首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic yeast-based DNA damage cellular sensors offer many advantages to traditional prokaryotic-based mutagenicity assays. The HUG1P-GFP promoter-reporter construct has proven to be an effective method to selectively screen for multiple types of DNA damage. To enhance the sensitivity and selectivity of the system to different types of DNA damage, two genes involved in distinct DNA damage responses were deleted. Deletion of MAG1, a gene encoding a DNA glycosylase and member of the base excision repair (BER) pathway, increased the biosensor's sensitivity to the alkylating agents methyl methanesulfonate (MMS) (lowering the sensitivity threshold to 0.0001% (v/v)) and ethyl methanesulfonate (EMS). Deletion of MRE11, part of the highly conserved RMX complex that aids in sensing and repairing double strand breaks in budding yeasts, enhanced sensitivity to gamma radiation (gamma-ray) (detection threshold of 50Gy) and camptothecin. The mre11Delta phenotype dominated in mag1Deltamre11Delta strains. Through the deletions, we were able to engineer increased selectivity to alkylating agents, gamma-ray, and camptothecin, since increased sensitivity to one type of damage did not alter the quantitative response to other genotoxins. The enhancements to the HUG1P-GFP system did not affect its ability to detect several other DNA damaging agents, including 1,2-dimethyl hydrazine (SDMH), phleomycin, and hydroxyurea (HU), or affect its lack of response to the potentially non-genotoxic carcinogen formaldehyde.  相似文献   

2.
3.
Resistance of Candida albicans against the widely used antifungal agent fluconazole is often due to active drug efflux from the cells. In many fluconazole-resistant C. albicans isolates the reduced intracellular drug accumulation correlates with constitutive strong expression of the MDR1 gene, encoding a membrane transport protein of the major facilitator superfamily that is not detectably expressed in vitro in fluconazole-susceptible isolates. To elucidate the molecular changes responsible for MDR1 activation, two pairs of matched fluconazole-susceptible and resistant isolates in which drug resistance coincided with stable MDR1 activation were analyzed. Sequence analysis of the MDR1 regulatory region did not reveal any promoter mutations in the resistant isolates that might account for the altered expression of the gene. To test for a possible involvement of trans-regulatory factors, a GFP reporter gene was placed under the control of the MDR1 promoter from the fluconazole-susceptible C. albicans strain CAI4, which does not express the MDR1 gene in vitro. This MDR1P-GFP fusion was integrated into the genome of the clinical C. albicans isolates with the help of the dominant selection marker MPA(R) developed for the transformation of C. albicans wild-type strains. Integration was targeted to an ectopic locus such that no recombination between the heterologous and resident MDR1 promoters occurred. The transformants of the two resistant isolates exhibited a fluorescent phenotype, whereas transformants of the corresponding susceptible isolates did not express the GFP gene. These results demonstrate that the MDR1 promoter was activated by a trans-regulatory factor that was mutated in fluconazole-resistant isolates, resulting in deregulated, constitutive MDR1 expression.  相似文献   

4.
During the safety evaluation process of new drugs and chemicals, a battery of genotoxicity tests is conducted starting with in vitro genotoxicity assays. Obtaining positive results in in vitro genotoxicity tests is not uncommon. Follow-up studies to determine the biological relevance of positive genotoxicity results are costly, time consuming, and utilize animals. More efficient methods, especially for identifying a putative mode of action like an indirect mechanism of genotoxicity (where DNA molecules are not the initial primary targets), would greatly improve the risk assessment for genotoxins. To this end, we are participating in an International Life Sciences Institute (ILSI) project involving studies of gene expression changes caused by model genotoxins. The purpose of the work is to evaluate gene expression tools in general, and specifically for discriminating genotoxins that are direct-acting from indirect-acting. Our lab has evaluated gene expression changes as well as micronuclei (MN) in L5178Y TK(+/-) mouse lymphoma cells treated with six compounds. Direct-acting genotoxins (where DNA is the initial primary target) that were evaluated included the DNA crosslinking agents, mitomycin C (MMC) and cisplatin (CIS), and an alkylating agent, methyl methanesulfonate (MMS). Indirect-acting genotoxins included hydroxyurea (HU), a ribonucleotide reductase inhibitor, taxol (TXL), a microtubule inhibitor, and etoposide (ETOP), a DNA topoisomerase II inhibitor. Microarray gene expression analysis was conducted using Affymetrix mouse oligonucleotide arrays on RNA samples derived from cells which were harvested immediately after the 4 h chemical treatment, and 20 h after the 4 h chemical treatment. The evaluation of these experimental results yields evidence of differentially regulated genes at both 4 and 24 h time points that appear to have discriminating power for direct versus indirect genotoxins, and therefore may serve as a fingerprint for classifying chemicals when their mechanism of action is unknown.  相似文献   

