首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
The cyclopoid copepod Mesocyclops thermocyclopoides, a dominant invertebrate predator in many shallow ponds and temporary water bodies in northern India, feeds on cladocerans, rotifers, ciliates and when present, on mosquito larvae also. We studied in the laboratory the prey consumption rates of the copepod on first and fourth instar larvae of two species of mosquito (Anopheles stephensi and Culex quinquefasciatus) in relation to their density. We also studied its prey selectivity with mosquito larvae in the presence of an alternate prey (the cladocerans‐either Moina macrocopa or Ceriodaphnia cornuta) in different proportions. With either mosquito species, the copepod actively selected Instar‐I larvae, avoiding the Instar‐IV larvae, and with either instar, selected Anopheles stephensi over Culex quinquefasciatus. When prey choice included the cladoceran as an alternate prey, the copepod selected the cladoceran only when the other prey was Instar‐IV mosquito larvae. Our results point to the potential and promise of M. thermocyclopoides as a biological agent for controlling larval populations of vectorially important mosquito species.  相似文献   

2.
Sarma  S. S. S.  Nandini  S. 《Hydrobiologia》2002,486(1):169-174
Freshwater cladocerans and rotifers were used as prey to study functional response and prey selection by adult females of Chirocephalus diaphanus under laboratory conditions. For functional response studies, we offered three rotifer species (Brachionus calyciflorus, B. patulus and Euchlanis dilatata) and three cladoceran species (Alona rectangula, Ceriodaphnia dubia and Moina macrocopa) at various densities ranging from 0.5 to 16 ind. ml–1. We found increased zooplankton consumption with increasing prey density but beyond 4 ind ml–1 cladocerans and 8 ind. ml–1 rotifers, the number of animals eaten plateaued. In general, C. diaphanus consumed fewer large prey (cladocerans) and many more smaller zooplankton (rotifers). For prey selection experiments, we used B. calyciflrous, B. patulus, C. dubia and M. macrocopa, offered at the ratio of two rotifers: one cladoceran and at three prey densities (total zooplankton numbers: 3, 6 and 12 ind. ml–1). Prey selectivity patterns followed the functional response trends. In general, regardless of prey types, with an increase in the available zooplankton, there was an increase in the number of prey consumed. At any given prey density, C. diaphanus consumed higher numbers of rotifers than cladocerans. Among the prey offered, B. patulus and M. macrocopa were positively selected. Results are discussed in light of possible control of zooplankton by anostracans in temporary ponds.  相似文献   

3.
Kumar  Ram  Rao  T. Ramakrishna 《Hydrobiologia》2001,(1):261-268
In many shallow, eutrophic subtropical ponds, brachionid rotifers are common prey of the predatory copepod Mesocyclops thermocyclopoides. The predatory rotifer Asplanchna intermedia, which is itself a potential prey of the copepod, also feeds preferentially on brachionids. We studied in the laboratory the population dynamics of two mutually competing prey species, Brachionus angularis and B. calyciflorus, in the presence of the two predators A. intermedia and M. thermocyclopoides. The experimental design included separate population dynamics studies with one prey–one predator, two prey–one predator, one prey–two predator, and two prey–two predator systems. These combinations were compared with controls, in which both the prey species (B. angularis and B. calyciflorus) were grown separately and in combination with each other. In the absence of any predator, B. angularis generally eliminated the larger B. calyciflorus. Selective predation by the copepod allowed B. calyciflorus to persist longer in competition with B. angularis. Feeding by M. thermocyclopoides on A. intermedia reduced the predation pressure on B. calyciflorus. However, given enough time, the cyclopoid copepod was able to eliminate both the brachionids as well as the predatory Asplanchna.  相似文献   

