首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Injection of serotonin (5-hydroxytryptamine) induced a marked decrease in the level of glucose 1,6-diphosphate (Glc-1,6-P2) in the rat tibialis anterior muscle. Concomitant to the decrease in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, the activities of both these enzymes were markedly reduced by serotonin. The level of Glc-1,6-P2 and the activities of phosphofructokinase and phosphoglucomutase increased with age in the tibialis anterior muscle and the effect of serotonin was more pronounced in the older animals. Serotonin also induced a significant increase in the level of cyclic GMP in muscle. The serotonin-induced changes in the normal muscle mimic the changes in carbohydrate metabolism we found previously in muscular dystrophy.  相似文献   

2.
The levels of glucose 1,6-bisphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, changed in rat skin during growth: Glc-1,6-P2 increased during the first week of age, and thereafter was dramatically reduced during maturation. The activity of glucose 1,6-bisphosphatase, the enzyme that degradates Glc-1,6-P2, changed with age in an invert manner as compared to the changes in Glc-1,6-P2. These findings suggest that the age dependent changes in this enzyme's activity may account for the changes in intracellular Glc-1,6-P2 concentration. The age-related changes in Glc-1,6-P2 were accompanied by concomitant changes in the activities of particulate (mitochondrial) hexokinase and 6-phosphogluconate dehydrogenase, the two enzymes known to be inhibited by Glc-1,6-P2. The activities of both these enzymes in the soluble fraction were not changed with age. The particulate enzymes were more susceptible to inhibition by Glc-1,6-P2 than the soluble activities, which may explain why only the particulate, but not the soluble activities, correlated with the age-dependent changes in tissue Glc-1,6-P2. These results suggest that the changes in particulate hexokinase and 6-phosphogluconate dehydrogenase resulted from changes in intracellular concentration of Glc-1,6-P2. The marked reduction in Glc-1,6-P2 during maturation, accompanied by activation of mitochondrial hexokinase and 6-phosphogluconate dehydrogenase, may reflect an enhancement in skin metabolism during growth.  相似文献   

3.
The intracellular concentration of glucose-1,6-bisphosphate (Glc-1,6-P2) in rat tibialis anterior muscle was markedly decreased following the injection of bradykinin. Injection of bradykinin also induced a significant increase in the level of cyclic GMP in muscle. The activity of glucose-1,6-bisphosphatase, the enzyme that degrades Glc-1,6-P2, was markedly enhanced by bradykinin, which may account for the decrease in the level of Glc-1,6-P2. The decrease in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, was accompanied by a concomitant reduction in these enzymes' activities. The bradykinin-induced decrease in Glc-1,6-P2 and in the activity of phosphofructokinase, the rate-limiting enzyme in glycolysis, may be involved in the pathogenic influences of this hormone in various clinical conditions.  相似文献   

4.
ATP, added externally to the incubation medium of rat diaphragm muscles, abolished the decrease in the levels of glucose-1,6-bisphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, induced by phospholipase A2, local anesthetics, Ca2+ ionophore A23187, or lithium. Concomitantly to the changes in Glc-1,6-P2, the potent activator of phosphofructokinase (the rate-limiting enzyme in glycolysis) and phosphoglucomutase, the activities of these enzymes were reduced by the myotoxic agents and restored by exogenous ATP, when assayed under conditions in which these enzymes are sensitive to regulation by Glc-1,6-P2. These findings suggest that ATP may have broad therapeutic action, as it may stimulate the impaired glycolysis in muscle induced by various drugs and conditions which cause muscle weakness or damage.  相似文献   

5.
Injection of trifluoperazine (TFP) to rats induced a significant rise in the level of glucose 1,6-bisphosphate (Glc-1,6-P2) in muscle. This increase in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, was accompanied by a marked activation of both enzymes, when assayed in the absence of exogenous Glc-1,6-P2 under conditions in which these enzymes are sensitive to regulation by endogenous Glc-1,6-P2. Glucose-1,6-bisphosphatase (the enzyme that degrades Glc-1,6-P2) was markedly inhibited following the injection of TFP, which may account for the rise in the Glc-1,6-P2 level. Previous results from this laboratory have revealed that muscle damage or weakness is characterized by a decrease in Glc-1,6-P2 levels, leading to a marked reduction in the activities of phosphoglucomutase and phosphofructokinase (the rate-limiting enzyme in glycolysis). The present results suggest that TFP treatment may have a beneficial effect on the depressed glycolysis in muscle weakness or damage.  相似文献   

