, for the first time, the chemical composition and evaluates the allelopathic effect of the hydrodistilled essential oils of the different parts of this tree, viz., roots, stems, leaves, flowers, and pods gathered in the area of Sousse, a coastal region, in the East of Tunisia. In total, 86 compounds representing 89.9 – 94.9% of the whole oil composition, were identified in these oils by GC‐FID and GC/MS analyses. The root essential oil was clearly distinguished for its high content in sesquiterpene hydrocarbons (β‐caryophyllene, 1 (44); 24.1% and germacrene D, 2 (53); 20.0%), while those obtained from pods, leaves, stems, and flowers were dominated by non‐terpene hydrocarbons. The most important ones were n‐tetradecane (41, 16.3%, pod oil), 1,7‐dimethylnaphthalene (43, 15.6%, leaf oil), and n‐octadecane (77, 13.1%, stem oil). The leaf oil was rich in the apocarotene (E)‐β‐ionone ( 4 (54); 33.8%), and the oil obtained from flowers was characterized by hexahydrofarnesylacetone ( 5 (81); 19.9%) and methyl hexadecanoate (83, 10.2%). Principal component and hierarchical cluster analyses separated the five essential oils into three groups and two subgroups, each characterized by the major oil constituents. Contact tests showed that the germination of lettuce seeds was totally inhibited by the root essential oil tested at 1 mg/ml. The inhibitory effect on the shoot and root elongation varied from ?1.6% to ?32.4%, and from ?2.5% to ?64.4%, respectively.  相似文献   

3.
Hydrodistillation of the dried leaves of 13 species of the genus Eucalyptus L' Hér ., viz., E. bicostata Maiden, Blakely & Simmonds , E. cinerea F. Muell . ex Benth ., E. exerta F. Muell ., E. gigantea Hook . f ., E. gunnii Hook . f ., E. macarthurii Deane & Maiden ., E. macrorrhyncha F. Muell ., E. maidenii F. Muell ., E. odorata Behr ., E. pauciflora Sieber ex Sprengel , E. sideroxylon A. Cunn . ex Woolls , E. tereticornis Sm ., and E. viminalis Labill ., harvested from Souinet arboreta (region of Ain Draaham, north of Tunisia) in June 2006, afforded essential oils in yields varying from 0.5±0.2 to 3.9±0.4%, dependent on the species. E. cinerea and E. exerta provided the highest and the lowest percentage of essential oil amongst all the species examined, respectively. Analysis by GC (RI) and GC/MS allowed the identification of 142 components, representing 81.5 to 98.9% of the total oil. The contents of the different samples varied according to the species. The main components were 1,8‐cineole ( 1 ), followed by cryptone, spathulenol ( 4 ), p‐cymene ( 2 ), viridiflorol ( 6 ), globulol ( 7 ), β‐eudesmol, α‐terpineol ( 5 ), limonene ( 8 ), D ‐piperitone, α‐pinene ( 3 ), cuminal, and γ‐eudesmol. The principal component and the hierarchical cluster analyses separated the 13 Eucalyptus leaf essential oils into three groups, each constituting a chemotype.  相似文献   

4.
The essential‐oil compositions of one Croatian and three Serbian populations of Juniperus deltoides R.P.Adams have been determined by GC/MS analysis. In total, 147 compounds were identified, representing 97.3–98.3% of the oil composition. The oils were dominated by monoterpenes, which are characteristic components for the species of the section Juniperus. Two monoterpenes, α‐pinene and limonene, were the dominant constituents, with a summed‐up average content of 49.45%. Statistical methods were used to determine the diversity of the terpene classes and the common terpenes between the newly described J. deltoides populations from Serbia and Croatia. Only reports on several specimens from this species have been reported so far, and there are no studies that treat population diversity. Cluster analysis of the oil contents of 21 terpenes showed high correlation with the geographical distribution of the populations, separating the Croatian from the Serbian populations. The comparison of the essential‐oil compositions obtained in the present study with literature data, showed the separation of J. deltoides and J. oxycedrus ssp. oxycedrus from the western Mediterranean region.  相似文献   

