首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. B. Virgin  J. Metzger    G. R. Smith 《Genetics》1995,141(1):33-48
The ade6-M26 mutation of the fission yeast Schizosaccharomyces pombe creates a meiotic recombination hotspot that elevates ade6 intragenic recombination ~10-15-fold. A heptanucleotide sequence including the M26 point mutation is required but not sufficient for hotspot activity. We studied the effects of plasmid and chromosomal context on M26 hotspot activity. The M26 hotspot was inactive on a multicopy plasmid containing M26 embedded within 3.0 or 5.9 kb of ade6 DNA. Random S. pombe genomic fragments totaling ~7 Mb did not activate the M26 hotspot on a plasmid. M26 hotspot activity was maintained when 3.0-, 4.4-, and 5.9-kb ade6-M26 DNA fragments, with various amounts of non-S. pombe plasmid DNA, were integrated at the ura4 chromosomal locus, but only in certain configurations relative to the ura4 gene and the cointegrated plasmid DNA. Several integrations created new M26-independent recombination hotspots. In all cases the non-ade6 DNA was located >1 kb from the M26 site, and in some cases >2 kb. Because the chromosomal context effect was transmitted over large distances, and did not appear to be mediated by a single discrete DNA sequence element, we infer that the local chromatin structure has a pronounced effect on M26 hotspot activity.  相似文献   

2.
The gene ade6 is located on chromosome III of the fission yeast Schizosaccharomyces pombe. It codes for the enzyme phosphoribosylaminoimidazole carboxylase involved in purine biosynthesis. A DNA fragment of 3043 nucleotides has been sequenced. It complements ade6 mutations when present on plasmids. An uninterrupted open reading frame of 552 amino acid residues was identified. A method for the cloning of chromosomal mutations by repair of gapped replication vectors in vivo has been developed. Twelve ade6 mutant alleles have been isolated. The sequence alterations of four mutant alleles have been determined. Among them are the ade6-M26 recombination hot spot mutation and the nearby ade6-M375 control mutation. Both are G to T base substitutions, converting adjacent glycine codons to TGA termination codons. They are suppressed by defined tRNA nonsense suppressors of the UGA type. The ade6-M26 mutation leads to a tenfold increase of the occurrence of conversion tetrads in comparison with other ade6 mutations. Possible explanations for the M26-induced increase of recombination frequency are discussed in relation to specific features of the nucleotide sequence identified in the region of the M26 mutation.  相似文献   

3.
4.
The point mutation M26 in the ade6 gene of Schizosaccharomyces pombe increases recombination frequency by an order of magnitude in comparison with other mutations in the same gene. The hypothesis is tested that this hot spot of recombination requires a specific nucleotide sequence at the M26 site. The DNA sequence is altered systematically by in vitro mutagenesis, and the resulting sequences are introduced into the ade6 gene in vivo by gene replacement. It results that any change of the heptanucleotide ATGACGT leads to loss of high frequency of recombination. Thus this oligonucleotide sequence is necessary for high frequency of recombination, but it seems not to be sufficient.  相似文献   

5.
We have analyzed 43 recessive mutations reducing meiotic intragenic recombination in Schizosaccharomyces pombe. These mutations were isolated by a screen for reduced plasmid-by-chromosome recombination at the ade6 locus. Sixteen of the mutations define 10 new complementation groups, bringing to 17 the number of genes identified to be involved in meiotic recombination. The mutations were grouped into three discrete classes depending on the severity of the recombination deficiency in crosses involving the ade6-M26 recombination hotspot. Class I mutations caused at least a 1000-fold reduction in M26-stimulated intragenic recombination at the ade6 locus. Class II mutations reduced M26-stimulated recombination approximately 100-fold. Class III mutations caused a 3-10-fold reduction in either M26-stimulated or non-hotspot recombination. We obtained multiple alleles of class I and class II mutations, suggesting that we may be nearing saturation for mutations of this type. As a first step toward mapping, we used mitotic segregation to assign fourteen of the rec genes to chromosomes. Mutations in the six rec genes tested also caused a decrease in intragenic recombination at the ura4 locus; five of these mutations also reduced intergenic recombination between the pro2 and arg3 genes. These results indicate that these multiple rec gene products are required for high level meiotic recombination throughout the S. pombe genome.  相似文献   

