首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chondrocytes were isolated enzymatically from guinea-pig epiphyses and grown in vitro. The fate of the Golgi complex during mitosis in relation to changes in the cytoplasmic microtubules was then studied by transmission electron microscopy. Interphase cells were observed to be polarized, with the Golgi complex occupying a well-defined juxtanuclear area of the cell's cytoplasmic pole. During prophase the cytoplasmic microtubules were largely lost, the nucleus moved to the center of the cell and the Golgi complex dissolved into single dictyosomes spread diffusely throughout the cytoplasm. The distribution of other organelles also changed to a more random pattern. In telophase, i.e. after the completion of nuclear division, the mitotic spindle decomposed and cytoplasmic microtubules reappeared. Furthermore, the organization of the Golgi complex and other organelles returned to that characteristic of interphase cells. Previous studies on cells treated with colchicine have indicated that the polarized distribution of cell organelles is dependent on the presence of intact cytoplasmic micro-tubules. It is suggested that the disappearance of such tubules observed here to be coupled with the disorganization of cell interphase structure fulfills the double function of providing free tubulin units from which to build the mitotic spindle and ensuring an approximately equal distribution of dictyosomes and other organelles to the daughter cells during cytokinesis.  相似文献   

2.
A review of the role of the microtubule motor dynein and its cofactor dynactin in the formation of a radial system of microtubules in the interphase cells and of mitotic spindle. Deciphering of the structure, functions, and regulation of activity of dynein and dynactin promoted the understanding of mechanisms of cell and tissue morphogenesis, since it turned out that these cells help the cell in finding its center and organize microtubule-determined anisotropy of intracellular space. The structure of dynein and dynactin molecules has been considered, as well as possible pathways of regulation of the dynein activity and the role of dynein in transport of cell components along the microtubules. Attention has also been paid to the functions of dynein and dynactin not related directly to transport: their involvement in the formation of an interphase radial system of microtubules. This system can be formed by self-organization of microtubules and dynein-containing organelles or via organization of microtubules by the centrosome, whose functioning requires dynein. In addition, dynein and dynactin are responsible for cell polarization during its movement, as well as for the position of nucleus, centrosomes, and mitotic spindle in the cell.  相似文献   

3.
A review of the role of the microtubule motor dynein and its cofactor dynactin in the formation of a radial system of microtubules in the interphase cells and of mitotic spindle. Deciphering of the structure, functions, and regulation of activity of dynein and dynactin promoted the understanding of mechanisms of cell and tissue morphogenesis, since it turned out that these cells help the cell in finding its center and organize microtubule-determined anisotropy of intracellular space. The structure of dynein and dynactin molecules has been considered, as well as possible pathways of regulation of the dynein activity and the role of dynein in transport of cell components along the microtubules. Attention has also been paid to the functions of dynein and dynactin not related directly to transport: their involvement in the formation of an interphase radial system of microtubules. This system can be formed by self-organization of microtubules and dynein-containing organelles or via organization of microtubules by the centrosome, whose functioning requires dynein. In addition, dynein and dynactin are responsible for cell polarization during its movement, as well as for the position of nucleus, centrosomes, and mitotic spindle in the cell.  相似文献   

4.
Summary During mitosis groups of microtubules appear consecutively at three different sites in dividing plant cells. They are found at the pre-prophase band encircling the nucleus, at the mitotic poles from which they radiate into the spindle, and at the edge of the cell plate during its development. In the meristematic cells of wheat root-tips it is possible to synchronize the cell divisions by the use of 5-amino-uracil and to layer the organelles of the cells by gentle centrifugation of the whole root. These techniques make it possible to investigate the cell sites at which the microtubules arise during their formation and to see the particular organelles which occur at these sites together with the microtubules. From this type of study it is suggested that profiles of smooth endoplasmic reticulum are concerned with the processes of transport and aggregation of the microtubular sub-units.  相似文献   