6.
ATP and citrate, the well known inhibitors of phosphofructokinase (ATP: D-fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.11), were found to inhibit the activities of the multiple forms of phosphoglucomutase (alpha-D-glucose 1,6-bisphosphate: alpha-D-glucose 1-phosphate phosphotransferase, EC 2.7.5.1) from rat muscle and adipose tissue. This inhibition could be reversed by an increase in the glucose 1,6-bisphosphate (Glc-1,6-P2) concentration. Other known activators (deinhibitors) of phosphofructokinase, viz. cyclic AMP, AMP, ADP or Pi, had no direct deinhibitory action on the ATP or citrate inhibited multiple phosphoglucomutases. Cyclic AMP and AMP, could however lead indirectly to deinhibition of the phosphoglucomutases, by activating phosphofructokinase which catalyzes the ATP-dependent phosphorylation of glucose 1-phosphate to form Glc-1,6-P2, the la-ter then released the multiple phosphoglucomutases from ATP or citrate inhibition. The Glc-1,6-P2 was also found to exert a selective inhibitory effect on hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) type II, the predominant form in skeletal muscle. This selective inhibition by Glc-1,6-P2 was demonstrated on the multiple hexokinases which were resolved by cellogel electrophoresis or isolated by chromatography on DEAE-cellulose. Based on the in vitro studies it is suggested that during periods of highly active epinephrine-induced glycogenolysis in muscle, the Glc-1,6-P2, produced by the cyclic AMP-stimulated reaction of phosphofructokinase with glucose 1-phosphate, will release the phosphoglucomutases from ATP or citrate inhibition, and will depress the activity of muscle type II hexokinase.  相似文献   

7.
Glucose 1,6-bisphosphate (Glc-1,6-P(2)) concentration in brain is much higher than what is required for the functioning of phosphoglucomutase, suggesting that this compound has a role other than as a cofactor of phosphomutases. In cell-free systems, Glc-1,6-P(2) is formed from 1,3-bisphosphoglycerate and Glc-6-P by two related enzymes: PGM2L1 (phosphoglucomutase 2-like 1) and, to a lesser extent, PGM2 (phosphoglucomutase 2). It is hydrolyzed by the IMP-stimulated brain Glc-1,6-bisphosphatase of still unknown identity. Our aim was to test whether Glc-1,6-bisphosphatase corresponds to the phosphomannomutase PMM1, an enzyme of mysterious physiological function sharing several properties with Glc-1,6-bisphosphatase. We show that IMP, but not other nucleotides, stimulated by >100-fold (K(a) approximately 20 mum) the intrinsic Glc-1,6-bisphosphatase activity of recombinant PMM1 while inhibiting its phosphoglucomutase activity. No such effects were observed with PMM2, an enzyme paralogous to PMM1 that physiologically acts as a phosphomannomutase in mammals. Transfection of HEK293T cells with PGM2L1, but not the related enzyme PGM2, caused an approximately 20-fold increase in the concentration of Glc-1,6-P(2). Transfection with PMM1 caused a profound decrease (>5-fold) in Glc-1,6-P(2) in cells that were or were not cotransfected with PGM2L1. Furthermore, the concentration of Glc-1,6-P(2) in wild-type mouse brain decreased with time after ischemia, whereas it did not change in PMM1-deficient mouse brain. Taken together, these data show that PMM1 corresponds to the IMP-stimulated Glc-1,6-bisphosphatase and that this enzyme is responsible for the degradation of Glc-1,6-P(2) in brain. In addition, the role of PGM2L1 as the enzyme responsible for the synthesis of the elevated concentrations of Glc-1,6-P(2) in brain is established.  相似文献   