6.
M. Zahn-Zabal  E. Lehmann    J. Kohli 《Genetics》1995,140(2):469-478
The M26 mutation in the ade6 gene of Schizosaccharomyces pombe creates a hot spot of meiotic recombination. A single base substitution, the M26 mutation is situated within the open reading frame, near the 5' end. It has previously been shown that the heptanucleotide sequence 5' ATGACGT 3', which includes the M26 mutation, is required for hot spot activity. The 510-bp ade6-delXB deletion encompasses the promoter and the first 23 bp of the open reading frame, ending 112 bp upstream of M26. Deletion of the promoter in cis to M26 abolishes hot spot activity, while deletion in trans to M26 has no effect. Homozygous deletion of the promoter also eliminates M26 hot spot activity, indicating that the heterology created through deletion of the promoter per se is not responsible for the loss of hot spot activity. Thus, DNA sequences other than the heptanucleotide 5' ATGACGT 3', which must be located at the 5' end of the ade6 gene, appear to be required for hot spot activity. While the M26 hotspot stimulates crossovers associated with M26 conversion, it does not affect the crossover frequency in the intervals adjacent to ade6. The flanking marker ura4-aim, a heterology created by insertion of the ura4(+) gene upstream of ade6, turned out to be a hot spot itself. It shows disparity of conversion with preferential loss of the insertion. The frequency of conversion at ura4-aim is reduced when the M26 hot spot is active 15 kb away, indicating competition for recombination factors by hot spots in close proximity.  相似文献   

7.
Schuchert P  Kohli J 《Genetics》1988,119(3):507-515
The ade6-M26 mutation of Schizosaccharomyces pombe increases conversion frequency in comparison with the nearby mutation ade6-M375. In order to investigate the effect of ade6-M26 on crossover frequency, heteroallelic ade6 duplications were constructed by integration of plasmids carrying the marker gene ura4. One ade6 gene carries either of the mutations M26 or M375 while the other ade6 copy carries the L469 mutation in both duplications. The duplication with ade6-M26 yields Ade(+) recombinants at significantly higher frequencies in meiosis, but not in mitosis. Tetrad analysis and physical characterization of spore clones from recombination tetrads demonstrate that conversions, unequal crossovers and intrachromatid exchanges occur at higher frequencies but with unaltered proportions among them. The conversion events show a pronounced bias when M26 is involved: they take place preferentially at the M26 allele. Thus the ade6-M26 mutation not only enhances conversion frequency as demonstrated before, but also crossover frequency. It displays the properties expected for a preferred site of initiation of general meiotic recombination. The duplications also yielded new information on ectopic recombination in S. pombe: ectopic crossovers occur in the duplications at much higher frequency than among naturally dispersed homologous sequences.  相似文献   

8.
C. Grimm  J. Bahler    J. Kohli 《Genetics》1994,136(1):41-51
At the ade6 locus of Schizosaccharomyces pombe flanking markers have been introduced as well as five silent restriction site polymorphisms: four in the 5' upstream region and one in the middle of the gene. The mutations ade6-706, ade6-M26 (both at the 5' end) and ade6-51 (middle of the gene) were used as partners for crosses with the 3' mutation ade6-469. From these three types of crosses, wild-type recombinants were selected and analyzed genetically to assess association with crossing-over and physically to determine conversion tract lengths. The introduced restriction site polymorphisms (five vs. only one) neither influenced the pattern of recombinant types nor the distribution of conversion tracts. The hotspot mutation M26 enhances crossing-over and conversion to the same proportion. M26 not only stimulates conversion at the 5' end, but does this also (to a lower extent) at the 3' end of ade6 at a distance of more than 1 kb. The majority of meiotic conversion tracts are continuous and postmeiotic segregation of polymorphic sites is rare. Conversion tracts are slightly shorter with M26 in comparison with its control 706. The mean minimal length of tracts varies from 670 bp (M26) to 890 bp (706) to 1290 bp (51). It is concluded that M26 acts as an initiation site of recombination or enhances initiation of recombination. M26 does not act by termination of conversion. A region of recombination initiation exists at the 5' end of the ade6 gene also in the absence of the ade6-M26 hotspot mutation.  相似文献   