5.
In the mutant BEN210 of Physarum polycephalum several beta-tubulins are detectable. beta 1-tubulin is unique to the myxamoeba, beta 2-tubulin is unique to the plasmodium, and the mutant beta 1-210 tubulin encoded by the benD210 allele is present in both cell types. In order to analyse the subcellular distribution of the beta 1-210 polypeptide, we prepared cytoskeletons from myxamoebae and mitotic spindles from plasmodia, and examined the tubulin polypeptide composition of these microtubular organelles by two-dimensional gel electrophoresis and immunoblotting. The results show that the beta 1-210 tubulin is present in microtubules of both the cytoskeleton and the intranuclear mitotic spindle. Thus a single beta-tubulin gene product can participate in multiple microtubular organelles in distinct cellular compartments.  相似文献   

6.
Cortical microtubule contacts position the spindle in C. elegans embryos   总被引:2,自引:0,他引:2  
Kozlowski C  Srayko M  Nedelec F 《Cell》2007,129(3):499-510
Interactions between microtubules and the cell cortex play a critical role in positioning organelles in a variety of biological contexts. Here we used Caenorhabditis elegans as a model system to study how cortex-microtubule interactions position the mitotic spindle in response to polarity cues. Imaging EBP-2::GFP and YFP::alpha-tubulin revealed that microtubules shrink soon after cortical contact, from which we propose that cortical adaptors mediate microtubule depolymerization energy into pulling forces. We also observe association of dynamic microtubules to form astral fibers that persist, despite the catastrophe events of individual microtubules. Computer simulations show that these effects, which are crucially determined by microtubule dynamics, can explain anaphase spindle oscillations and posterior displacement in 3D.  相似文献   

7.
Recent data have revealed that the mitotic spindle might form by centrosome-independent mechanisms, even in centrosome-containing cells. This suggests that spindle assembly might proceed by a generally conserved acentrosomal mechanism in all higher eukaryotes, regardless of the presence of centrosomes. Thus, what is the role of centrosomes in mitosis? We propose that these organelles are needed to generate radial arrays of microtubules that integrate preassembled (by centrosome-independent mechanisms) spindle components into a common spindle and orientate the spindle within malleable animal cells.  相似文献   

8.
Kinesin, a microtubule-activated ATPase and putative motor protein for the transport of membrane-bounded organelles along microtubules, was purified from bovine brain and used as an immunogen for the production of murine monoclonal antibodies. Hybridoma lines that secreted five distinct antikinesin IgGs were cloned. Three of the antibodies reacted on immunoblots with the 124-kD heavy chain of kinesin, while the other two antibodies recognized the 64-kD light chain. When used for immunofluorescence microscopy, the antibodies stained punctate, cytoplasmic structures in a variety of cultured mammalian cell types. Consistent with the identification of these structures as membrane-bounded organelles was the observation that cells which had been extracted with Triton X-100 before fixation contained little or no immunoreactive material. Staining of microtubules in the interphase cytoplasm or mitotic spindle was never observed, nor were associated structures, such as centrosomes and primary cilia, labeled by any of the antibodies. Nevertheless, in double-labeling experiments using antibodies to kinesin and tubulin, kinesin-containing particles were most abundant in regions where microtubules were most highly concentrated and the particles often appeared to be aligned on microtubules. These results constitute the first direct evidence for the association of kinesin with membrane-bounded organelles, and suggest a molecular mechanism for organelle motility based on transient interactions of organelle-bound kinesin with the microtubule surface.  相似文献   

9.
When viewed by light microscopy the mitotic spindle in newt pneumocytes assembles in an optically clear area of cytoplasm, virtually devoid of mitochondria and other organelles, which can be much larger than the forming spindle. This unique optical property has allowed us to examine the behavior of individual microtubules, at the periphery of asters in highly flattened living prometaphase cells, by video-enhanced differential interference-contrast light microscopy and digital image processing. As in interphase newt pneumocytes (Cassimeris, L., N. K. Pryer, and E. D. Salmon. 1988. J. Cell Biol. 107:2223-2231), centrosomal (i.e., astral) microtubules in prometaphase cells appear to exhibit dynamic instability, elongating at a mean rate of 14.3 +/- 5.1 microns/min (N = 19) and shortening at approximately 16 microns/min. Under favorable conditions the initial interaction between a kinetochore and the forming spindle can be directly observed. During this process the unattached chromosome is repeatedly probed by microtubules projecting from one of the polar regions. When one of these microtubules contacts the primary constriction the chromosome rapidly undergoes poleward translocation. Our observations on living mitotic cells directly demonstrate, for the first time, that chromosome attachment results from an interaction between astral microtubules and the kinetochore.  相似文献   