5.
Hydrodistillation of the dried leaves of twelve species of the genus Eucalyptus L' Hér ., i.e., E. brockwayi C. A. Gardn ., E. gracilis F. Muell ., E. gillii Maiden , E. largiflorens F. Muell ., E. loxophleba Benth ., E. occidentalis Endl ., E. oldfieldii F. Muell ., E. salmonophloia F. Muell ., E. sargentii Maiden , E. stricklandii Maiden , E. torquata Luehm ., and E. woodwardii Maiden , harvested from Hajeb Layoun arboreta (region of Kairouan, central Tunisia) in January 2005, afforded essential oils in yields varying from 0.5±0.1 to 5.7±0.5%, dependent on the species. E. sargentii and E. brockwayi provided the highest and the lowest percentage of essential oil amongst all the species examined, respectively. Analysis by GC (RI) and GC/MS allowed the identification of 133 components, representing 92.9–98.8% of the total oil. The contents of the different samples varied according to the species. The main components were 1,8‐cineole, terpinen‐4‐ol, α‐pinene ( 2 ), p‐cymene, aromadendrene ( 1 ), globulol ( 5 ), trans‐pinocarveol ( 6 ), spathulenol ( 7 ), β‐eudesmol, torquatone ( 3 ), and 4‐methylpentan‐2‐yl acetate ( 8 ). The principal component analysis and the hierarchical clustering indicated that the volatile leaf oil composition of the twelve Eucalyptus species could be clearly differentiated.  相似文献   

6.
The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC‐FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63–89.93% of the total oil composition). The main volatile compounds identified were β‐bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition‐specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk‐diffusion method, against one Gram‐positive (Staphylococcus aureus) and two Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms.  相似文献   

7.
The chemical composition of 48 essential‐oil samples isolated from the leaves of Xylopia aethiopica harvested in six Ivoirian forests was investigated by GC‐FID and 13C‐NMR analyses. In total, 23 components accounting for 82.5–96.1% of the oil composition were identified. The composition was dominated by the monoterpene hydrocarbons β‐pinene (up to 61.1%) and α‐pinene (up to 18.6%) and the sesquiterpene hydrocarbon germacrene D (up to 28.7%). Hierarchical cluster and principal component analyses allowed the distinction of two groups on the basis of the β‐pinene and germacrene D contents. The chemical composition of the oils of Group I (38 oil samples) was clearly dominated by β‐pinene, while those of Group II (10 samples) were characterized by the association of β‐pinene and germacrene D. The leaves collected in the four inland forests produced β‐pinene‐rich oils (Group I), while the oil samples belonging to Group II were isolated from leaves harvested in forests located near the littoral.  相似文献   

8.
Hydrodistillation of the dried leaves of eleven species of the genus Eucalyptus L 'Hér ., i.e., E. astringens Maiden , E. camaldulensis Dehnh ., E. diversifolia Bonpl ., E. falcata Turcz ., E. ficifolia F. Muell ., E. gomphocephala DC., E. lehmannii (Schauer ) Benth ., E. maculata Hook ., E. platypus Hook ., E. polyanthemos Schauer, and E. rudis Endl ., harvested from Korbous arboreta (region of Nabeul, northeast of Tunisia) in April 2006, afforded essential oils in yields varying from 0.1±0.1 to 3.8±0.1%, dependent on the species. E. astringens and E. ficifolia showed the highest and the lowest mean percentage of essential oil amongst all the species examined, respectively. Analysis by GC (RI) and GC/MS allowed the identification of 138 components, representing 74.0 to 99.1% of the total oil. The contents of the different samples varied according to the species. The main components were 1,8‐cineole, followed by trans‐pinocarveol ( 1 ), spathulenol ( 2 ), α‐pinene, p‐cymene, (E,E)‐farnesol, cryptone, globulol ( 3 ), β‐phellandrene, α‐terpineol, viridiflorol, and α‐eudesmol. The principal‐component and the hierarchical‐cluster analyses separated the eleven Eucalyptus leaf essential oils into seven groups, each constituting a chemotype.  相似文献   