8.
Glucose-1,6-bisphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, was markedly decreased in liver of adult rats (2 months of age) as compared to young rats (1-2 weeks of age). This regulator was found to be present in both the mitochondrial and soluble fractions of liver. Its concentration in both these fractions was decreased with age. Concomitant to the decrease in Glc-1,6-P2, which is a potent inhibitor of 6-phosphogluconate dehydrogenase, the activity of this enzyme was markedly increased with age in both the mitochondrial and soluble fractions. However, the increase in this enzyme's activity was more pronounced in the mitochondrial fraction. The mitochondrial enzyme was more susceptible to inhibition by Glc-1,6-P2 as compared to the soluble enzyme, and this may explain the greater enhancement in its activity with age in this fraction. The tibialis anterior muscle exhibited changes with age opposite to those found in liver; Glc-1,6-P2 concentration, in both the mitochondrial and soluble fractions of muscle increased with age, and this increase was accompanied by a concomitant reduction in the activity of the mitochondrial and soluble 6-phosphogluconate dehydrogenase. Similar to liver, the mitochondrial enzyme was more affected by age, as it also exhibited a greater susceptibility to inhibition by Glc-1,6-P2.  相似文献   

9.
1. Injection of epinephrine induced in skin a decrease in the level of glucose-1,6-bisphosphate (Glc-1,6-P2), which was accompanied by correlated changes in the activities of several enzymes which are modulated by this regulator. 2. These effects were blocked by the alpha adrenergic blocker phentolamine, in contrast to muscle where the hormone increases Glc-1,6-P2, acting through beta receptors. 3. The changes in the enzymes' activities, as well as in glycogen and lactate content induced by epinephrine, reveal that the hormone causes, in skin, a stimulation of glycogenolysis and glycolysis, as well as an acceleration of pentose phosphate pathway. 4. The reduction in glycogen content induced by epinephrine, was blocked by the beta adrenergic blocker propranolol, whereas the hormone's effects on the other processes were mainly mediated through alpha receptors.  相似文献   

10.
Four kinds of the enzyme reactions have been reported for the synthesis of Glc-1,6-P2. However, any activity of Glc-1-P dismutase and phosphoglucokinase was not observed in the beef liver homogenate. When the liver homogenate was incubated with Glc-1-P and Fru-1,6-P2, a significant amount of Glc-1,6-P2 was formed. The Glc-1,6-P2 synthesis activity from Glc-1-P and Fru-1,6-P2 was caused by the action of phosphoglucomutase present in the liver homogenate. The most remarkable activity for Glc-1,6-P2 synthesis was observed when the homogenate was incubated with Glc-1-P and glycerate-1,3-P2. The Glc-1,6-P2 synthesis activity from Glc-1-P and glycerate-1,3-P2 was separated from the major peak of phosphoglucomutase activity by DEAE-Sephadex chromatography. The peak of Glc-1,6-P2 synthesis activity, however, still retained phosphoglucomutase activity.

Glc-1,6-P2 phosphatase activity was mainly observed in the mitochondria and microsome fraction. The properties of Glc-1,6-P2 phosphatase were differentiated from those of acid phosphatase and Glc-6-P phosphatase.  相似文献   

11.
Liver phosphoglucomutase was found to catalyze also the reaction of Glc-1,6-P2 formation from Glc-1-P and Fru-1,6-Pz or Glc-1-P and glycerate-1,3-P2. The specific activity of Glc-1,6-P2 formation from Glc-1-P and Fru-1,6-P2 was 1/9200 of that of the mutase activity. The activity of Glc-1,6-P2 formation from Glc-1-P and glycerate-1,3-P2 was 1/122,000 of the mutase activity. From the results of the kinetics and the thermal inactivation experiments, the reaction of the mutase and Glc-1,6-P2 synthesis were strongly suggested to occur at the same active site of liver phosphoglucomutase.

Liver phosphoglucomutase exhibited the Glc-1,6-P2 phosphatase activity only in the presence of xylose 1-phosphate. The specific activity of phosphatase was only 1/154,000 of that of the mutase activity.  相似文献   

12.
H J Green  J Cadefau  D Pette 《FEBS letters》1991,282(1):107-109
Glucose 1,6-bisphosphate (Glc-1,6-P2) and fructose 2,6-bisphosphate (Fru-2,6-P2) concentrations display pronounced increases in rabbit fast-twitch muscle during chronic low-frequency stimulation. These increases are first seen after stimulation periods exceeding 3 h and reach maxima after 12-24 h of stimulation (approximately 3-fold for Glc-1,6-P2 and 5-fold for Fru-2,6-P2). Both metabolites regress to normal values after stimulation periods longer than 4 days. The fact that their increases coincide with the replenishment of glycogen after its initial depletion, could point to a role of Glc-1,6-P2 and Fru-2,6-P2 in glycogen metabolism.  相似文献   

