首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crude extracts of Mycobacterium smegmatis catalyzed the synthesis of adenosine diphosphate-glucose (ADP-Glc), cytidine diphosphate-glucose, guanosine diphosphate-glucose (GDP-Glc), thymidine diphosphate-glucose (TDP-Glc), and uridine diphosphate-glucose (UDP-Glc). In these crude enzyme fractions, high concentrations of trehalose-P inhibited the ADP-Glc and GDP-Glc pyrophosphorylases but did not effect the UDP-Glc or TDP-Glc pyrophosphorylases. Both the ADP-Glc pyrophosphorylase and the UDP-Glc pyrophosphorylase were partially purified (about 140-fold and 60-fold, respectively), and their properties were compared. For the ADP-Glc pyrophosphorylase, the K(m) for adenosine triphosphate was 6 x 10(-4)m, whereas that for glucose-1-P was 8 x 10(-4)m. The optimal concentration of Mg(2+) was 1 x 10(-3)m, and the pH optimum was 8.5. For the UDP-Glc pyrophosphorylase, the K(m) for uridine triphosphate was 1 x 10(-3)m and for glucose-1-P was 2 x 10(-3)m. The optimal Mg(2+) concentration was 1 x 10(-3)m, and the pH optimum was about 8.0. The purified ADP-Glc pyrophosphorylase was inhibited by fructose-6-P, fructose-1, 6-diphosphate, glucose-6-P, and phosphoenolpyruvate. On the other hand, trehalose, trehalose diphosphate, sodium pyruvate, and ribose-5-P did not effect the ADP-Glc pyrophosphorylase. None of these compounds, including trehalose-P, had any effect on the UDP-Glc pyrophosphorylase.  相似文献   

2.
In Drosophila virilis salivary glands the in vitro activities of enzymes involved in the glucosamine pathway were examined during the third larval instar and in the prepupa. While glutamine-fructose-6-phosphate aminotransferase (EC 5.3.1.19) becomes inactive at the time of puparium formation, glucosamine-6-phosphate isomerase (EC 5.3.1.10) and glucosamine-6-phosphate N-acetyltransferase (EC 2.3.1.3) show maximal activities in the prepupal gland. The activity of UDP-N-acetylglucosamine pyrophosphorylase (EC 2.7.7.23) may also decrease prior to puparium formation. Incubation of larval and prepupal glands in medium containing [3H]glucose + [14C]-uridine or [14C]glucosamine and subsequent separation of intermediates of the glucosamine pathway by chromatographic procedures reveal that the capacity of the glands to incorporate the isotopes into these intermediates decreases significantly at the time of puparium formation. The results suggest that in D. virilis salivary glands the formation of aminosugars is mainly controlled by the activities of the two enzymes glutamine-fructose-6-phosphate aminotransferase and UDP-N-acetylglucosamine pyrophosphorylase.  相似文献   

3.
Transgenic potato (Solanum tuberosum) plants simultaneously over-expressing a pea (Pisum sativum) glucose-6-phosphate/phosphate translocator (GPT) and an Arabidopsis thaliana adenylate translocator (NTT1) in tubers were generated. Double transformants exhibited an enhanced tuber yield of up to 19%, concomitant with an additional increased starch content of up to 28%, compared with control plants. The total starch content produced in tubers per plant was calculated to be increased by up to 44% in double transformants relative to the wild-type. Single over-expression of either gene had no effect on tuber starch content or tuber yield, suggesting that starch formation within amyloplasts is co-limited by the import of energy and the supply of carbon skeletons. As total adenosine diphosphate-glucose pyrophosphorylase and starch synthase activities remained unchanged in double transformants relative to the wild-type, they cannot account for the increased starch content found in tubers of double transformants. Rather, an optimized supply of amyloplasts with adenosine triphosphate and glucose-6-phosphate seems to favour increased starch synthesis, resulting in plants with increased starch content and yield of tubers.  相似文献   

4.
The isomerase activity of the C-terminal fructose-6P binding domain (residues 241-608) of glucosamine-6-phosphate synthase from Escherichia coli has been studied. The equilibrium constant of the C-terminal domain k(eq) ([glucose-6P]/[fructose-6-P]) = 5.0. A non-competitive product inhibition of the isomerase activity by the reaction product glucose-6-P has been detected. The existence of more than one binding and reaction sites for the substrate fructose-6P on the molecule of glucosamine-6-phosphate synthase can be expected. The fructose-6P binding domain possibly includes a regulatory site, different from the catalytic center of the enzyme.  相似文献   