9.
Citharexylum spinosum L. (Verbenaceae) also known as Citharexylum quadrangulare Jacq . or Citharexylum fruticosum L. is an exotic tree introduced many years ago in Tunisia, specially used as a street and park ornamental tree. Essential oils (EOs) were obtained by hydrodistillation of the different parts (roots, stems, leaves, flowers and fruits; drupes) collected from trees grown in the area of Monastir (Tunisia). In total, 84 compounds, representing 90.1 – 98.4% of the whole oil composition, were identified by GC‐FID and GC/MS analyses. The root EO was distinguished by its high content in monoterpene hydrocarbons (α‐phellandrene; 30.8%) whereas that obtained from stems was dominated by sesquiterpene hydrocarbons (cuparene; 16.4%). The leaf oil was rich in an apocarotenoid derivative (hexahydrofarnesylacetone; 26%) and an aliphatic hydrocarbon (nonadecane; 14.5%). Flowers oil was rich in esters (2‐phenylethyl benzoate; 33.5%). Finally, drupes oil was rich in oxygenated sesquiterpenes (β‐eudesmol; 33.1%). Flowers oil showed a significant phytotoxic effect against lettuce seeds germination, it induces a total inhibition when tested at 1 mg/ml. Root and shoot elongation seemed to be more affected than germination. The inhibition of the shoot length varied from 3.6% to 100% and that of the root from 16.1% to 100%. The highest inhibition of 100% was detected for flower oil tested at 1 mg/ml. Our in vitro studies suggest a possible and new alternative use of Cspinosum EOs in herbicidal formulations, further experiments involving field conditions are necessary to confirm its herbicidal potential.  相似文献   

10.
The chemical composition of 50 samples of leaf oil isolated from Algerian Juniperus phoenicea var. turbinata L. harvested in eight locations (littoral zone and highlands) was investigated by GC‐FID (in combination with retention indices), GC/MS, and 13C‐NMR analyses. The composition of the J. phoenicea var. turbinata leaf oils was dominated by monoterpenes. Hierarchical cluster and principal component analyses confirmed the chemical variability of the leaf oil of this species. Indeed, three clusters were distinguished on the basis of the α‐pinene, α‐terpinyl acetate, β‐phellandrene, and germacrene D contents. In most oil samples, α‐pinene (30.2–76.7%) was the major compound, associated with β‐phellandrene (up to 22.5%) and α‐terpinyl acetate (up to 13.4%). However, five out of the 50 samples exhibited an atypical composition characterized by the predominance of germacrene D (16.7–22.7%), α‐pinene (15.8–20.4%), and α‐terpinyl acetate (6.1–22.6%).  相似文献   

11.
Leaves of seven species of the genus Eucalyptus L'Hér., viz., E. cladocalyx F. Muell., E. citriodora Hook., E. diversicolor F. Muell., E. fasciculosa F. Muell., E. grandis W. Hill, E. ovata Labill., and E. botryoides Sm., were harvested from Zerniza arboreta (region of Sejnene, northwest of Tunisia) in June 2007. Of the latter species, leaves were collected from trees having two origins, Morocco and Italy. Hydrodistillation of the dried leaves provided essential oils in yields varying from 0.4±0.0 to 3.3±0.1%, according to the species. E. citriodora had the highest mean percentage of essential oil amongst the species examined, whereas the lowest one was obtained for E. botryoides originating from Morocco. Analysis by GC (RI) and GC/MS allowed the identification of 140 compounds, representing 92.5 to 99.4% of the total oil composition. The contents of the different samples varied according to the species. The main components were 1,8-cineole (2), followed by α-pinene (1), p-cymene, borneol, α-terpineol, cryptone, spathulenol, trans-pinocarveol (4), bicyclogermacrene (5), caryophyllene oxide, and β-phellandrene. Principal components analysis and hierarchical cluster analysis separated the eight Eucalyptus leaf essential oils into five groups, each constituting a chemotype.  相似文献   

