首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allantoin uptake in both growing and resting cultures of Saccharomyces cerevisiae occurs by a low-Km (ca. 15 micrometer) transport system that uses energy that is likely generated in the cytoplasm. This conclusion was based on the observation that transport did not occur in the absence of glucose or the presence of dinitrophenol, carbonyl cyanide-m-chloro-phenyl hydrazine, fluoride, or arsenate ions. Normal uptake was observed, however, in the presence of cyanide. The rate of accumulation was maximal at pH 5.2. In contrast to the urea transport system, allantoin uptake appeared to be unidirectional. Preloaded, radioactive allantoin was not lost from cells suspended in allantoin-free buffer and did not exchange with exogenously added, nonradioactive allantoin. Treatment of preloaded cells with nystatin, however, released the accumulated radioactivity. Allantoin accumulated within cells was isolated and shown to be chemically unaltered.  相似文献   

2.
Accumulation of intracellular allantoin and allantoate is mediated by two distinct active transport systems in Saccharomyces cerevisiae. Allantoin transport (DAL4 gene) is inducible, while allantoate uptake is constitutive (it occurs at full levels in the absence of any allantoate-related compounds from the culture medium). Both systems appear to be sensitive to nitrogen catabolite repression, feedback inhibition, and trans-inhibition. Mutants (dal5) that lack allantoate transport have been isolated. These strains also exhibit a 60% loss of allantoin transport capability. Conversely, dal4 mutants previously described are unable to transport allantoin and exhibit a 50% loss of allantoate transport. We interpret the pleiotropic behavior of the dal4 and dal5 mutations as deriving from a functional interaction between elements of the two transport systems.  相似文献   

3.
4.
A mutant of Saccharomyces cerevisiae deficient in the lactate-proton symport was isolated. Transformation of the mutant with a yeast genomic library allowed the isolation of the gene JEN1 that restored lactate transport. Disruption of JEN1 abolished uptake of lactate. The results indicate that, under the experimental conditions tested, no other monocarboxylate permease is able to efficiently transport lactate in S. cerevisiae.  相似文献   

5.
Pyruvate uptake in Saccharomyces cerevisiae was not observed at 0 degrees C and was prevented by the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The initial uptake rate of S. cerevisiae kyokai No. 901 was maximum at pH 6 and Km = 4.1 mM. It seemed that lactate inhibited the pyruvate uptake competitively from the results of the Lineweaver-Burk plots. The inhibition constant (Ki) in the presence of 3 mM lactate was 1.6 mM. The pyruvate uptake was inhibited by D-glucose and deoxyglucose, but not by L-glucose, acetate or ethanol. Mutants of laboratory strain No. 5022 ((a) his(2,6), ura3) deficient in pyruvate uptake were isolated from fluoropyruvate resistant mutants. Transformation of the mutant with a yeast genomic library allowed the isolation of the gene JEN1 (YKL217w), which restored pyruvate uptake. Disruption of JEN1 abolished the uptake of pyruvate and gained the resistance against fluoropyruvate. The results indicate that no other monocarboxylate permease is able to efficiently transport pyruvate in S. cerevisiae.  相似文献   

6.
7.
A wide spectrum of soil heterocyclic nitrogen compounds are potential nutrients for plants. Here, it is shown that Arabidopsis plants are able to use allantoin as sole nitrogen source. By functional complementation of a yeast mutant defective in allantoin uptake, an Arabidopsis transporter, AtUPS1 (Arabidopsis thaliana ureide permease 1), was identified. AtUPS1 belongs to a novel superfamily of plant membrane proteins with five open reading frames in Arabidopsis (identity, 64 to 82%). UPS proteins have 10 putative transmembrane domains with a large cytosolic central domain containing a "Walker A" motif. Transport of (14)C-labeled allantoin by AtUPS1 in yeast exhibited saturation kinetics (K(m) approximately 52 microM), was dependent on Glc and a proton gradient, and was stimulated by acidic pH. AtUPS1 transports uric acid and xanthine, besides allantoin, but not adenine. Protons are cosubstrates in allantoin transport by AtUPS1, as demonstrated by expression in Xenopus laevis oocytes. In plants, AtUPS1 gene expression was dependent on the nitrogen source. Therefore, AtUPS1 presumably is involved in the uptake of allantoin and other purine degradation products when primary sources are limiting.  相似文献   