13.
Mitochondrial and soluble Type I and Type II hexokinase from various rat tissues differed in their susceptibility to inhibition by glucose-1,6-bisphosphate (Glc-1,6-P2). In tissues where Type I is the predominant form, the mitochondrial enzyme was less susceptible to inhibition by Glc-1,6-P2 than the soluble enzyme, especially at high Mg2+ concentration. In tissues where Type II is the predominant form, the mitochondrial enzyme was more susceptible to inhibition by Glc-1,6-P2 than the soluble enzyme, especially at low Mg2+ concentration. The results suggest that changes in the intracellular concentrations of Glc-1,6-P2 and Mg2+ under various conditions would affect the activity of the bound and soluble hexokinase from different tissues in a different manner.  相似文献   

14.
Injection of trifluoperazine abolished the bradykinin-induced decrease in intracellular concentration of glucose 1,6-bisphosphate (Glc-1,6-P2) in rat tibialis anterior muscle and skin. These changes in Glc-1,6-P2 levels may be attributed to the changes in the activity of glucose 1,6-bisphosphatase (the enzyme that degrades Glc-1,6-P2), which was markedly enhanced by bradykinin and reversed by trifluoperazine. Concomitantly to the changes in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, the activities of these enzymes were reduced by bradykinin and restored by trifluoperazine. These findings suggest that trifluoperazine treatment may have a beneficial effect on the depressed glycolysis induced by bradykinin in tissue damage.  相似文献   

15.
Hexokinase is released from Type A sites of brain mitochondria in the presence of glucose 6-phosphate (Glc-6-P); enzyme bound to Type B sites remains bound. Hexokinase of freshly isolated bovine brain mitochondria (Type A:Type B, approximately 40:60) selectively uses intramitochondrial ATP as substrate and is relatively insensitive to the competitive (vs ATP) inhibitor and Glc-6-P analog, 1,5-anhydroglucitol 6-phosphate (1,5-AnG-6-P). After removal of hexokinase bound at Type A sites, the remaining enzyme, bound at Type B sites, does not show selectivity for intramitochondrial ATP and has increased sensitivity to 1,5-AnG-6-P. Thus, the properties of the enzyme bound at Type B sites are modified by removal of hexokinase bound at Type A sites. It is suggested that mechanisms for regulation of mitochondrial hexokinase activity, and thereby cerebral glycolytic metabolism, may depend on the ratio of Type A:Type B sites, which varies in different species.  相似文献   

16.
The enzyme phosphoglucomutase plays a key role in cellular metabolism by virtue of its ability to interconvert Glc-1-P and Glc-6-P. It was recently shown that a yeast strain lacking the major isoform of phosphoglucomutase (pgm2Delta) accumulates a high level of Glc-1-P and exhibits several phenotypes related to altered Ca(2+) homeostasis when d-galactose is utilized as the carbon source (Fu, L., Miseta, A., Hunton, D., Marchase, R. B., and Bedwell, D. M. (2000) J. Biol. Chem. 275, 5431-5440). These phenotypes include increased Ca(2+) uptake and accumulation and sensitivity to high environmental Ca(2+) levels. In the present study, we overproduced the enzyme UDP-Glc pyrophosphorylase to test whether the overproduction of a downstream metabolite produced from Glc-1-P can also mediate changes in Ca(2+) homeostasis. We found that overproduction of UDP-Glc did not cause any alterations in Ca(2+) uptake or accumulation. We also examined whether Glc-6-P can influence cellular Ca(2+) homeostasis. A yeast strain lacking the beta-subunit of phosphofructokinase (pfk2Delta) accumulates a high level of Glc-6-P (Huang, D., Wilson, W. A., and Roach, P. J. (1997) J. Biol. Chem. 272, 22495-22501). We found that this increase in Glc-6-P led to a 1.5-2-fold increase in total cellular Ca(2+). We also found that the pgm2Delta/pfk2Delta strain, which accumulated high levels of both Glc-6-P and Glc-1-P, no longer exhibited the Ca(2+)-related phenotypes associated with high Glc-1-P levels in the pgm2Delta mutant. These results provide strong evidence that cellular Ca(2+) homeostasis is coupled to the relative levels of Glc-6-P and Glc-1-P in yeast.  相似文献   