9.
A. S. Ponticelli  E. P. Sena    G. R. Smith 《Genetics》1988,119(3):491-497
The ade6-M26 mutation of Schizosaccharomyces pombe has previously been reported to stimulate ade6 intragenic meiotic recombination. We report here that the ade6-M26 mutation is a single G----T nucleotide change, that M26 stimulated recombination within ade6 but not at other distinct loci, and that M26 stimulated meiotic but not mitotic recombination. In addition, M26 stimulated recombination within ade6 when M26 is homozygous; this result demonstrates that a base-pair mismatch at the M26 site was not required for the stimulation. These results are consistent with the ade6-M26 mutation creating a meiotic recombination initiation site.  相似文献   

10.
11.
12.
A mutant screen employing the ade6-M26 recombination hotspot was developed and used to isolate Schizosaccharomyces pombe mutants deficient in meiotic recombination. Nine rec mutations were recessive, defining six complementation groups, and reduced ade6 meiotic recombination 3-fold to greater than or equal to 300-fold when homozygous. Three recessive rec mutations analyzed further also reduced meiotic intragenic recombination at ura4 on chromosome III and intergenic recombination between pro2 and arg3 on chromosome I. The observed non-co-ordinate reductions of the recombinant frequencies in the three test intervals suggest a degree of locus (or intragenic vs. intergenic) specificity of the corresponding rec+ gene products. None of the mutations specifically inactivated the ade6-M26 hotspot. Additional rec genes may be identified with these methods.  相似文献   

13.
14.
15.
The M26 hot spot of meiotic recombination in Schizosaccharomyces pombe is the eukaryotic hot spot most thoroughly investigated at the nucleotide level. The minimum sequence required for M26 activity was previously determined to be 5'-ATGACGT-3'. Originally identified by a mutant allele, ade6-M26, the M26 heptamer sequence occurs in the wild-type S. pombe genome approximately 300 times, but it has been unclear whether any of these are active hot spots. Recently, we showed that the M26 heptamer forms part of a larger consensus sequence, which is significantly more active than the heptamer alone. We used this expanded sequence as a guide to identify a smaller number of sites most likely to be active hot spots. Ten of the 15 sites tested showed meiotic DNA breaks, a hallmark of recombination hot spots, within 1 kb of the M26 sequence. Among those 10 sites, one occurred within a gene, cds1(+), and hot spot activity of this site was confirmed genetically. These results are, to our knowledge, the first demonstration in any organism of a simple, defined nucleotide sequence accurately predicting the locations of natural meiotic recombination hot spots. M26 may be the first example among a diverse group of simple sequences that determine the distribution, and hence predictability, of meiotic recombination hot spots in eukaryotic genomes.  相似文献   

16.
P. Schar  J. Kohli 《Genetics》1993,133(4):825-835
G to C transversion mutations show very strong allele-specific marker effects on the frequency of wild-type recombinants in intragenic two-factor crosses. Here we present a detailed study of the marker effect of one representative, the ade6-M387 mutation of Schizosaccharomyces pombe. Crosses of M387 with other mutations at varying distance reveal highly increased prototroph frequencies in comparison with the C to T transition mutation ade6-51 (control without any known marker effect) located four nucleotides from M387. The marker effect of M387 is strongest (>40-fold) for crosses with mutations less than 15 nucleotides from M387. It decreases to an intermediate level (5-10-fold) in crosses with mutations located 25-150 base pairs from M387/51 and is very low in crosses with mutations beyond 200 base pairs. On the basis of these results and the quantitation of the low efficiency of C/C mismatch repair presented in the accompanying publication we propose the existence of at least two different types of mechanisms for base mismatch repair in fission yeast. The major system is suggested to recognize all base mismatches except C/C with high efficiency and to generate long excision tracts (approximately 100 nucleotides unidirectionally). The minor system is proposed to recognize all base mismatches including C/C with low and variable efficiency and to have short excision tracts (approximately 10 nucleotides unidirectionally). We estimate from the M387 marker effect that the minor system accounts for approximately 1-8% repair of non-C/C mismatches (depending on the nature of the mutation) in fission yeast meiosis.  相似文献   