10.
When viewed by light microscopy the mitotic spindle of newt pneumocytes appears to assemble in an optically clear area of cytoplasm, virtually devoid of mitochondria and other organelles, which is often much larger than the spindle. This clear area is also frequently larger than the region previously occupied by the nucleus. It forms even in prometaphase cells depleted of microtubules prior to nuclear envelope breakdown by colchicine treatment. Time-lapse video microscopy reveals that as prometaphase proceeds this clear area slowly and progressively collapses around the forming spindle so that it is greatly diminished or nonexistent by the onset of anaphase. The sharply defined nature of the boundary between the clear area and the remaining cytoplasm and the fact that organelles accumulate at its periphery suggest that a structural barrier is present at the boundary that limits organelle migration into the forming spindle. Immunofluorescence and electron microscopy, of cells previously followed in the living state, reveal that the periphery of the clear area contains prominent bundles of keratin filaments but lacks microtubules and actin. From our observations we conclude that keratin filaments form a loosely organized cage that surrounds the forming newt pneumocyte spindle. We propose that this cage functions, in part, to restrict the dispersion of chromosomes during nuclear envelope breakdown and to impede the bulk migration of organelles into the forming spindle.  相似文献   

11.
When higher eukaryotic cells enter mitosis, membrane organization changes dramatically and traffic between membrane compartments is inhibited. Since membrane transport along microtubules is involved in secretion, endocytosis, and the positioning of organelles during interphase, we have explored whether the mitotic reorganization of membrane could involve a change in microtubule-based membrane transport. This question was examined by reconstituting organelle transport along microtubules in Xenopus egg extracts, which can be converted between interphase and metaphase states in vitro in the absence of protein synthesis. Interphase extracts support the microtubule-dependent formation of abundant polygonal networks of membrane tubules and the transport of small vesicles. In metaphase extracts, however, the plus end- and minus end-directed movements of vesicles along microtubules as well as the formation of tubular membrane networks are all reduced substantially. By fractionating the extracts into soluble and membrane components, we have shown that the cell cycle state of the supernatant determines the extent of microtubule-based membrane movement. Interphase but not metaphase Xenopus soluble factors also stimulate movement of membranes from a rat liver Golgi fraction. In contrast to above findings with organelle transport, the minus end-directed movements of microtubules on glass surfaces and of latex beads along microtubules are similar in interphase and metaphase extracts, suggesting that cytoplasmic dynein, the predominant soluble motor in frog extracts, retains its force-generating activity throughout the cell cycle. A change in the association of motors with membranes may therefore explain the differing levels of organelle transport activity in interphase and mitotic extracts. We propose that the regulation of organelle transport may contribute significantly to the changes in membrane structure and function observed during mitosis in living cells.  相似文献   

12.
We have used monoclonal antibodies specific for acetylated and unacetylated alpha-tubulin to characterize the acetylated alpha-tubulin isotype of Physarum polycephalum, its expression in the life cycle, and its localization in particular microtubular organelles. We have used the monoclonal antibody 6-11B-1 (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094) as the probe for acetylated alpha-tubulin and have provided a biochemical characterization of the monoclonal antibody KMP-1 as a probe for unacetylated tubulin in Physarum. Concomitant use of these two probes has allowed us to characterize the acetylated alpha-tubulin of Physarum as the alpha 3 isotype. We have detected this acetylated alpha 3 tubulin isotype in both the flagellate and in the myxameba, but not in the plasmodium. In the flagellate, acetylated tubulin is present in both the flagellar axonemes and in an extensive array of cytoplasmic microtubules. The extensive arrangement of acetylated cytoplasmic microtubules and the flagellar axonemes are elaborated during the myxameba-flagellate transformation. In the myxameba, acetylated tubulin is not present in the cytoplasmic microtubules nor in the mitotic spindle microtubules, but is associated with the two centrioles of this cell. These findings, taken together with the apparent absence of acetylated alpha-tubulin in the ephemeral microtubules of the plasmodium suggest a natural correspondence between the presence of acetylated alpha-tubulin and microtubule organelles that are intrinsically stable or cross-linked.  相似文献   