4.
Summary Field distribution patterns and laboratory feeding experiments have suggested that blooms of colonial blue-green algae strongly inhibit relatively large-bodied daphnid cladocerans. We conducted laboratory experiments to test the hypothesis that blooms of the colonial blue-green alga Microcystis aeruginosa would shift competitive dominance away from large-bodied daphnid cladocerans toward smaller-bodied cladocerans, copepods, and rotifers. In laboratory competition experiments, increasing the proportion of M. aeruginosa in the algal food supply resulted in a shift from dominance by the relatively largebodied cladoceran Daphnia ambigua to dominace by the copepod Diaptomus reighardi. The small-bodied cladoceran Bosmina longirostris was always numerically heavily dominant over D. ambigua, but its estimated population biomasses were only slightly higher than those of D. ambigua. Daphnia ambigua consistently outcompeted the rotifer Brachionus calyciflorus. Our results demonstrate that blooms of M. aeruginosa can alter zooplankton competitive relations in laboratory experiments, favoring small-bodied cladocerans and copepods at the expense of large-bodied cladocerans. However, contrary to predictions, blooms of M. aeruginosa did not improve the competitive ability of rotifers.  相似文献   

5.
We measured the food consumption rates in the omnivorous copepod Mesocyclops thermocyclopoides on different animal prey types in the presence of, and in the absence of one of the algal food types, the small, nonmotile Chlorella, or the large, motile Chlorogonium. Animal prey tested included different zooplankton species covering a size range of 88 to 1446 μm. The number of animal prey consumed was inversely proportional, but the total weight consumed was directly proportional, to the body size and dry weight of the prey item. There was a significant reduction in animal prey consumption in the presence of algae, being higher with cladoceran prey than with ciliates and rotifers, and in the presence of Chlorogonium than in the presence of Chlorella. Cannibalism in M. thermocyclopoides was low when algal food was available.  相似文献   

6.
Intact phytoplankton and microzooplankton communities from eutrophicStar Lake were incubated for 4 days with and without Daphniapulex, Daphnia galeaia mendotae, or a natural assemblage ofDaphnia species. They were sampled at the onset and terminationof the experiment for bacterial, phytoplankton, ciliate, rotifer,copepod and cladoceran densities. The cladocerans had variedeffects on the rotifers, ranging from significant suppressionof most rotifer species (Keratella cochlearis, Polyarthra remata,Keratella crassa) in the D.pulex jars, to the suppression ofone (K.crassa) or no species in the D.galeata mendotae and StarLake Daphnia assemblage jars, respectively. Small ciliates (<30µm, longest dimension), such as Strobilidium sp. and Pseudo-cyclidiumsp., were adversely affected by most of the cladoceran treatments,while several larger ciliates (>81 µm) were unaffectedin all such treatments. Ciliates were not consistently morevulnerable to cladoceran suppression than similarly sized rotifers.The suppression of ciliates and rotifers was attributable toboth direct effects (predation, interference, or both) and indirecteffects (e.g. resource competition) of the cladocerans. 1Present address: Department of Biology, University of Louisville,Louisville, KY 40292, USA  相似文献   

7.
In this study, we quantified the feeding behaviour (encounter, attack, capture. and ingestion) of larval A. splendens on micro‐crustacean prey [cladocerans: Alona rectangula, Simocephalus vetulus (separately neonates and adults), Ceriodaphnia dubia, Daphnia pulex (juveniles), Moina macrocopa and ostracods: Heterocypris incongruens]. Although we initially (first 4 weeks) offered rotifers (Brachionus calyciflorus and B. patulus), they were not consumed by the larvae and hence observations with these prey were discontinued. Feeding behaviour was observed during the first 10 weeks. Fifteen observations were made with each prey species (seven diets × four replicates). Experiments were conducted in 50 ml transparent containers with 20 ml fish‐conditioned water into which one fry was introduced. Before introducing the fish, 20 individuals of a given cladoceran prey species or 50 individuals of a rotifer prey species were introduced. Until the fourth week, we used 20 ml of medium and thereafter 30 ml, but the prey density used remained constant (1 ind. ml−1). Observations (10 min per fry per cladoceran replicate) were taken under a stereomicroscope (20×) for the first 2 weeks and later with a lamp and a magnifying lens. The number of encounters (E), attacks (A), captures (C) and ingestions (I) were recorded. During the study period, there was a 60% increase in gape size but only a 30% increase in body length. The number of encounters of larval A. splendens was highest (192) on M. macrocopa and lowest (29) on ostracods and adult S. vetulus (59). The inverse relationship between capture success and prey size was more pronounced during the latter half of the study period. Compared with all the other prey types offered, A. splendens fed maximally on M. macrocopa, which therefore could be a suitable diet for the larval rearing of this fish species.  相似文献   