12.
Hydrodistillation of the dried leaves of five species of the genus Eucalyptus L' Hér ., viz., E. dundasii Maiden , E. globulus Labill ., E. kitsoniana Maiden , E. leucoxylon F. Muell ., and E. populifolia Hook ., harvested from Jbel Abderrahman arboreta (region of Nabeul, northeast of Tunisia) in April 2006, afforded essential oils in yields varying from 0.9±0.3 to 3.8±0.6%, dependent on the species. E. globulus and E. Kitsoniana provided the highest and the lowest percentage of essential oil amongst the species examined, respectively. Analysis by GC (RI) and GC/MS allowed the identification of 127 compounds, representing 93.8 to 98.7% of the total oil composition. The contents of the different samples varied according to the species. The main components were 1,8‐cineole ( 2 ; 4.7–59.2%), followed by α‐pinene ( 1 ; 1.9–23.6%), trans‐pinocarveol ( 6 ; 3.5–21.6%), globulol ( 8 ; 4.3–12.8%), p‐cymene ( 3 ; 0.5–6.7%), α‐terpineol (1.5–4.5%), borneol (0.2–4.4%), pinocarvone (1.1–3.8%), aromadendrene (1.4–3.4%), isospathulenol (0.0–1.9%), fenchol ( 4 ; 0.1–2.5%), limonene (1.0–2.4%), epiglobulol (0.6–2.1%), viridiflorol ( 9 ; 0.8–1.8%), and spathulenol (0.1–1.6%). E. leucoxylon was the richest species in 2 . Principal component analysis (PCA) and hierarchical cluster analysis (HCA) separated the five Eucalyptus leaf essential oils into four groups, each constituting a chemotype.  相似文献   

13.
The chemical composition of 48 leaf oil samples isolated from individual plants of Cleistopholis patens (Benth .) Engl. et Diels harvested in four Ivoirian forests was investigated by GC‐FID (determination of retention indices), GC/MS, and 13C‐NMR analyses. The main components identified were β‐pinene (traces–59.1%), sabinene (traces–54.2%), (E)‐β‐caryophyllene (0.3–39.3%), linalool (0.1–38.5%), (E)‐β‐ocimene (0.1–33.2%), germacrene D (0.0–33.1%), α‐pinene (0.1–32.3%), and germacrene B (0–21.2%). The 48 oil compositions were submitted to hierarchical clustering and principal components analyses, which allowed the distinction of three groups within the oil samples. The oil composition of the major group (Group I, 33 samples) was dominated by (E)‐β‐caryophyllene and linalool. The oils of Group II (eight samples) contained mainly β‐pinene and α‐pinene, while those of Group III (seven samples) were dominated by sabinene, limonene, and β‐phellandrene. Moreover, the compositions of the Ivoirian C. patens leaf oils differed from those of Nigerian and Cameroonian origins.  相似文献   