5.
A powerful technique is described to localize the activities of a range of enzymes in a wide variety of plant tissues. The method is based on the coupling of the enzymatic reaction to the reduction of NAD and subsequent reduction and precipitation of nitroblue tetrazolium. Enzymes that did not reduce NAD could be visualized by coupling their activities to glucose-6-phosphate dehydrogenase activity via one or more intermediary 'coupling' enzymes. The method is shown to be applicable for the detection of the activities of hexokinase, fructokinase, sucrose synthase, uridine 5'-diphospho-glucose pyrophosphorylase, ADP-glucose pyrophosphorylase, phosphoglucomutase, and phosphoglucose isomerase. It could be used for all tissues tested, including green leaves, stems, roots, fruits, and seeds. The method is specific, very sensitive, and has a high spatial resolution, giving information at the cellular and the subcellular level. The localization of sucrose synthase, invertase, and uridine 5'-diphospho-glucose pyrophosphorylase in transgenic potato plants, carrying a cytokinin biosynthesis gene, is studied and compared with wild-type plants.  相似文献   

6.
Phosphoglucosamine mutase (GlmM; EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate to glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of the peptidoglycan precursor uridine 5'-diphospho- N -acetylglucosamine. We have recently identified the gene ( glmM ) encoding the enzyme of Streptococcus gordonii , an early colonizer on the human tooth and an important cause of infective endocarditis, and indicated that the glmM mutation in S. gordonii appears to influence bacterial cell growth, morphology, and sensitivity to penicillins. In the present study, we assessed whether the glmM mutation also affects escape from polymorphonuclear leukocyte (PMN)-dependent killing. Although no differences in attachment to human PMNs were observed between the glmM mutant and the wild-type S. gordonii , the glmM mutation resulted in increased sensitivity to PMN-dependent killing. Compared with the wild type, the glmM mutant induced increased superoxide anion production and lysozyme release by PMNs. Moreover, the glmM mutant is more sensitive to lysozyme, indicating that the GlmM may be required for synthesis of firm peptidoglycans for resistance to bacterial cell lysis. These findings suggest that the GlmM contributes to the resistance of S. gordonii to PMN-dependent killing. Enzymes such as GlmM could be novel drug targets for this organism.  相似文献   

7.
The phosphoglucosamine mutase (GlmM) from Escherichia coli, specifically required for the interconversion of glucosamine-6-phosphate and glucosamine-1-phosphate (an essential step in the pathway for cell-wall peptidoglycan and lipopolysaccharide biosyntheses) was purified to homogeneity and its kinetic properties were investigated. The enzyme was active in a phosphorylated form and catalysed its reaction according to a classical ping-pong bi-bi mechanism. The dephosphorylated and phosphorylated forms of GlmM could be separated by HPLC and coupled MS showed that only one phosphate was covalently linked to the active site of the enzyme. The site of phosphorylation was clearly identified as Ser102 in the 445-amino acid polypeptide. GlmM was also capable of catalysing the interconversion of glucose-1-phosphate and glucose-6-phosphate isomers, although at a much lower (1400-fold) rate. Interestingly, the mutational change of the Ser100 to a threonine residue resulted in a 20-fold increase of the nonspecific phosphoglucomutase activity of GlmM, suggesting that the presence of either a serine or a threonine at this position in the consensus sequence of hexosephosphate mutases could be one of the factors that determines the specificity of these enzymes for either sugar-phosphate or amino sugar-phosphate substrates.  相似文献   

8.
Enzyme activities associated with maize kernel amyloplasts   总被引:15,自引:8,他引:7       下载免费PDF全文
Activities of the enzymes of gluconeogenesis and of starch metabolism were measured in extracts of amyloplasts isolated from protoplasts derived from 14-day-old maize (Zea mays L., cv Pioneer 3780) endosperm. The enzymes triosephosphate isomerase, fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, phosphohexose isomerase, phosphoglucomutase, ADPG pyrophosphorylase, UDPG pyrophosphorylase, soluble and bound starch synthases, and branching enzyme were found to be present in the amyloplasts. Of the above enzymes, ADPG pyrophosphorylase had the lowest activity per amyloplast. Invertase, sucrose synthase and hexokinase were not detected in similar amyloplast preparations. Only a trace of the cytoplasmic marker enzyme alcohol dehydrogenase could be detected in purified amyloplast fractions. In separate experiments, purified amyloplasts were lysed and then supplied with radioactively labeled glucose-6-phosphate, glucose-1-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, glucose, fructose, sucrose, and 3-0-methylglucose in the presence of adenosine triphosphate or uridine triphosphate. Of the above, only the phosphorylated substrates were incorporated into starch. Incorporation into starch was higher with added uridine triphosphate than with adenosine triphosphate. Dihydroxyacetone phosphate was the preferred substrate for uptake by intact amyloplasts and incorporation into starch. In preliminary experiments, it appeared that glucose-6-P and fructose-1,6-bisphosphate may also be taken up by intact amyloplasts. However, the rate of uptake and incorporation into starch was relatively low and variable. Additional study is needed to determine conclusively whether hexose phosphates will cross intact amyloplast membranes. From these data, we conclude that: (a) Triose phosphate is the preferred substrate for uptake by intact amyloplasts. (b) Amyloplasts contain all enzymes necessary to convert triose phosphates into starch. (c) Sucrose breakdown must occur in the cytosol prior to carbohydrate transfer into the amyloplasts. (d) Under the conditions of assay, amyloplasts are unable to convert glucose or fructose to starch. (e) Uridine triphosphate may be the preferred nucleotide for conversion of hexose phosphates to starch at this stage of kernel development.  相似文献   

