首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TNNC1, which encodes cardiac troponin C (cTnC), remains elusive as a dilated cardiomyopathy (DCM) gene. Here, we report the clinical, genetic, and functional characterization of four TNNC1 rare variants (Y5H, M103I, D145E, and I148V), all previously reported by us in association with DCM (Hershberger, R. E., Norton, N., Morales, A., Li, D., Siegfried, J. D., and Gonzalez-Quintana, J. (2010) Circ. Cardiovasc. Genet. 3, 155-161); in the previous study, two variants (Y5H and D145E) were identified in subjects who also carried MYH7 and MYBPC3 rare variants, respectively. Functional studies using the recombinant human mutant cTnC proteins reconstituted into porcine papillary skinned fibers showed decreased Ca(2+) sensitivity of force development (Y5H and M103I). Furthermore, the cTnC mutants diminished (Y5H and I148V) or abolished (M103I) the effects of PKA phosphorylation on Ca(2+) sensitivity. Only M103I decreased the troponin activation properties of the actomyosin ATPase when Ca(2+) was present. CD spectroscopic studies of apo (absence of divalent cations)-, Mg(2+)-, and Ca(2+)/Mg(2+)-bound states indicated that all of the cTnC mutants (except I148V in the Ca(2+)/Mg(2+) condition) decreased the α-helical content. These results suggest that each mutation alters the function/ability of the myofilament to bind Ca(2+) as a result of modifications in cTnC structure. One variant (D145E) that was previously reported in association with hypertrophic cardiomyopathy and that produced results in vivo in this study consistent with prior hypertrophic cardiomyopathy functional studies was found associated with the MYBPC3 P910T rare variant, likely contributing to the observed DCM phenotype. We conclude that these rare variants alter the regulation of contraction in some way, and the combined clinical, molecular, genetic, and functional data reinforce the importance of TNNC1 rare variants in the pathogenesis of DCM.  相似文献   

2.
XRCC1 operates as a scaffold protein in base excision repair, a pathway that copes with base and sugar damage in DNA. Studies using recombinant XRCC1 proteins revealed that: a C389Y substitution, responsible for the repair defects of the EM-C11 CHO cell line, caused protein instability; a V86R mutation abolished the interaction with POLβ, but did not disrupt the interactions with PARP-1, LIG3α and PCNA; and an E98K substitution, identified in EM-C12, reduced protein integrity, marginally destabilized the POLβ interaction, and slightly enhanced DNA binding. Two rare (P161L and Y576S) and two frequent (R194W and R399Q) amino acid population variants had little or no effect on XRCC1 protein stability or the interactions with POLβ, PARP-1, LIG3α, PCNA or DNA. One common population variant (R280H) had no pronounced effect on the interactions with POLβ, PARP-1, LIG3α and PCNA, but did reduce DNA-binding ability. When expressed in HeLa cells, the XRCC1 variants—excluding E98K, which was largely nucleolar, and C389Y, which exhibited reduced expression—exhibited normal nuclear distribution. Most of the protein variants, including the V86R POLβ-interaction mutant, displayed normal relocalization kinetics to/from sites of laser-induced DNA damage: except for E98K and C389Y, and the polymorphic variant R280H, which exhibited a slightly shorter retention time at DNA breaks.  相似文献   

3.
Niemann-Pick C1-like 1 (NPC1L1) is an essential protein for dietary cholesterol absorption. Nonsynonymous (NS) variants of NPC1L1 in humans have been suggested to associate with cholesterol absorption variations. However, information concerning the characteristics and mechanism of these variants in cholesterol uptake is limited. In this study, we analyzed the cholesterol uptake ability of the 19 reported NS variants of NPC1L1 identified from cholesterol low absorbers. Among these variants, L110F, R306C, A395V, G402S, T413M, R693C, R1214H, and R1268H could partially mediate cellular cholesterol uptake and were categorized as partially dysfunctional variants. The other 11 variants including T61M, N132S, D398G, R417W, G434R, T499M, S620C, I647N, G672R, S881L, and R1108W could barely facilitate cholesterol uptake, and were classified into the severely dysfunctional group. The partially dysfunctional variants showed mild defects in one or multiple aspects of cholesterol-regulated recycling, subcellular localization, glycosylation, and protein stability. The severely dysfunctional ones displayed remarkable defects in all these aspects and were rapidly degraded through the ER-associated degradation (ERAD) pathway. In vivo analyses using adenovirus-mediated expression in mouse liver confirmed that the S881L variant failed to localize to liver canalicular membrane, and the mice showed defects in biliary cholesterol re-absorption, while the G402S variant appeared to be similar to wild-type NPC1L1 in mouse liver. This study suggests that the dysfunction of the 19 variants on cholesterol absorption is due to the impairment of recycling, subcellular localization, glycosylation, or stability of NPC1L1.  相似文献   