14.
The chemical composition of 42 essential‐oil samples isolated from the leaves of Xylopia quintasii harvested in three Ivoirian forests was investigated by GC‐FID, including the determination of retention indices (RIs), and by 13C‐NMR analyses. In total, 36 components accounting for 91.9–92.6% of the oil composition were identified. The content of the main components varied drastically from sample to sample: (E)‐β‐caryophyllene (0.9–56.9%), (Z)‐β‐ocimene (0.3–54.6%), β‐pinene (0.8–27.9%), α‐pinene (0.1–22.8%), and furanoguaia‐1,4‐diene (0.0–17.6%). The 42 oil compositions were submitted to hierarchical cluster and principal components analysis, which allowed the distinction of three groups within the oil samples. The composition of the oils of the major group (22 samples) was dominated by (E)‐β‐caryophyllene. The oils of the second group (12 samples) contained β‐pinene and α‐pinene as the principal compounds, while the oils of the third group (8 samples) were dominated by (Z)‐β‐ocimene, germacrene D, (E)‐β‐ocimene, and furanoguaia‐1,4‐diene. The oil samples of Group I and II came from clay‐soil forests, while the oil samples belonging to Group III were isolated from leaves harvested in a sandy‐soil forest.  相似文献   

15.
The effect of the distillation time on the yield and chemical composition of the bark essential oil of Cedrelopsis grevei Baill. was investigated. Distillation kinetics were determined for three batches of bark sampled from two sites, i.e., Itampolo (batches IT1 and IT2) and Salary (SAL), located in a region in the south of Madagascar with characteristically large populations of C. grevei. The bark samples were subjected to steam distillation, and the essential oil was collected at 3‐h intervals. The total yield (calculated after 14 h of distillation) varied from 0.9 to 1.7%, according to the batch tested. Moreover, the essential oils obtained were characterized by GC‐FID and GC/MS analyses. During the course of the distillation, the relative percentages of the most volatile components (monoterpenes and sesquiterpene hydrocarbons) diminished progressively, whereas the least volatile ones (oxygenated derivatives) increased at a consistent rate. Principal component analysis (PCA) and agglomerative hierarchical clustering analysis (AHC) of the results, performed on 13 principal components, allowed distinguishing three chemical groups, corresponding to the three batches, irrespective of the distillation time. This indicated that the chemical variability currently observed with commercial samples is not mainly linked to the experimental conditions of the extraction process, as the distillation time did not significantly alter the chemical composition of the essential oils.  相似文献   

16.
The fruit essential oils of Heracleum persicum, H. rechingeri, H. gorganicum, H. rawianum, H. pastinacifolium, and H. anisactis from Iran were obtained by hydrodistillation and characterized by GC‐FID and GC/MS analyses. The oils of the six species were compared to determine the similarities and differences among their compositions. Overall, 36 compounds were identified in the fruit oils, accounting for 92.40–96.74% of the total oil compositions. Aliphatic esters constituted the main fraction of the oils (86.61–94.31%), with octyl acetate and hexyl butyrate as the major components. The oil compositions of species belonging to section Pubescentia (H. persicum, H. gorganicum, and H. rechingeri) were discriminated by equally high contents of both octyl acetate (13.84–20.48%) and hexyl butyrate (17.73–38.36%). On the other hand, the oils of H. rawianum, H. pastinacifolium and H. anisactis, belonging to section Wendia, showed lower hexyl butyrate contents (3.62–6.6%) and higher octyl acetate contents (48.71–75.36%) than the former. Moreover, isoelemicin was identified at low amounts (0.10–2.51%) only in the oils of the latter species. The differences in the oil composition among the six species were investigated by hierarchical cluster and principal component analyses, which indicated that the oil composition confirmed well the taxonomical classification based on the morphological and botanical data, and, thus, may provide a reliable marker to discriminate Heracleum species at the intersectional level.  相似文献   