9.
The kinetic properties of rabbit muscle uridine diphosphoglucose (UDP-Glc) pyrophosphorylase have been studied, in both directions, with respect to substrate saturation, product inhibition, and cation requirement for activity. The results demonstrate that UDP-Glc pyrophosphorylase is a non-Michaelian enzyme: the synthetic reaction is characterized by a marked inhibition by glucose-1-phosphate (at concentrations higher than 0.3 mM) and by an hyperbolic saturation for UTP. In the reverse reaction, instead, the saturation function for UDP-Glc is hyperbolic and that for inorganic pyrophosphate is sigmoid, with a high Hill coefficient of (nH) 2.5. The study of the metal requirement indicates a distinctive ability of cations to stimulate the reactions of synthesis and degradation of the sugar nucleotide and a different stoichiometry of the metal chelates involved. The reaction mechanism is of the ordered-sequential type and the data of product inhibition allowed the identification of glucose-1-phosphate as the first substrate bound and UDP-Glc as the last product released. The inhibition pattern by UDP-Glc gives evidence for cooperativity also in the binding of this molecule.  相似文献   

10.
The large protein motions of the bacterial enzyme glucosamine-6-phosphate synthase have been addressed using full atom normal modes analysis for the empty, the glucose-6-phosphate and the glucose-6-phosphate + glutamate bound proteins. The approach that was used involving energy minimizations along the normal modes coordinates identified functional motions of the protein, some of which were characterized earlier by X-ray diffraction studies. This method made it possible for the first time to highlight significant energy differences according to whether none, only one or both of the active sites of the protein were occupied. Our data favoured a specific motion of the glutamine binding domain following the fixation of fructose-6-phosphate and suggested a rigidified structure with both sites occupied. Here, we show that most of the collective large amplitude motions of glucosamine-6-phosphate synthase that are modulated by ligand binding are crucial for the enzyme catalytic cycle, as they strongly modify the geometry of both the ammonia channel and the C-tail, demonstrating their role in ammonia transfer and ligand binding.  相似文献   

11.
Summary Glycogen synthetase (uridine diphosphate glucose-glycogen glucosyl transferase) was studied in different organs by a histoautoradiographic method and by usual staining methods. This activity was found to be present in muscles and liver of different animals. Human skin also showed some activity. Human liver and myocardium showed the highest activity.In the present study, it was found that the glucose-6-phosphate dependent form (D-form) of the glycogen synthetase predominates over the glucose-6-phosphate independent form (I-form) in all the organs except hamster liver where the I-form predominates.Addition of calcium chloride in the incubation medium, to prevent phosphorolytic breakdown of the newly synthesized glycogen, does not improve the reaction. No glucose is incorporated into glycogen from 14C-glucose-6-phosphate of the incubation medium for glycogen synthetase. Fixation in absolute alcohol at –20° is recommended for tissues where cytolysis is caused by the incubation medium.  相似文献   

12.
For characterization of the biosynthetic pathway of cellulose in a cellulose-producing Acetobacter xylinum strain BPR2001, the activities of several enzymes were measured. The activity of phosphoglucose isomerase catalyzing the conversion of fructose-6- phosphate into glucose-6-phosphate was greatly increased by fructose in the medium. The UDP-glucose pyrophosphorylase activity catalyzing the synthesis of UDP-glucose was very high in strain BPR2001, consistent with the idea that this is the key enzyme in cellulose biosynthesis. Strain BPR2001 was found to have a fructose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS).  相似文献   