17.
Difference spectroscopic investigations on the interaction of brain hexokinase with glucose and glucose 6-phosphate (Glc-6-P) show that the binary complexes E-glucose and E-Glc-6-P give very similar UV difference spectra. However, the spectrum of the ternary E-glucose-Glc-6-P complex differs markedly from the spectra of the binary complexes, but resembles that produced by the E-glucose-Pi complex. Direct binding studies of the interaction of Glc-6-P with brain hexokinase detect only a single high-affinity binding site for Glc-6-P (KD = 2.8 microM). In the ternary E-glucose-Glc-6-P complex, Glc-6-P has a much higher affinity for the enzyme (KD = 0.9 microM) and a single binding site. Ribose 5-phosphate displaces Glc-6-P from E-glucose-Glc-6-P only, but not from E-Glc-6-P complex. It also fails to displace glucose from E-glucose and E-glucose-Glc-6-P complexes. Scatchard plots of the binding of glucose to brain hexokinase reveal only a single binding site but show distinct evidence of positive cooperativity, which is abolished by Glc-6-P and Pi. These ligands, as well as ribose 5-phosphate, substantially increase the binding affinity of glucose for the enzyme. The spectral evidence, as well as the interactive nature of the sites binding glucose and phosphate-bearing ligands, lead us to conclude that an allosteric site for Glc-6-P of physiological relevance occurs on the enzyme only in the presence of glucose, as a common locus where Glc-6-P, Pi, and ribose 5-phosphate bind. In the absence of glucose, Glc-6-P binds to the enzyme at its active site with high affinity. We also discuss the possibility that, in the absence of glucose, Glc-6-P may still bind to the allosteric site, but with very low affinity, as has been observed in studies on the reverse hexokinase reaction.  相似文献   

18.
1. Solubilization of mitochondrial bound hexokinase (HK), which represents 75-80% of the total enzyme activity in the cells, was investigated in freshly isolated mitochondria from undifferentiated (Glc+) or differentiated (Glc-) HT29 adenocarcinoma cells. In both models, the bound HK is almost completely released in vitro by 100 microM glucose 6-P (G 6-P). 2. Free ATP (5 mM) or palmitate (800 microM) produce a partial solubilization of bound HK, more markedly in the case of Glc- mitochondria. 3. Glucose or glucose 1-P are found unable to solubilize bound HK. Glucose 1,6-P2, 2-deoxyglucose 6-P or glucosamine 6-P can solubilize the enzyme but are less efficient than G 6-P. 4. Mg2+ and Pi are found to counteract the glucose 6-P induced solubilization of HK in both types of mitochondria. Taking into account the intracellular concentrations of these ions, this could in part explain why, in HT29 cells, HK is predominantly bound to the mitochondria.  相似文献   

19.
The synthesis of mannose 1-phosphate in brain   总被引:3,自引:0,他引:3  
The interconversion of mannose-6-P and mannose-1-P in brain has been shown to be catalyzed by a distinct enzyme. The enzyme has been separated from most of the phosphoglucomutase activity of the brain. The residual phosphoglucomutase activity (less than 1%) may be associated with phosphomannomutase itself. Mannose-1,6-P2 or glucose-1,6-P2 is required for the reaction as well as a divalent cation (Mg2+ greater than Co2+ greater than Ni2+ greater than Mn2+). Glucose-1-P, glucose-6-P, and 2-deoxyglucose-6-P are also substrates or inhibitors. Other phosphorylated sugars tested, glucosamine-6-P, N-acetylglucosamine-6-P, galactose-6-P, fructose-6-P, ribose-5-P, and arabinose-5-P, do not affect the rate of the reaction when assayed in the presence of mannose-6-32P.  相似文献   

20.
1. Glycerate 1,3-P2-dependent glucose, 1,6-P2 synthase has been purified 2000-fold from pig skeletal muscle, with a yield of 75%. 2. The enzyme possesses fructose 1,6-P2-dependent glucose 1,6-P2 synthase and phosphoglucomutase activities, which represent 0.1 and 60% of the main activity, respectively. 3. Both glucose 1-P and glucose 6-P can act as acceptors of the phosphoryl group from glycerate 1,3-P2. 4. The Km values are 19 microM and 67 nM for glucose 1-P and glycerate 1,3-P2, respectively. 5. The enzyme is inhibited by glycerate 2,3-P2, fructose 1,6-P2, glycerate 3-P, phosphoenolpyruvate and lithium, the inhibition pattern varying with the compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号