13.
Previously, we have shown that melanosomes of Xenopus laevis melanophores are transported along both microtubules and actin filaments in a coordinated manner, and that myosin V is bound to purified melanosomes (Rogers, S., and V.I. Gelfand. 1998. Curr. Biol. 8:161-164). In the present study, we have demonstrated that myosin V is the actin-based motor responsible for melanosome transport. To examine whether myosin V was regulated in a cell cycle-dependent manner, purified melanosomes were treated with interphase- or metaphase-arrested Xenopus egg extracts and assayed for in vitro motility along Nitella actin filaments. Motility of organelles treated with mitotic extract was found to decrease dramatically, as compared with untreated or interphase extract-treated melanosomes. This mitotic inhibition of motility correlated with the dissociation of myosin V from melanosomes, but the activity of soluble motor remained unaffected. Furthermore, we find that myosin V heavy chain is highly phosphorylated in metaphase extracts versus interphase extracts. We conclude that organelle transport by myosin V is controlled by a cell cycle-regulated association of this motor to organelles, and that this binding is likely regulated by phosphorylation of myosin V during mitosis.  相似文献   

14.
The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro-polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear evidence that the movement of pollen tube organelles is not just actin based; rather, they show a microtubule-based motion as well. This unexpected finding suggests new insights into the use of pollen tube microtubules, which could be used for short-range transport, as actin filaments are in animal cells.  相似文献   

15.
Kinetochores are complex macromolecular assemblies that link chromosomes to the mitotic spindle, mediate forces for chromosome motion, and generate the checkpoint signal delaying anaphase onset until all chromosomes are incorporated into the spindle. Proper execution of these functions depends on precise interactions between kinetochores and microtubules. While the molecular composition of the kinetochore is well described, structural organization of this organelle at the molecular and atomic levels is just beginning to emerge. Recent structural studies across scales suggest that kinetochores should not be viewed as rigid static scaffolds. Instead, these organelles exhibit a surprising degree of flexibility that enables rapid adaptations to various types of interactions with the mitotic spindle.  相似文献   

16.
Microtubules and the organization of the Golgi complex   总被引:42,自引:0,他引:42  
Electron microscopic and cytochemical studies indicate that microtubules play an important role in the organization of the Golgi complex in mammalian cells. During interphase microtubules form a radiating pattern in the cytoplasm, originating from the pericentriolar region (microtubule-organizing centre). The stacks of Golgi cisternae and the associated secretory vesicles and lysosomes are arranged in a circumscribed juxtanuclear area, usually centered around the centrioles, and show a defined orientation in relation to the rough endoplasmic reticulum. Exposure of cells to drugs such as colchicine, vinblastine and nocodazole leads to disassembly of microtubules and disorganization of the Golgi complex, most typically a dispersion of its stacks of cisternae throughout the cytoplasm. These alterations are accompanied by disturbances in the intracellular transport, processing and release of secretory products as well as inhibition of endocytosis. The observations suggest that microtubules are partly responsible for the maintenance and functioning of the Golgi complex, possibly by arranging its stacks of cisternae three-dimensionally within the cell and in relation to other organelles and ensuring a normal flow of material into and away from them. During mitosis, microtubules disassemble (prophase) and a mitotic spindle is built up (metaphase) to take care of the subsequent separation of the chromosomes (anaphase). The breaking up of the microtubular cytoskeleton is followed by vesiculation of the rough endoplasmic reticulum and partial atrophy, as well as dispersion of the stacks of Golgi cisternae. After completion of the nuclear division (telophase), the radiating microtubule pattern is re-established and the rough endoplasmic reticulum and the Golgi complex resume their normal interphase structure. This sequence of events is believed to fulfil the double function to provide tubulin units and space for construction of the mitotic spindle and to guarantee an approximately equal distribution of the rough endoplasmic reticulum and the Golgi complex on the two daughter cells.  相似文献   