13.
Phosphoglucomutase Mutants of Escherichia coli K-12   总被引:16,自引:11,他引:5       下载免费PDF全文
Bacteria with strongly depressed phosphoglucomutase (EC 2.7.5.1) activity are found among the mutants of Escherichia coli which, when grown on maltose, accumulate sufficient amylose to be detectable by iodine staining. These pgm mutants grow poorly on galactose but also accumulate amylose on this carbon source. Growth on lactose does not produce high amylose but, instead, results in the induction of the enzymes of maltose metabolism, presumably by accumulation of maltose. These facts suggest that the catabolism of glucose-1-phosphate is strongly depressed in pgm mutants, although not completely abolished. Anabolism of glucose-1-phosphate is also strongly depressed, since amino acid- or glucose-grown pgm mutants are sensitive to phage C21, indicating a deficiency in the biosynthesis of uridine diphosphoglucose or uridine diphosphogalactose, or both. All pgm mutations isolated map at about 16 min on the genetic map, between purE and the gal operon.  相似文献   

14.
Summary A quantitative cytochemical assay for NAD+ kinase-like activity in the guinea-pig thyroid gland is described. The NADP+ produced by the activity of the kinase was used to drive the NADP+-dependent enzyme glucose-6-phosphate dehydrogenase which is endogenous to the tissue. The activity of glucose-6-phosphate dehydrogenase is greatly in excess of that of the kinase and was unaffected by the constituents of the kinase incubation medium (ATP, Mg2+ and NAD+) either alone or in combination. Kinase activity was dependent both on ATP and Mg2+, with maximal activity seen when the Mg-ATP ratio was between 1:1 and 4:1. Free ATP inhibited the activity of the enzyme. Enzyme activity was exhibited over a broad pH range (7–9) with a peak at pH 8.2. The sulphhydryl-blocking agents,p-chloromercuribenzoate, iodoacetate and iodoacetamide (at 1 mM), completely abolished kinase activity but were without effect on glucose-6-phosphate dehydrogenase activity.N-ethylmaleimide and citrate (both at 1 mM) had no effect on either kinase or glucose-6-phosphate dehydrogenase activities.  相似文献   

15.
Glucosamine 6-phosphate synthase converts fructose-6P into glucosamine-6P or glucose-6P depending on the presence or absence of glutamine. The isomerase activity is associated with a 40-kDa C-terminal domain, which has already been characterized crystallographically. Now the three-dimensional structures of the complexes with the reaction product glucose-6P and with the transition state analog 2-amino-2-deoxyglucitol-6P have been determined. Glucose-6P binds in a cyclic form whereas 2-amino-2-deoxyglucitol-6P is in an extended conformation. The information on ligand-protein interactions observed in the crystal structures together with the isotope exchange and site-directed mutagenesis data allow us to propose a mechanism of the isomerase activity of glucosamine-6P synthase. The sugar phosphate isomerization involves a ring opening step catalyzed by His504 and an enolization step with Glu488 catalyzing the hydrogen transfer from C1 to C2 of the substrate. The enediol intermediate is stabilized by a helix dipole and the epsilon-amino group of Lys603. Lys485 may play a role in deprotonating the hydroxyl O1 of the intermediate.  相似文献   

16.
Expanding the scope of stereoselectivity is of current interest in enzyme catalysis. In this study, using error-prone polymerase chain reaction (PCR), a thermostable adenosine diphosphate (ADP)-glucose pyrophosphorylase (AGPase) from Thermus caldophilus GK-24 has been altered to improve its catalytic activity toward enatiomeric substrates including [glucose-1-phosphate (G-1-P) + uridine triphosphate (UTP)] and [N-acetylglucosamine-1-phosphate (GlcNAc) + UTP] to produce uridine diphosphate (UDP)-glucose and UDP-N-acetylglucosamine, respectively. To elucidate the amino acids responsible for catalytic activity, screening for UDP-glucose pyrophosphorylase (UGPase) and UDP-N-acetylglucosamine pyrophosphorylase (UNGPase) activities was carried out. Among 656 colonies, two colonies showed UGPase activities and three colonies for UNGPase activities. DNA sequence analyses and enzyme assays showed that two mutant clones (H145G) specifically have an UGPase activity, indicating that the changed glycine residue from histidine has the base specificity for UTP. Also, three double mutants (H145G/A325V) showed a UNGPase, and A325 was associated with sugar binding, conferring the specificity for the sugar substrates and V325 of the mutant appears to be indirectly involved in the binding of the N-acetylamine group of N-acetylglucosmine-1-phosphate. The authors Hosung Sohn and Yong-Sam Kim equally contributed to the study.  相似文献   

