首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of prostaglandins on adenylate cyclase activity have been examined in membranes purified from normal rat liver and from a series of Morris hepatomas. Prostaglandin E1 gave the greatest stimulation (up to two-fold) in all membranes. However, prostaglandins A1, A2, and F2alpha, although stimulatory in liver and four tumor membranes, were inhibitory of adenylate cyclase activity in membranes from two of the fast-growing tumors. Arrhenius plots yielded broken line curves (at 20 degrees C) for the basal activity of all enzymes. Addition of various prostaglandins caused shifts in the broken line curves and/or produced nonbroken (straight) line curves for the liver and many of the hepatoma adenylate cyclases.  相似文献   

2.
Adenylate cyclase in liver membranes was solubilized with Lubrol PX and partially purified by gel filtration. The partially purified enzyme was susceptible to activation by guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Studies on the binding of [3H]Gpp(NH)p to various fractions eluted from the gels revealed that an upper limit of 1% of the Gpp(NH)p binding sites is associated with adenylate cyclase activity stimulated by the nucleotide. The glucagon receptor, pretagged with 125I-glucagon in the membranes, solubilized with Lubrol PX, and fractionated on the same gel columns, eluted in a peak fraction that overlaps with, but is separate from, adenylate cyclase in its Gpp(NH)p-stimulated form. Addition of GTP to the solubilized glucagon-receptor complex caused complete dissociation of the complex, as has been shown with the membrane-bound form of the complex. Since the GTP-sensitive form of the glucagon receptor complex separates from the Gpp(NH)p-sensitive form of adenylate cyclase, it is concluded that the receptor and the enzyme are separate molecules, each associated with a distinct nucleotide regulatory site or component. These findings are discussed in terms of the possible structure of the hormone-sensitive state of adenylate cyclase.  相似文献   

3.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

4.
A method for preparing human platelet membranes with high adenylate cyclase activity is described. Using these membranes, epinephrine and GTP individually are noted to inhibit adenylate cyclase slightly. When present together, epinephrine and GTP act synergistically to cause a 50% inhibition of basal activity. The epinephrine effect is an alpha-adrenergic process as it is reversed by phentolamine but not propranolol. The quasi-irreversible activation of adenylate cyclase by Gpp(NH)p is time, concentration, and Mg2+-dependent but is not altered by the presence of epinephrine. Adenylate cyclase activated by Gpp(NH)p, and extensively washed to remove unbound Gpp(NH)p, is inhibited by the subsequent addition of Gpp(NH)p, GTP, and epinephrine. This effect of epinephrine is also an alpha-adrenergic phenomenon. In contrast to epinephrine which inhibits the cyclase, PGE1 addition results in enzyme stimulation. PGE1 stimulation does not require GTP addition. PGE1 accelerates the rate of Gpp(NH)p-induced activation. Low GTP concentrations (less than 1 x 10(-6) M) enhance PGE1 stimulation while higher GTP concentrations cause inhibition. These observations suggest that human platelet adenylate cyclase possesses at least two guanine nucleotide sites, one which interacts with the alpha-receptor to result in enzyme inhibition and a second guanine nucleotide site which interacts with the PGE1 receptor and causes enzyme stimulation.  相似文献   