8.
Salinization of freshwater bodies due to anthropogenic activity is currently a very serious problem in Mexico. One of the consequences may be changes in the rotifer and cladoceran populations, both of which are generally abundant in freshwater bodies. Under laboratory conditions we evaluated the effect of different salt (sodium chloride) concentrations (0–4.5 g l−1) on the population dynamics of ten freshwater zooplankton species (rotifers: Anuraeopsis fissa, Brachionus calyciflorus, B. havanaensis, B. patulus and B. rubens; cladocerans: Alona rectangula, Ceriodaphnia dubia, Daphnia pulex, Moina macrocopa and Simocephalus vetulus). All of the zooplankton species tested were adversely affected by 1.5–3.0 g l−1 NaCl. In the range of salt concentrations tested, the population growth curves of B. patulus and B. rubens showed almost no lag phase and reached peak abundances within a week or two; A. fissa had a lag phase of about a week, while both B. calyciflorus and B. havanaensis started to increase in abundance immediately following the initiation of the experiments. Increased NaCl levels reduced the population abundances of A. fissa, B. calyciflorus and B. havanaensis at or beyond 1.5 g l−1. NaCl at 1 g l−1 had little effect on the population growth of cladocerans. M. macrocopa, which was more resistant to NaCl than the other cladoceran species, showed positive population growth even at 4.5 g l−1. The rates of population increase (r, day−1) were generally higher for rotifers than for cladocerans. Depending on the NaCl concentration, the r of rotifers ranged from +0.57 to −0.58 day−1, while the r for cladocerans was lower (+0.34 to −0.22 day−1).  相似文献   

9.
Iyer  Nandini  Ramakrishna Rao  T. 《Hydrobiologia》1993,255(1):325-332
Using population densities and growth rates as criteria, we studied interactions between the epizoic rotifer Brachionus rubens and each of three cladoceran species differing in size and reproductive rates — Daphnia carinata, Moina macrocopa and Ceriodaphnia rigaudi. In all mixed — species experiments, B. rubens existed in both the epizoic mode, attached to the cladoceran host, and in the free-swimming mode. Rotifer population growth rates were significantly depressed in the presence of M. macrocopa, presumably as a consequence of exploitative and interference competition. The largest cladoceran, D. carinata probably did not suppress B. rubens, because the epizoic component of the rotifer population escaped from the deleterious effects of mechanical interference. Peak population numbers and initial population growth rates reached by all three cladocerans were lower in the presence of B. rubens, probably because of the adverse effects of the epizoic infestation, which was maximal on D. carinata and least on C. rigaudi. In mixed-species cultures of D. carinata and M. macrocopa, the presence of B. rubens helped D. carinata coexist with M. macrocopa, which otherwise would have suppressed the Daphnia.  相似文献   

10.
Competition among cladocerans and rotifers is of considerable interest not only due to their close similarity in life history strategies, but also due to the considerable overlap they exhibit in their feeding habits. In tropical waterbodies, several genera of cladocerans, including Ceriodaphnia and Moina occur, simultaneously with rotifers. We tested over a period of 3 weeks the combined effects of food (0.5×106 and 1.5×106 cells ml–1 of Chlorella) level and rotifer density on the competition between B. patulus and C. dubia and M. macrocopa using population growth experiments. For each cladoceran species we used 30 test jars of 50 ml capacity. The initial density of cladocerans was 0.2 ind ml–1, while for B. patulus it was either 1 ind ml–1 or 5 ind ml–1. Neither the maximal population density nor the rate of population increase (r) of C. dubia was significantly affected by B. patulus. However, for M. macrocopa, both these variables were negatively affected by the rotifers. The combined effects of low food level and high initial density of B. patulus resulted in a 50% reduction in the peak population density of M. macrocopa. The population growth of B. patulus was negatively influenced by the presence of C. dubia and M. macrocopa. The results of the competition experiments conducted in the present study between cladocerans and rotifers suggest the existence of a more complex and delicate interaction than is generally thought.  相似文献   