17.
P. Schar  P. Munz    J. Kohli 《Genetics》1993,133(4):815-824
Hybrid DNA with mismatched base pairs is a central intermediate of meiotic recombination. Mismatch repair leads either to restoration or conversion, while failure of repair results in post-meiotic segregation (PMS). The behavior of three G to C transversions in one-factor crosses with the wild-type alleles is studied in Schizosaccharomyces pombe. They lead to C/C and G/G mismatches and are compared with closely linked mutations yielding other mismatches. A method is presented for the detection of PMS in random spores. The procedure yields accurate PMS frequencies as shown by comparison with tetrad data. A scheme is presented for the calculation of the frequency of hybrid DNA formation and the efficiency of mismatch repair. The efficiency of C/C repair in S. pombe is calculated to be about 70%. Other mismatches are repaired with close to 100% efficiency. These results are compared with data published on mutations in Saccharomyces cerevisiae and Ascobolus immersus. This study forms the basis for the detailed analysis of the marker effects caused by G to C transversions in two-factor crosses.  相似文献   

18.
J B Virgin  J P Bailey 《Genetics》1998,149(3):1191-1204
Homologous recombination is increased during meiosis between DNA sequences at the same chromosomal position (allelic recombination) and at different chromosomal positions (ectopic recombination). Recombination hotspots are important elements in controlling meiotic allelic recombination. We have used artificially dispersed copies of the ade6 gene in Schizosaccharomyces pombe to study hotspot activity in meiotic ectopic recombination. Ectopic recombination was reduced 10-1000-fold relative to allelic recombination, and was similar to the low frequency of ectopic recombination between naturally repeated sequences in S. pombe. The M26 hotspot was active in ectopic recombination in some, but not all, integration sites, with the same pattern of activity and inactivity in ectopic and allelic recombination. Crossing over in ectopic recombination, resulting in chromosomal rearrangements, was associated with 35-60% of recombination events and was stimulated 12-fold by M26. These results suggest overlap in the mechanisms of ectopic and allelic recombination and indicate that hotspots can stimulate chromosomal rearrangements.  相似文献   

19.
20.
F. Osman  E. A. Fortunato    S. Subramani 《Genetics》1996,142(2):341-357
The Saccharomyces cerevisiae HO gene and MATa cutting site were used to introduce site-specific double-strand breaks (DSBs) within intrachromosomal recombination substrates in Schizosaccharomyces pombe. The recombination substrates consisted of nontandem direct repeats of ade6 heteroalleles. DSB induction stimulated the frequency of recombinants 2000-fold. The spectrum of DSB-induced recombinants depended on whether the DSB was introduced within one of the ade6 repeats or in intervening unique DNA. When the DSB was introduced within unique DNA, over 99.8% of the recombinants lacked the intervening DNA but retained one copy of ade6 that was wild type or either one of the heteroalleles. When the DSB was located in duplicated DNA, 77% of the recombinants were similar to the deletion types described above, but the single ade6 copy was either wild type or exclusively that of the uncut repeat. The remaining 23% of the induced recombinants were gene convertants with two copies of ade6 and the intervening sequences; the ade6 heteroallele in which the DSB was induced was the recipient of genetic information. Half-sectored colonies were isolated, analyzed and interpreted as evidence of heteroduplex DNA formation. The results are discussed in terms of current models for recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号