5.
6.
Staib P  Michel S  Köhler G  Morschhäuser J 《Gene》2000,242(1-2):393-398
Candida dubliniensis is a recently described pathogenic yeast of the genus Candida that is closely related to Candida albicans but differs from it in several phenotypic and genotypic characteristics, including putative virulence traits, which may explain differences in the spectrum of diseases caused by the two species. In contrast to C. albicans, a molecular genetic system to study virulence of C. dubliniensis is lacking. We have developed a system for the genetic transformation of C. dubliniensis that is based on the use of the dominant selection marker MPA(R) from C. albicans that confers resistance to mycophenolic acid (MPA). Using this transformation system, a GFP (green fluorescent protein) reporter gene that was genetically engineered for functional expression in C. albicans and placed under control of the inducible C. albicans SAP2 (secreted aspartic proteinase) promoter was integrated into the C. dubliniensis genome. MPA-resistant transformants containing the SAP2P-GFP fusion fluoresced under SAP2-inducing conditions but not under SAP2-repressing conditions. These results demonstrate that the MPA(R) selection marker is useful for transformation of C. dubliniensis wild-type strains, that the GFP reporter gene is functionally expressed in C. dubliniensis, and that the C. albicans SAP2 promoter can be used for controlled gene expression in C. dubliniensis. These genetic tools will allow the dissection of the differences in virulence characteristics between the two pathogenic yeast species at the molecular level.  相似文献   

7.
The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulators Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p.  相似文献   

8.
N-(4-chlorobenzyl)triflupromazinium chloride, a known antitubercular agent, has been found to also be active against HSV-1. A preliminary structure-activity relation has been explored to determine which groups are crucial to viral inhibition. Antiviral assessments such as GFP reduction, plaque reduction, treatment timing and wash-out studies have also been probed to determine a mode of action for QPD-1. Based on this preliminary data, it appears that QPD-1 is a reversible inhibitor, suspected to inhibit early stages of viral replication of HSV-1 at 50μM, equipotent to acyclovir.  相似文献   

9.
Green fluorescent protein (GFP) makes it possible for organelles and protein transport pathways to be visualized in living cells. However, GFP fluorescence has not yet been observed in the vacuoles of any organs of higher plants. We found that the fluorescence of a vacuole-targeted GFP was stably observed in the vacuoles of transgenic Arabidopsis plants under dark conditions, and that the fluorescence rapidly disappeared under light conditions. The vacuolar GFP was rapidly degraded within 1 h in the light, especially blue light. An inhibitor of vacuolar type H+-ATPase, concanamycin A, and an inhibitor of papain-type cysteine proteinase, E-64d, abolished both the light-dependent disappearance of GFP fluorescence and GFP degradation in the vacuoles. An in vitro assay showed that bacterially expressed GFP was degraded by extracts of Arabidopsis cultured-cell protoplasts at an acidic pH in the light. These results suggest that blue light induced a conformational change in GFP, and the resulting GFP in the vacuole was easily degraded by vacuolar papain-type cysteine proteinase(s) under the acidic pH. The light-dependent degradation accounts for the failure to observe GFP fluorescence in the vacuoles of plant organs. Our results show that stable GFP-fluoresced vacuoles are achieved by transferring the plants from the light into the dark before inspection with a fluorescent microscope. This might eliminate a large hurdle in studies of the vacuolar-targeting machinery and the organ- and stage-specific differentiation of endomembrane systems in plants.  相似文献   