11.
The predation impact of the larvae of pond smelt Hypomesus transpacificus nipponensis on a zooplankton community was studied using mesocosms. The fish significantly depressed the abundances of copepod nauplii and rotifers, especially Hexarthra mira. The vulnerabilities of these prey might be determined by their swimming behavior and population density, suggesting that larval fish selectively prey on zooplankton that have a high encounter rate with the predator. The larvae did not have a negative effect on the densities of cladocerans, but fish predation altered the cladoceran community structure from the dominance of B. longirostris to that of B. fatalis. This result suggests that larval fish predation is an important factor that shifts the species composition of Bosmina in some lakes, the shift occurring in the season when fish larvae are abundant. Our results have shown that predation by the larval fish would control not only the abundance, but also the community structure of the small-sized zooplankton prey.  相似文献   

12.
1. Based on two mesocosm experiments and 10 in vitro predation experiments, this work aimed to evaluate the impact of nutrient supply and Chaoborus predation on the structure of the zooplankton community in a small reservoir in Côte d'Ivoire. 2. During the first mesocosm experiment (M1), P enrichment had no effect on phytoplankton biomass (chlorophyll a) but significantly increased the biomass of some herbivorous zooplankton species (Filinia sp, Ceriodaphnia affinis). During the second experiment (M2), N and P enrichment greatly increased phytoplankton biomass, rotifers and cladocerans (C. affinis, C. cornuta, Moina micrura and Diaphanosoma excisum). In both experiments, nutrient addition had a negative impact on cyclopoid copepods. 3. Larger zooplankton, such as cladocerans or copepodites and adults of Thermocyclops sp., were significantly reduced in enclosures with Chaoborus in both mesocosm experiments, whereas there was no significant reduction of rotifers and copepod nauplii. This selective predation by Chaoborus shaped the zooplankton community and modified its size structure. In addition, a significant Chaoborus effect on chlorophyll a was shown in both experiments. 4. The preference of Chaoborus for larger prey was confirmed in the predation experiments. Cladocerans D. excisum and M. micrura were the most selected prey. Rotifer abundance was not significantly reduced in any of the 10 experiments performed. 5. In conclusion, both bottom‐up and top‐down factors may exert a structuring control on the zooplankton community. Nutrients favoured more strictly herbivorous taxa and disadvantaged the cyclopoid copepods. Chaoborus predation had a strong direct negative impact on larger crustaceans, favoured small herbivores (rotifer, nauplii) and seemed to cascade down to phytoplankton.  相似文献   

13.
Freshwater Copepods and Rotifers: Predators and their Prey   总被引:1,自引:0,他引:1  
Three main groups of planktonic animals inhabit the limnetic zone of inland waters and compete for common food resources: rotifers, cladocerans and copepods. In addition to competition, their mutual relationships are strongly influenced by the variable, herbivorous and carnivorous feeding modes of the copepods. Most copepod species, at least in their later developmental stages, are efficient predators. They exhibit various hunting and feeding techniques, which enable them to prey on a wide range of planktonic animals from protozoans to small cladocerans. The rotifers are often the most preferred prey. The scope of this paper is limited to predation of freshwater copepods on rotifer prey. Both cyclopoid and calanoid copepods (genera Cyclops, Acanthocyclops, Mesocyclops, Diacyclops, Tropocyclops, Diaptomus, Eudiaptomus, Boeckella, Epischura and others) as predators and several rotifer species (genera Synchaeta, Polyarthra, Filinia, Conochilus, Conochiloides, Brachionus, Keratella, Asplanchna and others) as prey are reported in various studies on the feeding relationships in limnetic communities. Generally, soft-bodied species are more vulnerable to predation than species possessing spines or external structures or loricate species. However, not only morphological but also behavioural characteristics, e.g., movements and escape reactions, and temporal and spatial distribution of rotifer species are important in regulating the impact of copepod predation. The reported predation rates are high enough to produce top-down control and often achieve or even exceed the reproductive rates of the rotifer populations. These findings are discussed and related to the differences between the life history strategies of limnetic rotifer species, with their ability to quickly utilize seasonally changing food resources, and adjust to the more complicated life strategies of copepods.  相似文献   