17.
The chemical composition of the essential oils obtained by hydrodistillation from the pastinocello carrot, Daucus carota ssp. major (Vis.) Arcang . (flowers and achenes), and from nine different commercial varieties of D. carota L. ssp. sativus (achenes) was investigated by GC/MS analyses. Selective breeding over centuries of a naturally occurring subspecies of the wild carrot, D. carota L. ssp. sativus, has produced the common garden vegetable with reduced bitterness, increased sweetness, and minimized woody core. On the other hand, the cultivation of the pastinocello carrot has been abandoned, even if, recently, there has been renewed interest in the development of this species, which risks genetic erosion. The cultivated carrot (D. carota ssp. sativus) and the pastinocello carrot (D. carota ssp. major) were classified as different subspecies of the same species. This close relationship between the two subspecies urged us to compare the chemical composition of their essential oils, to evaluate the differences. The main essential‐oil constituents isolated from the pastinocello fruits were geranyl acetate (34.2%), α‐pinene (12.9%), geraniol (6.9%), myrcene (4.7%), epiα‐bisabolol (4.5%), sabinene (3.3%), and limonene (3.0%). The fruit essential oils of the nine commercial varieties of D. carota ssp. sativus were very different from that of pastinocello, as also confirmed by multivariate statistical analyses.  相似文献   

18.
The chemical composition of the volatile oils obtained from the roots, leaves, flowers, and stems of Thapsia garganica of Tunisian origin was investigated by GC‐FID and GC/MS analyses. Sesquiterpene hydrocarbons and oxygenated monoterpenes were predominant in the oils of all plant parts. Bicyclogermacrene (21.59–35.09%) was the main component in the former compound class, whereas geranial (3.31–14.84%) and linalool (0.81–10.9%) were the most prominent ones in the latter compound class. Principal‐component (PCA) and hierarchical‐cluster (HCA) analyses revealed some common constituents, but also significant variability amongst the oils of the different plant parts. This organ‐specific oil composition was discussed in relation to their biological and ecological functions. For the evaluation of the intraspecific chemical variability in T. garganica, the composition of the flower volatile oils from four wild populations was investigated. Bicyclogermacrene, linalool, and geranial were predominant in the oils of three populations, whereas epicubenol, β‐sesquiphellandrene, and cadina‐1,4‐diene were the most prominent components of the oil of one population. PCA and HCA allowed the separation of the flower oils into three distinct groups, however, no relationship was found between the volatile‐oil composition and the geographical distribution and pedoclimatic conditions of the studied populations.  相似文献   

19.
The composition of 55 samples of essential oil isolated from the aerial parts of wild growing Myrtus communis L. harvested in 16 locations from East to West Algeria were investigated by GC (determination of retention indices) and 13C‐NMR analyses. The essential oils consisted mainly of monoterpenes, α‐pinene (27.4–59.2%) and 1,8‐cineole (6.1–34.3%) being the major components. They were also characterized by the absence of myrtenyl acetate. The compositions of the 55 oils were submitted to k‐means partitioning and principal component analysis, which allowed the distinction of two groups within the oil samples, which could be subdivided into two subgroups each. Groups I (78% of the samples) and II were differentiated on the basis of the contents of α‐pinene, linalool, and linalyl acetate. Subgroups IA and IB could be distinguished by their contents of α‐pinene and 1,8‐cineole. Subgroups IIA and IIB differed substantially in their contents of 1,8‐cineole and limonene. All the samples contained 3,3,5,5,8,8‐hexamethyl‐7‐oxabicyclo[4.3.0]non‐1(6)‐ene‐2,4‐dione (up to 4.9%).  相似文献   

20.
The chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of Globularia cordifolia L., G. meridionalis (Podp.) O.Schwarz , and G. punctata Lapeyr . was characterized by GC‐FID and GC/MS analyses. Among the 33 identified compounds, the most abundant present in all investigated samples were oct‐1‐en‐3‐ol (2.9–47.0%), 6‐(1,5‐dimethylhex‐4‐enyl)‐3‐methylcyclohex‐2‐enone (8.2–40.9%), and fukinanolid (7.4–31.6%). Multivariate statistical analyses (PCA and HCA) of the hitherto studied Globularia volatile compounds confirmed to some extent the assumed phylogenetic relationships of the Globularia species studied, including the close relationship between the morphologically similar species G. cordifolia and G. meridionalis, but also evidenced several discrepancies in the current classification of Globularia species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号