4.
Human cytochrome P450 1A2 catalyzes important reactions in xenobiotic metabolism, including the N-hydroxylation of carcinogenic aromatic amines. In 2001, Chevalier et al. reported four new P450 1A2 sequence variants in the human population. We have now expressed these variants in Escherichia coli and measured protein expression (optical spectroscopy of holoenzyme and immunoblotting) and bioactivation of IQ (2-amino-3-methylimidazo[4,5-f]quinoline) and MeIQ (2-amino-2,4-dimethylimidazo[4,5-f]quinoline) in the lacZ reversion mutagenicity test. Enzyme kinetic analyses were performed for N-hydroxylation of five heterocyclic amine substrates and for O-deethylation of phenacetin. The most drastic effect was that of the R431W substitution: no holoenzyme was detectable. This residue is located in the "meander" peptide region and earlier site-directed mutagenesis studies demonstrated that it is critical for maintenance of protein tertiary structure. The other three variants had subtly different catalytic activities compared to the wild-type enzyme.  相似文献   

5.
6.
Impaired conversion of trimethylamine to trimethylamine N-oxide by human flavin containing monooxygenase 3 (FMO3) is strongly associated with primary trimethylaminuria, also known as 'fish-odor' syndrome. Numerous non-synonymous mutations in FMO3 have been identified in patients suffering from this metabolic disorder (e.g., N61S, M66I, P153L, and R492W), but the molecular mechanism(s) underlying the functional deficit attributed to these alleles has not been elucidated. The purpose of the present study was to determine the impact of these disease-associated genetic variants on FMO3 holoenzyme formation and on steady-state kinetic parameters for metabolism of several substrates, including trimethylamine. For comparative purposes, several common allelic variants not associated with primary trimethylaminuria (i.e., E158K, V257M, E308G, and the E158K/E308G haplotype) were also analyzed. When recombinantly expressed in insect cells, only the M66I and R492W mutants failed to incorporate/retain the FAD cofactor. Of the remaining mutant proteins P153L and N61S displayed substantially reduced (<10%) catalytic efficiencies for trimethylamine N-oxygenation relative to the wild-type enzyme. For N61S, reduced catalytic efficiency was solely a consequence of an increased K(m), whereas for P153L, both K(m) and k(cat) were altered. Similar results were obtained when benzydamine N-oxygenation was monitored. A homology model for FMO3 was constructed based on the crystal structure for yeast FMO which places the N61 residue alone, of the mutants analyzed here, in close proximity to the FAD catalytic center. These data demonstrate that primary trimethylaminuria is multifactorial in origin in that enzyme dysfunction can result from kinetic incompetencies as well as impaired assembly of holoprotein.  相似文献   

7.
Functional characterization of human sphingosine kinase-1   总被引:5,自引:0,他引:5  
Sphingosine kinase catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (SPP), a novel lipid mediator with both intra- and extracellular functions. Based on sequence identity to murine sphingosine kinase (mSPHK1a), we cloned and characterized the first human sphingosine kinase (hSPHK1). The open reading frame of hSPHK1 encodes a 384 amino acid protein with 85% identity and 92% similarity to mSPHK1a at the amino acid level. Similar to mSPHK1a, when HEK293 cells were transfected with hSPHK1, there were marked increases in sphingosine kinase activity resulting in elevated SPP levels. hSPHK1 also specifically phosphorylated D-erythro-sphingosine and to a lesser extent sphinganine, but not other lipids, such as D,L-threo-dihydrosphingosine, N, N-dimethylsphingosine, diacylglycerol, ceramide, or phosphatidylinositol. Northern analysis revealed that hSPHK1 was widely expressed with highest levels in adult liver, kidney, heart and skeletal muscle. Thus, hSPHK1 belongs to a highly conserved unique lipid kinase family that regulates diverse biological functions.  相似文献   