10.
Alternariol (AOH) was reported recently to act as a topoisomerase poison. To underline the relevance of topoisomerase targeting for the genotoxic properties of AOH, we addressed the question whether human tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme vital to the repair of covalent DNA-topoisomerase adducts, affects AOH-mediated genotoxicity. The relevance of TDP1 activity on AOH-induced genotoxicity was investigated by the comet assay in human cells overexpressing GFP chimera of TDP1 or the inactive mutant TDP1H263A as well as in cells subjected to siRNA-mediated knock-down of endogenous TDP1. Cells overexpressing TDP1 exhibited significantly less DNA damage after treatment with AOH in comparison to cells expressing the inactive mutant TDP1H263A. In accordance with these results, levels of AOH inducing DNA strand breaks were increased in TDP1-suppressed cells in comparison to cells transfected with control siRNA. The specific topoisomerase poisons camptothecin and etoposide caused comparable effects, underlining that TDP1 plays an important role in the repair of topoisomerase-mediated DNA damage. In summary, the repair enzyme TDP1 was identified as a factor for the modulation of AOH-mediated DNA damage in human cells.  相似文献   

11.
To determine whether genotoxic and non-genotoxic carcinogens contribute similarly to the cancer burden in humans, an analysis was performed on agents that were evaluated in Supplements 6 and 7 to the IARC Monographs for their carcinogenic effects in humans and animals and for the activity in short-term genotoxicity tests. The prevalence of genotoxic carcinogens on four groups of agents, consisting of established human carcinogens (group 1, n = 30), probable human carcinogens (group 2A, n = 37), possible human carcinogens (group 2B, n = 113) and on agents with limited evidence of carcinogenicity in animals (a subset of group 3, n = 149) was determined. A high prevalence in the order of 80 to 90% of genotoxic carcinogens was found in each of the groups 1, 2A and 2B, which were also shown to be multi-species/multi-tissues carcinogens. The distribution of carcinogenic potency in rodents did not reveal any specific characteristic of the human carcinogens in group 1 that would differentiate them from agents in groups 2A, 2B and 3. The results of this analysis indicate that (a) an agent with unknown carcinogenic potential showing sufficient evidence of activity in in vitro/in vivo genotoxicity assays (involving as endpoints DNA damage and chromosomal/mutational damage) may represent a hazard to humans; and b) an agent showing lack of activity in this spectrum of genotoxicity assays should undergo evaluation for carcinogenicity by rodent bioassay, in view of the present lack of validated short-term tests for non-genotoxic carcinogens. Overall, this analysis implies that genotoxic carcinogens add more to the cancer burden in man than non-genotoxic carcinogens. Thus, identification of such genotoxic carcinogens and subsequent lowering of exposure will remain the main goal for primary cancer prevention in man.  相似文献   