5.
1. The lipids composition of rat liver plasma membranes was substantially altered by introducing synthetic phosphatidylcholines into the membrane by the techniques of lipid substitution or lipid fusion. 40-60% of the total lipid pool in the modified membranes consisted of a synthetic phosphatidylcholine. 2. Lipid substitution, using cholate to equilibrate the lipid pools, resulted in the irreversible loss of a major part of the adenylate cyclase activity stimulated by F-, GMP-P(NH)P or glucagon. However, fusion with presonicated vesicles of the synethic phosphatidylcholines causes only small losses in adenylate cyclase activity stimulated by the same ligands. 3. The linear form of the Arrhenius plots of adenylate cyclase activity stimulated by F- or GMP-(NH)P was unaltered in all of the membrane preparations modified by substitution or fusion, with very similar activation energies to those observed with the native membrane. The activity of the enzyme therefore appears to be very insensitive to its lipid environment when stimulated by F- or gmp-p(nh)p. 4. in contrast, the break at 28.5 degrees C in the Arrhenius plot of adenylate cyclase activity stimulated by glucagon in the native membrane, was shifted upwards by dipalmitoyl phosphatidylcholine, downwards by dimyristoyl phosphatidylcholine, and was abolished by dioleoyl phosphatidylcholine. Very similar shifts in the break point were observed for stimulation by glucagon or des-His-glucagon in combination with F- or GMP-P(NH)P. The break temperatures and activation energies for adenylate cyclase activity were the same in complexes prepared with a phosphatidylcholine by fusion or substitution. 5. The breaks in the Arrhenius plots of adenylate cyclase activity are attributed to lipid phase separations which are shifted in the modified membranes according to the transition temperature of the synthetic phosphatidylcholine. Coupling the receptor to the enzyme by glucagon or des-His-glucagon renders the enzyme sensitive to the lipid environment of the receptor. Spin-label experiments support this interpretation and suggest that the lipid phase separation at 28.5 degrees C in the native membrane may only occur in one half of the bilayer.  相似文献   

6.
A novel adenylate cyclase activity was found in crude homogenates of Neurospora crassa. The adenylate cyclase had substantial activity with ATP-Mg2+ as substrate differing significantly from the strictly ATP-Mn2+-dependent enzyme characterized previously. Additionally, the ATP-Mg2+-dependent activity was stimulated two- to fourfold by GTP or guanyl-5'-yl-imido-diphosphate (Gpp(NH)p). We propose that the ATP-Mg2+-dependent, guanine nucleotide-stimulated activity is due to a labile regulatory component (G component) of the adenylate cyclase which was present in carefully prepared extracts. The adenylate cyclase had a pH optimum of 5.8 and both the catalytic and G component were particulate. The Km for ATP-Mg2+ was 2.2 mM in the presence of 4.5 mM excess Mg2+. Low Mn2+ concentrations had no effect on adenylate cyclase activity whereas high concentrations of Mn2+ or Mg2+ stimulated the enzyme. Maximal Gpp(NH)p stimulation required preincubation of the enzyme in the presence of the guanine nucleotide and the K1/2 for Gpp(NH)p stimulation was 110 nM. Neither fluoride nor any of a variety of glycolytic intermediates or hormones, including glucagon, epinephrine, and dopamine, had an effect on ATP-Mg2+-dependent adenylate cyclase activity. However, the enzymatic activity was stimulated not only by GTP but also by 5'-AMP and was inhibited by NADH.  相似文献   

7.
B G Nair  T B Patel 《Life sciences》1991,49(12):915-923
Adenylate cyclase activity in isolated rat liver plasma membranes was inhibited by NADH in a concentration-dependent manner. Half-maximal inhibition of adenylate cyclase was observed at 120 microM concentration of NADH. The effect of NADH was specific since adenylate cyclase activity was not altered by NAD+, NADP+, NADPH, and nicotinic acid. The ability of NADH to inhibit adenylate cyclase was not altered when the enzyme was stimulated by activating the cyclase was not altered when the enzyme was stimulated by activating the Gs regulatory element with either glucagon or cholera toxin. Similarly, inhibition of Gi function by pertussis toxin treatment of membranes did not attenuate the ability of NADH to inhibit adenylate cyclase activity. Inhibition of adenylate cyclase activity to the same extent in the presence and absence of the Gpp (NH) p suggested that NADH directly affects the catalytic subunit. This notion was confirmed by the finding that NADH also inhibited solubilized adenylate cyclase in the absence of Gpp (NH)p. Kinetic analysis of the NADH-mediated inhibition suggested that NADH competes with ATP to inhibit adenylate cyclase; in the presence of NADH (1 mM) the Km for ATP was increased from 0.24 +/- 0.02 mM to 0.44 +/- 0.08 mM with no change in Vmax. This observation and the inability of high NADH concentrations to completely inhibit the enzyme suggest that NADH interacts at a site(s) on the enzyme to increase the Km for ATP by 2-fold and this inhibitory effect is overcome at high ATP concentrations.  相似文献   