8.
Essential tremor (ET) is a complex genetic disorder for which no causative gene has been found. Recently, a genome-wide association study reported that two variants in the LINGO1 locus were associated to this disease. The aim of the present study was to test if this specific association could be replicated using a French-Canadian cohort of 259 ET patients and 479 ethnically matched controls. Our genotyping results lead us to conclude that no association exists between the key variant rs9652490 and ET (Pcorr = 1.00).  相似文献   

9.
The genetic etiology of adolescent idiopathic scoliosis (AIS) remains obscure. Whole-genome sequencing was performed in four members of one family. Then, we performed a rigorous computational analysis to determine the deleterious effects of the identified variants. Furthermore, the structural differences between the native hepatocyte growth factor (HGF) protein and a protein encoded by an HGF variant containing one mutation (p.T596M) were analyzed using molecular dynamic stimulation. A novel heterozygous mutation (p.T596M) within the HGF gene was identified and found to cosegregate with scoliosis phenotypes in three affected family members. Subsequent modeling and structure-based analyses supported the theory that this mutation is functionally deleterious. Functional analyses demonstrated that the HGF p.T596 M mutation changed the ability of the HGF protein to be secreted and impaired migration and invasion in HEK293T cells. Furthermore, an HGF knockdown zebrafish model exhibited a curly tailed phenotype. Mutation in HGF is associated with an autosomal dominant pattern of inheritance of AIS. This finding increases our understanding of the genetic heterogeneity of AIS.  相似文献   

10.
Abasic sites and non-conventional 3'-ends, e.g. 3'-oxidized fragments (including 3'-phosphate groups) and 3'-mismatched nucleotides, arise at significant frequency in the genome due to spontaneous decay, oxidation or replication errors. To avert the potentially mutagenic or cytotoxic effects of these chromosome modifications/intermediates, organisms are equipped with apurinic/apyrimidinic (AP) endonucleases and 3'-nucleases that initiate repair. Ape1, which shares homology with Escherichia coli exonuclease III (ExoIII), is the major abasic endonuclease in mammals and an important, yet selective, contributor to 3'-end processing. Mammals also possess a second protein (Ape2) with sequence homology to ExoIII, but this protein exhibits comparatively weak AP site-specific and 3'-nuclease activities. Prompted by homology modeling studies, we found that substitutions in the hydrophobic pocket of Ape1 (comprised of F266, W280 and L282) reduce abasic incision potency about fourfold to 450,000-fold, while introduction of an ExoIII-like pocket into Ape2 enhances its AP endonuclease function. We demonstrate that mutations at F266 and W280 of Ape1 increase 3' to 5' DNA exonuclease activity. These results, coupled with prior comparative sequence analysis, indicate that this active-site hydrophobic pocket influences the substrate specificity of a diverse set of sequence-related proteins possessing the conserved four-layered alpha/beta-fold. Lastly, we report that wild-type Ape1 excises 3'-mismatched nucleotides at a rate up to 374-fold higher than correctly base-paired nucleotides, depending greatly on the structure and sequence of the DNA substrate, suggesting a novel, selective role for the human protein in 3'-mismatch repair.  相似文献   

11.
12.
Tumor necrosis factor, alpha-induced protein 1 (TNFAIP1) is an immediate-early response gene of endothelium induced by TNF alpha. However, little is really known concerning the TNFAIP1 expression regulation. To better understand how TNFAIP1 expression is regulated, we functionally characterized the promoter region of human TNFAIP1 gene. Deletion mutation analysis, gel electrophoretic mobility shift, and site-directed mutagenesis assays allowed the identification of one functional Sp1-binding site within the human TNFAIP1 core promoter region. Moreover, chromatin immunoprecipitation analysis indicated that Sp1 was associated in vivo with the TNFAIP1 promoter. Further, Sp1 overexpression enhanced TNFAIP1 promoter activity. These findings suggest that Sp1 is implicated in the control of basal TNFAIP1 gene expression. Accordingly, Sp1 is supposed to be involved in the elevation of TNFAIP1 in response to TNF alpha induction, and thus participate in inflammation-associated angiogenesis.  相似文献   