14.
Members of rotifer family Asplanchnidae are important invertebrate predators in freshwater communities. Although a considerable amount of information exists on species of Asplanchna, relatively less is known about Asplanchnopus. We isolated Asplanchnopus multiceps from the littoral of a small river in the State of Hidalgo in Central Mexico and separated a clone in our cultures. The gut content analysis of some animals collected from the field revealed the presence of cladocerans and rotifers, and therefore we cultured A. multiceps on a food mixture comprising littoral rotifers and cladocerans. We conducted population growth experiments of A. multiceps using six prey types (cladocerans: Macrothrix triserialis, Alona rectangula and Pleuroxus aduncus; rotifers, Brachionus patulus, B. macracanthus and B. urceolaris). The prey species (A. rectangula and B. patulus) on which the highest growth rates were observed were used to test the life-table demographic patterns in A. multiceps. All experiments were conducted in 50 ml containers with 25 ml of the medium and at three food levels (0.5, 1.0 and 2.0 ind. ml−1 for the cladocerans, and 2.0, 4.0 and 8.0 ind. ml−1 for the rotifers) with four replicates at each treatment. The spines of M. triserialis and B. macracanthus were apparently effective deterrents against Asplanchnopus predation since both these diets resulted in low, and sometimes negative, growth rates of the predator. The average lifespan and net reproductive rate of A. multiceps ranged from 3.8 to 8.4 days and 2.6 to 12.2 ind. female−1, respectively, on A. rectangula; and from 5.0 to 9.4 days and 1.6–18.4 ind. female−1, respectively, on B. patulus. The rate of population increase of A. multiceps ranged from 0.1 to 0.8 d−1, depending on the prey type and density. The role of A. multiceps in structuring littoral rotifer and cladoceran communities is discussed.  相似文献   

15.
Nandini  S.  Sarma  S. S. S.  Dumont  Henri J. 《Hydrobiologia》2011,662(1):171-177
Catenulid turbellarians, common in shallow, tropical ponds, affect their rotifer prey via the production of toxins. There is, however, no quantitative information on their effect on the demography of their prey. Here, we test the impact of Stenostomum cf leucops on the population dynamics of the rotifers Euchlanis dilatata and Plationus patulus, and the cladoceran Moina macrocopa. Experiments were initiated with rotifers at 0.5 ind. ml−1 and the cladoceran at 0.2 ind. ml−1; growth patterns were compared in the absence and presence of worms (2 Stenostomum ind. per 50 ml). Results revealed that brachionids were most adversely affected: there was a lower growth rate of the rotifers in the presence of worms (P < 0.01, repeated measures ANOVA), although at the densities applied, the predator did not wipe out its prey. These littoral predators may therefore regulate rotifer prey in natural conditions. In Moina, the population evolved differently; initially, we found no difference between control and treatment, but after about 10 days, the population collapsed, irrespective of a direct or indirect contact with the predator. This delayed effect deserves more study, as it could represent flatworm toxin accumulation by the cladoceran.  相似文献   

16.
Species composition, abundance, and spatial distribution of rotifer and crustacean zooplankton were studied in Lake Ziway from late April to early July 2004. A total of 49 rotifer species was recorded, with Anuraeopsis fissa, Brachionus angularis, Filinia novaezealandiae, and Trichocerca ruttneri being numerically dominant. Variation in abundance was extremely high, ranging from 2 to 1000+ individuals per litre. There was no significant difference in the distribution of rotifer species between inshore and offshore regions. Crustacean species richness was low, with only five cladoceran and three copepod species occurring in the open water. Moina micrura and Diaphanosoma excisum dominated the cladoceran community, whereas Thermocyclops decipiens was the dominant copepod. Although numerically dominant (75%), rotifers accounted for less than 30% of mean total zooplankton biomass. Peak abundance of crustaceans was observed in May and June, following the onset of the rainy season and increased phytoplankton production. Variation in the spatial distribution of crustacean species was neither observed horizontally between inshore and offshore areas nor vertically in the highly turbid and wind exposed deeper part of the lake. On the other hand, Moina micrura varied significantly in size between inshore and offshore areas. Adult M. micrura dominated offshore, whereas juveniles were more abundant inshore, suggesting a predominantly littoral selective predation on large and adult crustaceans by fish. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We conducted population growth experiments of A. sieboldi using Brachionus calyciflorus and Brachionus patulus as prey. The prey rotifers were mass cultured separately on Chlorella vulgaris, Saccharomyces cerevisiae or on their mixture. Data on population growth of A. sieboldi showed prey type and food density-related differences. At any given prey concentration, both B. calyciflorus and B. patulus raised on a mixture of alga and yeast, resulted in higher abundance of the predator than those raised solely on alga or yeast. The rate of population increase per day (r) of A. sieboldi increased with increasing prey density for both prey species. However, predators grown on B. patulus showed higher r values compared to those grown on B. calyciflorus.  相似文献   