8.
Adenylate cyclase activity in purified plasma membranes from rat fat cells displays transient kinetic characteristics in the absence and presence of guanyl=5'=yl imidodiphosphate (Gpp(NH)p). Gpp(NH)p causes immediate inhibition of enzyme activity; the inhibitory phase is followed by a slow increase in activity which, depending on incubation temperature, exceeds activity stimulated in the presence of hormones (glucagon, secretin, epinephrine, or adrenocorticotropin). Basal activity displays an initial high rate of activity which decays to a low state of activity within 2 min of incubation. Hormones do not alter the initial rate but prevent the decay in enzyme activity. The inhibitory phase of Gpp(NH)p action and the previously reported (Harwood, J.P., Low, H., and Rodbell, M. (1973) J. Biol. Chem. 248, 6239-6245) inhibitory effects of GTP are abolished by increasing (Mg2+) and pH to 50 mM and 8.5, respectively. Under these conditions, Gpp(NH)p and GTP cause marked stimulation of activity, the stimulatory effect of Gpp(NH)p being greater than that of GTP both in the absence and presence of hormones...  相似文献   

9.
1. Activation of adenylate cyclase in rat liver plasma membranes by fluoride or GMP-P (NH)P yielded linear Arrheniun plots. Activation by glucagon alone, or in combination with either fluoride or GMP-P(NH)P resulted in biphasic Arrhenius plots with a well-defined break at 28.5 +/- 1 degrees C. 2. The competitive glucagon antagonist, des-His-glucagon did not activate the adenylate cyclase but produced biphasic Arrhenius plots in combination with fluoride or GMP-P(NH)P. The break temperatures and activation energies were very similar to those observed with glucagon alone, or in combination with either fluoride or GMP-P(NH)P. 3. It is concluded that although des-His-glucagon is a potent antagonist of glucagon, it nevertheless causes a structural coupling between the receptor and the catalytic unit.  相似文献   

10.
11.
Adenylate cyclase was solubilized from washed particulate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60 degrees C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

12.
Abstract: Adenylate cyclase was solubilized from washed paniculate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60°C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

13.
Adenylate cyclase activities in cell-free preparations of isolated transitional epithelium from rabbit urinary bladders were shown to be stimulated by epinephrine, prostaglandin E1 (PGE1), 5-guanylyl imidodiphosphate (GMP-PNP), and NaF. ACTH, aldosterone, insulin, glucagon, oxytocin, parathyroid hormone and vasopressin were without effect at the concentrations tested. The effects of epinephrine, PGE1, and GMP-PNP appeared to be additive. Essentially all of the adenylate cyclase activity was particulate, while approximately 70% of the cyclic nucleotide 3':5'-phosphodiesterase activity was soluble. Single reciprocal plots of the phosphodiesterase data revealed non-linear kinetics.  相似文献   

14.
Lymphocyte adenylate cyclase and human aging   总被引:2,自引:0,他引:2  
Adenylate cyclase activity was determined by enzymatic conversion of [32P]ATP to [32P]cAMP using peripheral lymphocytes freshly isolated from human subjects. The lymphocyte enzyme was stimulated by the potent beta-adrenergic catecholamine agonist isoproterenol and by the nonhydrolyzable GTP-analog Gpp[NH]p. The two activators had a synergistic effect, and agonist-dependent enzyme activity followed simple Michaelis-Menten kinetics with respect to isoproterenol in the presence but not in the absence of Gpp[NH]p. Cyclic AMP production by intact lymphocytes, determined by protein binding assay, also followed simple Michaelis-Menten kinetics with respect to isoproterenol. Kact of isoproterenol was the same in intact cells and the broken cell assay in the presence of Gpp[NH]p, suggesting the indispensable role the GTP-binding coupling factors play in the intact lymphocyte. In 31 human subjects between the age of 21 and 103, adenylate cyclase activity in the presence of isoproterenol, Gpp[NH]p, or isoproterenol in the presence of Gpp[NH]p decreased with the increasing age of the subject. The sensitivity of the enzyme to stimulation by isoproterenol, defined as the Kact and determined in the presence of Gpp[NH]p, was the same in lymphocytes from young (less than 45 years) or elderly (greater than 75 years) subjects. These results suggest a deficiency in the lymphocyte adenylate cyclase system distal to the beta-adrenergic catecholamine receptor could account for deterioration of cAMP-mediated components of the immune response which occur with age.  相似文献   