13.
Three histone H1 variants were extracted from human placental tissue in a single process using a high-salt buffer solution, and purified by ion exchange, hydroxyapatite, and reversed-phase chromatography. In the first chromatographic step, a cation exchanger resin, SP-Sepharose FF, was used to remove impurities having molecular weights higher than those of histones. In the second chromatographic step, hydroxyapatite resin was used to remove impurities with relatively low molecular weights. A second round of cation exchange chromatography using high-grade HS POROS resin resulted in two main fractions, each of which appeared as a single band following SDS-PAGE. The first fraction showed a single peak in RP-HPLC, while the second fraction showed two main peaks. These three peaks were further separated and polished by semi-preparative RP-HPLC, and their molecular masses and sequences were determined using MALDI-TOF-MS and N-terminal amino acid sequencing, respectively. The sequences and masses of these three variants corresponded with those of histones H1.2, H1.4, and H1.5. Moreover, all three purified histone subtypes demonstrated cytotoxicity in an MTT assay.  相似文献   

14.
Evidence from cDNA cloning has shown that calcitonin receptors (CTRs) have seven potential transmembrane domains. In this study, structural analysis of CTRs from ten cultured human tumor cell lines and 117 human blood samples demonstrated allelic variants at the 1377th nucleotide in intracellular domain 4, expressing either proline or leucine as the 463rd amino acid. It was found that the variant with proline at this site was the more prevalent type of CTR among the Japanese population. Received: 21 June 1996  相似文献   

15.
16.
Wang M  Zhang R  He J  Qiu L  Li J  Wang Y  Sun M  Yang Y  Wang J  Yang J  Qian J  Jin L  Ma H  Wei Q  Zhou X 《PloS one》2012,7(3):e31932

Background

Recent genome-wide association studies (GWAS) have found a single nucleotide polymorphism (SNP, rs2274223 A>G) in PLCE1 to be associated with risk of gastric adenocarcinoma. In the present study, we validated this finding and also explored the risk associated with another unreported potentially functional SNP (rs11187870 G>C) of PLCE1 in a hospital-based case-control study of 1059 patients with pathologically confirmed gastric adenocarcinoma and 1240 frequency-matched healthy controls.

Methodology/Principal Findings

We determined genotypes of these two SNPs by the Taqman assay and used logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (95% CI). We found that a significant higher gastric adenocarcinoma risk was associated with rs2274223 variant G allele (adjusted OR = 1.35, 95% CI = 1.14–1.60 for AG+GG vs. AA) and rs11187870 variant C allele (adjusted OR = 1.26, 95% CI = 1.05–1.50 for CG+CC vs. GG). We also found that the number of combined risk alleles (i.e., rs2274223G and rs11187870C) was associated with risk of gastric adenocarcinoma in an allele-dose effect manner (P trend = 0.0002). Stratification analysis indicated that the combined effect of rs2274223G and rs11187870C variant alleles was more evident in subgroups of males, non-smokers, non-drinkers and patients with gastric cardia adenocarcinoma. Further real-time PCR results showed that expression levels of PLCE1 mRNA were significantly lower in tumors than in adjacent noncancerous tissues (0.019±0.002 vs. 0.008±0.001, P<0.05).

Conclusions/Significances

Our results further confirmed that genetic variations in PLCE1 may contribute to gastric adenocarcinoma risk in an eastern Chinese population.  相似文献   

17.
X Huang  L Chen  W Song  L Chen  J Niu  X Han  G Feng  L He  S Qin 《PloS one》2012,7(7):e40883
CYP2E1 promoter polymorphisms can lead to significant interindividual differences in expression of CYP2E1. Using a database of CYP2E1 gene polymorphisms established in 2010, our study aimed to functionally characterize the single nucleotide polymorphisms (SNPs) of the promoter region and corresponding haplotypes in the Chinese Han population. Six novel SNPs and seven haplotypes with a frequency equal to or greater than 0.01 were constructed on a luciferase reporter system on the basis of site-directed mutagenesis. Dual luciferase reporter systems were used to analyze regulatory activity. The constructs including single novel SNP mutations exhibited insignificant change in luciferase activity, whereas, the activity produced by Haplo1(GTTGCTATAT), Haplo2 (CTTGCTATAT) and Haplo7 (GAGCTCACAT), containing a -333T>A polymorphism was significantly greater than for the wild type in Hep G2 cells (p<0.05), being 1.5-, 2.0- and 1.4- times greater respectively. These findings suggest the possibility of significant clinical prediction of adverse drug reaction and the facilitation of personalized medicine.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号