8.
In Saccharomyces cerevisiae, L-malic acid transport is not carrier mediated and is limited to slow, simple diffusion of the undissociated acid. Expression in S. cerevisiae of the MAE1 gene, encoding Schizosaccharomyces pombe malate permease, markedly increased L-malic acid uptake in this yeast. In this strain, at pH 3.5 (encountered in industrial processes), L-malic acid uptake involves Mae1p-mediated transport of the monoanionic form of the acid (apparent kinetic parameters: Vmax = 8.7 nmol/mg/min; Km = 1.6 mM) and some simple diffusion of the undissociated L-malic acid (Kd = 0.057 min(-1)). As total L-malic acid transport involved only low levels of diffusion, the Mae1p permease was further characterized in the recombinant strain. L-Malic acid transport was reversible and accumulative and depended on both the transmembrane gradient of the monoanionic acid form and the DeltapH component of the proton motive force. Dicarboxylic acids with stearic occupation closely related to L-malic acid, such as maleic, oxaloacetic, malonic, succinic and fumaric acids, inhibited L-malic acid uptake, suggesting that these compounds use the same carrier. We found that increasing external pH directly inhibited malate uptake, resulting in a lower initial rate of uptake and a lower level of substrate accumulation. In S. pombe, proton movements, as shown by internal acidification, accompanied malate uptake, consistent with the proton/dicarboxylate mechanism previously proposed. Surprisingly, no proton fluxes were observed during Mae1p-mediated L-malic acid import in S. cerevisiae, and intracellular pH remained constant. This suggests that, in S. cerevisiae, either there is a proton counterflow or the Mae1p permease functions differently from a proton/dicarboxylate symport.  相似文献   

9.
A piece of DNA of the yeast Saccharomyces cerevisiae complementing the uracil permease gene was introduced into a plasmid able to replicate autonomously in Schizosaccharomyces pombe. A strain of S. pombe lacking uracil transport activity was transformed with this new plasmid carrying the gene of S. cerevisiae. The behaviour of the transformant shows not only an expression of the uracil permease gene in the heterologous membrane but also that the transport of uracil is active and coupled to the energy furnishing system of the heterologous host.  相似文献   

10.
Allantoin, an active principle of yam, is documented to lower plasma glucose in diabetic rats. However, action mechanisms of allantoin remain obscure. It has been indicated that metformin shows ability to activate imidazoline I-2 receptors (I-2R) to lower blood sugar. Allantoin has also a chemical structure similar to metformin; both belong to guanidinium derivative. Thus, it is of special interest to know the effect of allantoin on I-2R. In the present study, the marked plasma glucose-lowering action of allantoin in streptozotocin-induced type-1 like diabetic rats was blocked by specific I-2R antagonist, BU224, in a dose-dependent manner. Also, the increase of β-endorphin release by allantoin was blocked by BU224 in the same manner. Otherwise, amiloride at the dose sufficient to block I-2AR abolished the allantoin-induced β-endorphin release and inhibited the blood glucose-lowering action of allantoin markedly but not completely. The direct effect of allantoin on glucose uptake in isolated skeletal muscle was also blocked by BU224. Also, the phosphorylation of AMPK in isolated skeletal muscle was raised by allantoin in a concentration-dependent manner. More-over, insulin sensitivity in diabetic rats was markedly increased by allantoin and this action was also blocked by BU224. These results suggest that allantoin has an ability to activate imidazoline I-2R while I-2AR is linked to the increase of β-endorphin release and I-2BR is related to other actions including the influence in skeletal muscle for lowering of blood glucose in type-1 like diabetic rats. Thus, allantoin can be developed to treat diabetic disorders in the future.  相似文献   