18.
Age-specific Chaoborus predation on rotifer prey   总被引:1,自引:0,他引:1  
SUMMARY. 1. This is the first study to examine predator-prey interactions between Chaoborm instars and rotifer prey. The predatory behaviour of instars I–III of Chaoborus pimctipennis and the diet selectivity of instars I—IV feeding on rotifers were examined in the laboratory. Prey used in direct observations of predatory behaviour included a variety of rotifers (Symhacta pectlnata, S. ohUmga, Polyarthra remata, Asplanchna girodi, Keratella crassa, spined and unspined forms of Keratella cochlearis) and two crustaceans (Bosmitia longirostris, Mesocyclops edax nauplii. 2. In general, strike efficiencies (percentage of strikes resulting in inges- tion) increased in successive instars I—III. Early instar (I and II) strike efficiencies were low when compared with other invertebrate predators. For a given instar. mean prey handling times varied among prey species more than strike efficiencies. Mean handling times for small, soft-bodied rotifers were lowest and those for wide, hard-bodied prey were highest. 3. Instar I exhibited significantly greater selectivity for the small, soft- bodied S. obUmga than for the larger S. pectinata, hard-bodied K. crassa, and spined and unspined forms of K. cochlearis. Instars II—IV positively selected both the large and small Symhaeta species over all Keratella species. The relationship between Chaobortts selectivity and prey value (weight of prey per unit handling time) can be described by a power function. Ingestion rates of rotifers by older instars (III and IV) are among the highest reported for invertebrate predators. 4. Rotifer vulnerability to Chaoborus predation probably depended on rotifer cuticle texture, body width, and hydrodynamic disturbances. Spined rotifers were not necessarily protected from Chaoborus predation because Chaohorus can manipulate and swallow them. Giguere et al.'s 1982) encounter rate model must be modified to predict encounter rates of slow-moving rotifer prey with Chaohorus.  相似文献   

19.
SUMMARY. 1. Two experiments with plankton communities from Storrs Pond (NH), one conducted in the laboratory and one in field enclosures, assessed the impact of different cladocerans on rotifers and ciliated protozoa.
2. The smallest cladoceran, Bosmina longirostris , did not depress rotifer or ciliate growth rates while the intermediate sized dadoceran, Daphnia galeata mendotae , reduced ciliate growth rates in the enclosure experiment but had only a marginal effect in the jar experiment. D. galeata mendotae had no effect on any of the rotifers in either experiment.
3. In both experiments the largest cladoceran, Daphniapulex , depressed the growth rates of ciliates and those rotifers known to be vulnerable to interference competition. Polyarthra vulgaris , previously shown to be resistant to cladoceran interference, was the only rotifer unaffected by D. pulex in the field experiment but was depressed by the much higher densities of this cladoceran in the laboratory experiment.
4. Cladocerans did not affect phytoplankton or bacterioplankton abundance in either experiment. Therefore the mechanism most likely to be responsible for the suppressive effect of cladocerans on rotifers and ciliates in these experiments is direct mechanical interference or predation, rather than exploitative competition.  相似文献   

20.
When offered a mixed diet of different zooplanktonic items covering a body size range of 75–2200 μm, (a) rohu, Labeo rohita and (b) singhi, Heteropneustes fossilis larvae ingested progressively larger prey as they grew, due to age-related increase in gape. However, a nearly constant prey size/mouth size ratio was maintained for a period of 4wk after hatching. The dominance of rotifers in the diet during the first 2-wk was followed by cladocerans, particularly Moina macrocopa. Significant differences observed in the growth rates of the larvae reared on different diet regimes were related to ontogenetic changes in prey selection. An exclusive copepod diet throughout resulted in the lowest weight gain in the larvae of both species. However, copepods had no apparent adverse effects when present with the preferred rotifers and cladocerans. Although constituting a suboptimal prey size for the older larvae, rotifers alone, when present in sufficient densities, produced growth rates comparable to those obtained on a cladoceran diet. However, a mixed diet regime contributed to the maximum growth. The implications of these findings to rearing larvae of the economically important rohu and singhi are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号