15.
The inhibition of adenylate cyclase from rat striatal plasma membranes by guanyl-5'-yl-imidodiphosphate [Gpp(NH)p] and morphine was compared to determine whether Gpp(NH)p-mediated inhibition accurately reflected hormone-mediated inhibition in this system. Inhibition of adenylate cyclase activity by Gpp(NH)p and morphine was examined with respect to temperature, divalent cation concentration, and the presence of Ca2+/calmodulin (Ca2+/CaM). Gpp(NH)p-mediated inhibition was dependent on the presence of Ca2+/CaM at 24 degrees C; the inhibition was independent of Ca2+/CaM at 18 degrees C; and inhibition could not be detected in the presence, or absence, of Ca2+/CaM at 30 degrees C. In contrast, naloxone-reversible, morphine-induced inhibition of adenylate cyclase was independent of both temperature and the presence of Ca2+/CaM. Mg2+ dose-response curves also reinforced the differences in the Ca2+/CaM requirement for Gpp(NH)p- and morphine-induced inhibition. Because Gpp(NH)p-mediated inhibition was independent of Ca2+/CaM at low basal activities (i.e., 18 degrees C, or below 1 mM Mg2+) and dependent on the presence of Ca2+/CaM at higher basal activities (24 degrees C, or above 1 mM Mg2+), the inhibitory effects of Gpp(NH)p were examined at 1 mM Mg2+ in the presence of 100 nM forskolin. Under these conditions, both Gpp(NH)p- and morphine-induced inhibition of adenylate cyclase were independent of Ca2+/CaM. The results demonstrate that the requirement for Ca2+/CaM to observe Gpp(NH)p-mediated inhibition depends on the basal activity of adenylate cyclase, whereas hormone-mediated inhibition is Ca2+/CaM independent under all conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Adenylate cyclase activity was assayed in a crude particulate fraction of one benign and one malignant human insulinoma. Adenylate cyclase of both tumours responded to 5'-guanylyl-imidodiphosphate, sodium fluoride, glucagon and prostaglandin E2, and in addition the adenylate cyclase of the benign tumour responded to isoprenaline. Glucose and prostaglandin I2 (prostacyclin) did not stimulate the adenylate cyclase in either tumour, although prostaglandin I2 stimulated insulin secretion in cultures of the benign tumour. The in vitro responsiveness of the adenylate cyclase to glucagon did not correlate closely with the effect of glucagon on insulin secretion in vivo.  相似文献   

17.
The mechanism by which chloride stimulates adenylate cyclase was investigated. Depletion of GDP increased basal adenylate cyclase activity and reduced the stimulation by isoprenaline. Restoration of bound GDP partially reversed these effects. Chloride stimulated cyclase activity by the same proportion in control, GDP-depleted and GDP-restored preparations, as did Gpp(NH)p. Fluoride increased adenylate cyclase activity to the same final level in both GDP-depleted and GDP-restored membranes; addition of Gpp(NH)p as well as fluoride had no further effect. Solubilisation of adenylate cyclase reduced the stimulatory effect of Gpp(NH)p only slightly, but greatly attenuated the activation by chloride. We conclude that chloride does not stimulate cyclase activity by an action on GDP exchange. Activation by chloride may be due to a disrupting or chaotropic effect on membrane/protein interactions.  相似文献   