11.
Cai H  Hauser M  Naider F  Becker JM 《Eukaryotic cell》2007,6(10):1805-1813
Dal5p has been shown previously to act as an allantoate/ureidosuccinate permease and to play a role in the utilization of certain dipeptides as a nitrogen source in Saccharomyces cerevisiae. Here, we provide direct evidence that dipeptides are transported by Dal5p, although the affinity of Dal5p for allantoate and ureidosuccinate is higher than that for dipeptides. Allantoate, ureidosuccinate, and to a lesser extent allantoin competed with dipeptide transport by reducing the toxicity of the peptide Ala-Eth and decreasing the accumulation of [(14)C]Gly-Leu. In contrast to the well-studied di/tripeptide transporter Ptr2p, whose substrate specificity is very broad, Dal5p preferred to transport non-N-end rule dipeptides. S. cerevisiae W303 was sensitive to the toxic peptide Ala-Eth (non-N-end rule peptide) but not Leu-Eth (N-end rule peptide). Non-N-end rule dipeptides showed better competition with the uptake of [(14)C]Gly-Leu than N-end rule dipeptides. Similar to the regulation of PTR2, DAL5 expression was influenced by the addition of Leu and by the CUP9 gene. However, DAL5 expression was downregulated in the presence of leucine and the absence of CUP9, whereas PTR2 was upregulated. Toxic dipeptide and uptake assays indicated that either Ptr2p or Dal5p was predominantly used for dipeptide transport in the common laboratory strains S288c and W303, respectively. These studies highlight the complementary activities of two dipeptide transport systems under different regulatory controls in common laboratory yeast strains, suggesting that dipeptide transport pathways evolved to respond to different environmental conditions.  相似文献   

12.
Allantoin, an active principle of the yam, belongs to the group of guanidinium derivatives and has been reported to lower plasma glucose in diabetic animals. Recent evidence indicates that activation of the imidazoline I(2B) receptor (I(2B)R) by guanidinium derivatives also increases glucose uptake; however, the effect of allantoin on I(2B)R is still unknown. Glucose uptake into cultured C?C?? cells was determined using 2-[1?C]-deoxy-D-glucose as a tracer. The changes in 5'-AMP-activated protein kinase (AMPK) expression were also identified by Western blotting analysis. The allantoin-induced glucose uptake action was dose-dependently blocked by BU224, a specific I?R antagonist, in C?C?? cells. Moreover, AMPK phosphorylation by allantoin was found to be dose-dependently increased in C?C?? cells using AICAR treatment as a reference. In addition, both actions of allantoin, the increases in glucose uptake and AMPK phosphorylation, were dose-dependently attenuated by amiloride in C?C?? cells. Moreover, compound C at concentrations sufficient to inhibit AMPK blocked the allantoin-induced glucose uptake and AMPK phosphorylation. Thus, we suggest that allantoin can activate I(2B)R to increase glucose uptake into cells, and propose I(2B)R as a new target for diabetic therapy.  相似文献   

13.
14.
15.
We demonstrate that the DAL5 gene, encoding a necessary component of the allantoate transport system, is constitutively expressed in Saccharomyces cerevisiae. Its relatively high basal level of expression did not increase further upon addition of allantoin pathway intermediates. However, steady-state DAL5 mRNA levels dropped precipitously when a repressive nitrogen source was provided. These control characteristics of DAL5 expression make this gene a good model with which to unravel the mechanism of nitrogen catabolite repression. Its particular advantage relative to other potentially useful genes derives from its lack of control by induction and hence the complicating effects of inducer exclusion.  相似文献   

16.
The lysP gene encodes the lysine-specific permease.   总被引:1,自引:0,他引:1       下载免费PDF全文
C Steffes  J Ellis  J Wu    B P Rosen 《Journal of bacteriology》1992,174(10):3242-3249
Escherichia coli transports lysine by two distinct systems, one of which is specific for lysine (LysP) and the other of which is inhibited by arginine ornithine. The activity of the lysine-specific system increases with growth in acidic medium, anaerobiosis, and high concentrations of lysine. It is inhibited by the lysine analog S-(beta-aminoethyl)-L-cysteine (thiosine). Thiosine-resistant (Tsr) mutants were isolated by using transpositional mutagenesis with TnphoA. A Tsr mutant expressing alkaline phosphatase activity in intact cells was found to lack lysine-specific transport. This lysP mutation was mapped to about 46.5 min on the E. coli chromosome. The lysP-phoA fusion was cloned and used as a probe to clone the wild-type lysP gene. The nucleotide sequence of the 2.7-kb BamHI fragment was determined. An open reading frame from nucleotides 522 to 1989 was observed. The translation product of this open reading frame is predicted to be a hydrophobic protein of 489 residues. The lysP gene product exhibits sequence similarity to a family of amino acid transport proteins found in both prokaryotes and eukaryotes, including the aromatic amino acid permease of E. coli (aroP) and the arginine permease of Saccharomyces cerevisiae (CAN1). Cells carrying a plasmid with the lysP gene exhibited a 10- to 20-fold increase in the rate of lysine uptake above wild-type levels. These results demonstrate that the lysP gene encodes the lysine-specific permease.  相似文献   