17.
The specific activity of uridine 5'-triphosphate:alpha-d-glucose 1-phosphate uridyltransferase (EC 2.7.7.9) (also called uridine 5'-diphosphate [UDP]-glucose pyrophosphorylase) has been found to increase up to eightfold during spherule formation by the slime mold Physarum polycephalum. The enzyme accumulates during the first 8 to 9 h after initiation of spherule formation, declines to basal levels found in vegetative microplasmodia by 15 h, and is undetectable in completed spherules. Specific activities for UDP-glucose pyrophosphorylase in vegetative microplasmodia range from 15 to 30 nmol of UDP-glucose formed per min per mg of protein, whereas accumulated levels during spherule formation can attain a specific activity as high as 125 nmol of UDP-glucose formed per min per mg of protein. The scheduling and extent of accumulation are critically dependent on an early log-phase age of microplasmodia originally induced to form spherules. Spherule induction by 0.2 M or 0.5 M mannitol delays this schedule in a variable and unpredictable manner. Spherule-forming microplasmodia which have accumulated high levels of UDP-glucose pyrophosphorylase spontaneously excrete the enzyme when transferred to salts medium containing 0.2 M or 0.5 M mannitol. The excreted enzyme is subsequently destroyed or inactivated. Studies with preferential inhibitors of macromolecular synthesis indicate that accumulation of UDP-glucose pyrophosphorylase requires concomitant protein synthesis and prior ribonucleic acid synthesis.  相似文献   

18.
Phosphoglucosamine mutase (EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate into glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of peptidoglycan precursor uridine 5'-diphospho-N-acetylglucosamine. The gene (glmM) of Escherichia coli encoding the enzyme has been identified previously. We have now identified a glmM homolog in Streptococcus gordonii, an early colonizer on the human tooth and an important cause of infective endocarditis, and have confirmed that the gene encodes phosphoglucosamine mutase by assaying the enzymatic activity of the recombinant GlmM protein. Insertional glmM mutant of S. gordonii did not produce GlmM, and had a growth rate that was approximately half that of the wild type. Morphological analyses clearly indicated that the glmM mutation causes marked elongation of the streptococcal chains, enlargement of bacterial cells, and increased roughness of the bacterial cell surface. Furthermore, the glmM mutation reduces biofilm formation and increases sensitivity to penicillins relative to wild type. All of these phenotypic changes were also observed in a glmM deletion mutant, and were restored by the complementation with plasmid-borne glmM. These results suggest that, in S. gordonii, mutations in glmM appear to influence bacterial cell growth and morphology, biofilm formation, and sensitivity to penicillins.  相似文献   

19.
I M Rao  P R Reddy 《Life sciences》1984,34(23):2257-2263
Estradiol induced increase in ornithine decarboxylase (ODC) and glucosamine-6-phosphate synthase activities of rat uterus were inhibited by simultaneous treatment with gonadotropin releasing hormone (GnRH) or its agonists. The direct inhibitory effect of GnRH analogs was found to be dose dependent. It was observed that a higher dose of GnRH analog was needed to cause inhibition of glucosamine-6-phosphate synthase when compared to ODC activity. The inhibitory effect of GnRH was not observed if its injection was delayed following estradiol treatment. These results show that the extra-pituitary inhibitory effects of GnRH involves enzymes associated with cell proliferation.  相似文献   

20.
Low-energy nitrogen ion beam implantation technique was used for the strain improvement of Alcaligenes sp. NX-3 for the production of exopolysaccharide welan gum. A high welan gum producing mutant, Alcaligenes sp. NX-3-1, was obtained through 20 keV N+ ion beam irradiation. Starting at a concentration of 50 g/L of glucose, mutant NX-3-1 produced 25.0 g/L of welan gum after 66 h of cultivation in a 7.5 L bioreactor, which was 34.4% higher than that produced by the wild-type strain. The results of metabolic flux analysis showed that the glucose-6-phosphate and acetyl coenzyme A nodes were the principle and flexible nodes, respectively. At the glucose-6-phosphate node, the fraction of carbon measured from glucose-6-phosphate to glucose-1-phosphate was enhanced after mutagenesis, which indicated that more flux was used to synthesize welan gum in the mutant. By analyzing the activities of related enzymes in the biosynthetic pathway of sugar nucleotides essential for welan gum production, we found that the specific activities of phosphoglucomutase, UDP-glucose pyrophosphorylase, UDP-glucose dehydrogenase, and dTDP-glucose pyrophosphorylase in the mutant strain were higher than those in the wild-type strain. These improvements in enzyme activities could be due to the affected of ion beam implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号