17.
This paper addresses the question of whether microtubule-directed transport of vesicular organelles depends on the presence of a pool of cytosolic factors, including soluble motor proteins and accessory factors. Earlier studies with squid axon organelles (Schroer et al., 1988) suggested that the presence of cytosol induces a > 20-fold increase in the number of organelles moving per unit time on microtubules in vitro. These earlier studies, however, did not consider that cytosol might nonspecifically increase the numbers of moving organelles, i.e., by blocking adsorption of organelles to the coverglass. Here we report that treatment of the coverglass with casein, in the absence of cytosol, blocks adsorption of organelles to the coverglass and results in vigorous movement of vesicular organelles in the complete absence of soluble proteins. This technical improvement makes it possible, for the first time, to perform quantitative studies of organelle movement in the absence of cytosol. These new studies show that organelle movement activity (numbers of moving organelles/min/micron microtubule) of unextracted organelles is not increased by cytosol. Unextracted organelles move in single directions, approximately two thirds toward the plus-end and one third toward the minus-end of microtubules. Extraction of organelles with 600 mM KI completely inhibits minus-end, but not plus-end directed organelle movement. Upon addition of cytosol, minus-end directed movement of KI organelles is restored, while plus--end directed movement is unaffected. Biochemical studies indicate that KI-extracted organelles attach to microtubules in the presence of AMP-PNP and copurify with tightly bound kinesin. The bound kinesin is not extracted from organelles by 1 M KI, 1 M NaCl or carbonate (pH 11.3). These results suggest that kinesin is irreversibly bound to organelles that move to the plus-end of microtubules and that the presence of soluble kinesin and accessory factors is not required for movement of plus-end organelles in squid axons.  相似文献   

18.
Summary An electron microscope study of a variety of invertebrate and vertebrate cell types has supported the postulate that the microtubule is a universal cellular organelle. Microtubules of similar dimensions have been observed in the flagellum and beneath the plasma membrane of Trypanosoma lewisi, in the flagellum, manchette and mitotic spindle of the earthworm (Lumbricus terrestris) spermatid; and in fibroblasts, proximal convoluted and collecting tubule cells of the hypertrophying rat kidney. The specific occurrence and organization of the microtubules in cells undergoing morphological and developmental changes have suggested that these organelles are contractile and that they effectively contribute to the maintenance of cellular form. The possibility that microtubules may function as an intracellular transport system is also suggested.This work was supported by grants CA-04046, GM-08380, and K 3-AM-4932 from the U. S. Public Health Service.  相似文献   

19.
To understand the mechanisms of transport for organelles in the axon, we isolated and sequenced the cDNA encoding KIF4 from murine brain, and characterized the molecule biochemically and immunocytochemically. Complete amino acid sequence analysis of KIF4 and ultrastructural studies of KIF4 molecules expressed in Sf9 cells revealed that the protein contains 1,231 amino acid residues (M(r) 139,550) and that the molecule (116-nm rod with globular heads and tail) consists of three domains: an NH2-terminal globular motor domain, a central alpha-helical stalk domain and a COOH-terminal tail domain. KIF4 protein has the property of nucleotide-dependent binding to microtubules, microtubule- activated ATPase activity, and microtubule plus-end-directed motility. Northern blot analysis and in situ hybridization demonstrated that KIF4 is strongly expressed in juvenile tissues including differentiated young neurons, while its expression is decreased considerably in adult mice except in spleen. Immunocytochemical studies revealed that KIF4 colocalized with membranous organelles both in growth cones of differentiated neurons and in the cytoplasm of cultured fibroblasts. During mitotic phase of cell cycle, KIF4 appears to colocalize with membranous organelles in the mitotic spindle. Hence we conclude that KIF4 is a novel microtubule-associated anterograde motor protein for membranous organelles, the expression of which is regulated developmentally.  相似文献   

20.
The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号