18.
C I Smith  G N Pierce  N S Dhalla 《Life sciences》1984,34(13):1223-1230
The effect of chronic experimental diabetes on the adenylate cyclase system (AC) in the rat heart was investigated. Rats were made diabetic by an intravenous injection of streptozotocin (65 mg/kg), hearts were removed 8 weeks later and washed cell particles were isolated. AC activity was measured in the absence and presence of different concentrations of forskolin, NaF, GTP analogue [Gpp(NH)p] or epinephrine. A significant depression in the epinephrine stimulated AC activity was observed in diabetic hearts. Basal AC activity and stimulation of AC with forskolin, NaF and Gpp(NH)p were not significantly different between control and diabetic preparations. These results indicate no apparent alterations in the regulatory or catalytic properties of AC in hearts from chronic diabetic rats. The observed depression in epinephrine stimulated AC activity may account for the depressed inotropic action of catecholamines in the diabetic cardiomyopathy.  相似文献   

19.
An adenosine-sensitive adenylate cyclase has been characterized in cultured mesenteric artery smooth muscle cells. N-Ethylcarboxamide-adenosine (NECA), N-Methylcarboxamide-adenosine (MECA), L-N6-phenylisopropyladenosine (PIA) and 2-chloroadenosine (2-cl-Ado) all stimulated adenylate cyclase in a concentration dependent manner. NECA was the most potent analog (EC50, 1 microM), whereas PIA (EC50, 15 microM), 2-Cl-Ado (EC50, 15 microM) and MECA (EC50, 24 microM), were less potent and had efficacies relative to NECA of 0.61, 0.61 and 0.65, respectively. Adenosine showed a biphasic effect: stimulation at lower concentrations and inhibition at higher concentrations, whereas 2' deoxyadenosine only inhibited adenylate cyclase activity. The stimulatory effect of NECA on adenylate cyclase was dependent on metal ion concentration and was blocked by 3-isobutyl-l-methylxanthine (IBMX) and 8-phenyltheophylline (8-PT). Adenylate cyclase from these cultured cells was also stimulated by other agonists such as epinephrine, norepinephrine, prostaglandins, dopamine, NaF and forskolin. The stimulation of adenylate cyclase by isoproterenol, epinephrine and norepinephrine was blocked by propranolol but not by phentolamine. On the other hand, phentolamine, propranolol and flupentixol all inhibited dopamine-stimulated adenylate cyclase activity. In addition, the stimulation by an optimal concentration of PIA was additive or almost additive with maximal stimulation caused by catecholamines and prostaglandins. These data indicate the presence of adenosine (Stimulatory "Ra"), catecholamine and prostaglandin receptors in mesenteric artery smooth muscle cells and suggest that these agents may exert their physiological actions through their interaction with their respective receptors coupled to adenylate cyclase.  相似文献   

20.
Adenylate cyclase [ATP pyrophosphate lyase (cyclizing), EC 4.6.1.1] was shown to be present in cultured human articular chondrocytes. Optimal conditions of incubation time, protein and substrate concentrations and pH were determined in whole cell lysates. Maximal activity occurred at pH 8.5 with no decrease in activity up to pH 10.0. Adenylate cyclase activity of particulate membrane preparations was enhanced by the addition of crude cytosol preparations. The prostaglandins E1, E2, F1 alpha, F2 alpha, D2, B1, B2, A1 and A2, as well as adrenaline and isoprenaline, stimulated adenylate cyclase derived from either adult or foetal chondrocytes. No significant stimulation was observed in the presence of human calcitonin or glucagon. Bovine parathyroid hormone always significantly stimulated the adenylate cyclase derived from foetal chondrocytes, but not from adult chondrocytes. Preincubation of the chondrocytes in culture with indomethacin and with or without supernatant medium from cultured mononuclear cells increased the responsiveness of the adenylate cyclase to prostaglandin E1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号