17.
The uptake of Urd into the yeast Saccharomyces cerevisiae is mediated by Fui1p, a Urd-specific nucleoside transporter encoded by the FUI1 gene and a member of the yeast Fur permease family, which also includes the uracil, allantoin, and thiamine permeases. When Fui1p was produced in a double-permease knock-out strain (fur4Deltafui1Delta) of yeast, Urd uptake was stimulated at acidic pH and sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone. Electrophysiological analysis of recombinant Fui1p produced in Xenopus oocytes demonstrated that Fui1p-mediated Urd uptake was dependent on proton cotransport with a 1:1 stoichiometry. Mutagenesis analysis of three charged amino acids (Glu(259), Lys(288), and Asp(474) in putative transmembrane segments 3, 4, and 7, respectively) revealed that only Lys(288) was required for maintaining high Urd transport efficiency. Analysis of binding energies between Fui1p and different Urd analogs indicated that Fuip1 interacted with C(3')-OH, C(2')-OH, C(5)-H, and N(3)-H of Urd. Fui1p-mediated transport of Urd was inhibited by analogs with modifications at C-5', but was not inhibited significantly by analogs with modifications at C-3', C-5, and N-3 or inversions of configuration at C-2' and C-3'. This characterization of Fui1p contributes to the emerging knowledge of the structure and function of the Fur family of permeases, including the Fui1p orthologs of pathogenic fungi.  相似文献   

18.
The function of seven paralogues phylogenetically related to the Saccharomyces cerevisiae Fur4p together with a number of functionally related transporters present in Aspergillus nidulans has been investigated. After deletion of the cognate genes we checked the incorporation of radiolabelled substrates, utilization of nitrogen sources, resistance to toxic analogues and supplementation of auxotrophies. FurA and FurD encode allantoin and uracil transporters respectively. No function was found for FurB, FurC, FurE, FurF and FurG. As we failed to identify Fur-related transporters for uridine, pyridoxine or thiamine, we deleted other possible candidates for these functions. A FCY2 -like gene carrying in its 5' UTR a putative thiamine pyrophosphate riboswitch, and which encodes a protein similar to the pyridoxine transporter of yeast (Tpn1p), does not encode either a major thiamine or a pyridoxine transporter. CntA, a member of the concentrative nucleoside transporter family, is a general nucleoside permease, while no function was found for PnpA, a member of the equilibrative transporter family. Phylogenetic analysis shows that within the ascomycetes, the same transport activity could be catalysed by totally unrelated proteins and that within the Fur subfamily convergent evolution towards uracil and allantoin transport activity has occurred at least three and two independent times respectively.  相似文献   

19.
The gene encoding the galactose permease of Saccharomyces cerevisiae (GAL2) was cloned. The clone restores galactose permease activity to gal2 yeasts and is regulated by galactose in a manner similar to other GAL gene products (GAL1, -7, and -10). Experiments with temperature-conditional secretory mutants indicated that transport of the GAL2 gene product to the cell surface requires a functional secretory pathway. In addition, gene fusions were constructed between the GAL2 gene and the Escherichia coli lacZ gene. The GAL2-lacZ gene fusions code for galactose-regulated beta-galactosidase activity in yeasts. The beta-galactosidase activity was found to be membrane bound.  相似文献   

20.
The ophD gene, encoding a permease for phthalate transport, was cloned from Burkholderia cepacia ATCC 17616. Expression of the gene in Escherichia coli results in the ability to transport phthalate rapidly into the cell. Uptake inhibition experiments show that 4-hydroxyphthalate, 4-chlorophthalate, 4-methylphthalate, and cinchomeronate compete for the phthalate permease. An ophD knockout mutant of 17616 grows slightly more slowly on phthalate but is still able to take up phthalate at rates equivalent to that of the wild-type strain. This means that 17616 must have a second phthalate-inducible phthalate uptake system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号