12.
Contribution of apoptosis to responses in the comet assay   总被引:9,自引:0,他引:9  
Apoptosis, a physiological process of selected cell deletion, leads to DNA fragmentation in typical segments of 180 base pairs. DNA strand breaks are also an effect induced by genotoxic compounds. The aim of this study was to compare these two types of damaging potentials by a known genotoxic substance and an apoptosis-inducing agent in HT-29 colon adenocarcinoma cells. The cells were incubated for 24h with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a potent DNA damage-inducing agent, staurosporine, an inhibitor of protein kinase C and apoptosis-inducing agent, and hydrogen peroxide, a source of reactive oxygen species. Apoptosis was measured with the Annexin V affinity assay which detects the translocation of phosphatidylserine (PS) from the inner to the outer leaflet of the cytoplasmic membrane, an early event in the apoptotic process. DNA damage as an end point of genotoxicity was detected by single cell microgel electrophoresis, also called "comet assay". The results show that apoptosis does not necessarily need to correlate or coincide with DNA damage observed with genotoxic substances in the comet assay. The representative apoptosis-inducing agent (staurosporine) did not induce strand breaks in the tested concentrations (0.5 and 1.0microM); genotoxic doses of the strand break inducing agent MNNG did not induce apoptosis. Therefore, the comet assay can be used as a specific test for detecting genotoxicity, and the results are not necessarily confounded by concomittant processes leading to apoptosis.  相似文献   

13.
Nitric oxide (NO) is a free radical that is produced in cells from l-arginine. NO is involved in the physiological control of different tissues, but it can act as a toxic mediator in the cells. In this study we investigated the effect of l-arginine on the genotoxicity induced by methyl methanesulfonate (MMS) in human lymphocytes. Blood was treated with NG-nitro-l-arginine methyl ester (l-NAME) as an inhibitor of nitric oxide synthase for finding out the role of NO in this effect. Human whole blood was treated with l-arginine (50, 100 and 250 μM) and/or l-NAME, then it was treated in vitro with MMS after 24 h of culture. The lymphocytes were stimulated by phytohemagglutinin to find out the micronuclei in cytokinesis-blocked binucleated cells. DNA fragmentation of lymphocytes was detected by using a fluorescence microscope after propidium iodide staining. These data showed that arginine increased the frequency of MMS-induced micronuclei in lymphocytes. However, the genotoxicity was decreased by using l-NAME. Arginine and l-NAME have not shown any DNA damage in cultured human lymphocytes. In conclusion, addition of l-arginine to MMS as an alkylating agent caused an increase of DNA damage in human lymphocytes. This enhancement of genotoxicity was reduced by NAME as NO inhibitor. It is thus cleared that an increase of DNA damage by arginine and MMS is related to NO production.  相似文献   

14.
15.
Methyleugenol is a substituted alkenylbenzene found in a variety of foods, products, and essential oils. In a 2-year bioassay conducted by the National Toxicology Program, methyleugenol caused neoplastic lesions in the livers of Fischer 344 rats and B6C3F(1) mice. We were interested in the cytotoxicity and genotoxicity caused by methyleugenol and other alkenylbenzene compounds: safrole (a known hepatocarcinogen), eugenol, and isoeugenol. The endpoints were evaluated in cultured primary hepatocytes isolated from male Fischer 344 rats and female B6C3F(1) mice. Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release, while genotoxicity was determined by using the unscheduled DNA synthesis (UDS) assay. Rat and mouse hepatocytes showed similar patterns of toxicity for each chemical tested. Methyleugenol and safrole were relatively non-cytotoxic, but caused UDS at concentrations between 10 and 500 microM. In contrast, isoeugenol and eugenol produced cytotoxicity in hepatocytes with LC50s of approximately 200-300 microM, but did not cause UDS. Concurrent incubation of 2000 microM cyclohexane oxide (CHO), an epoxide hydrolase competitor, with a non-cytotoxic concentration of methyleugenol (10 microM) resulted in increased cytotoxicity but had no effect on genotoxicity. However, incubation of 15 microM pentacholorophenol, a sulfotransferase inhibitor, with 10 uM methyleugenol resulted in increased cytotoxicity but had a significant reduction of genotoxicity. These results suggest that methyleugenol is similar to safrole in its ability to cause cytotoxicity and genotoxicity in rodents. It appears that the bioactivation of methyleugenol to a DNA reactive electrophile is mediated by a sulfotransferase in rodents, but epoxide formation is not responsible for the observed genotoxicity.  相似文献   

16.
17.
18.
The objective of this article is to review genotoxicological profile of the major selective estrogen receptor modulators, including clomiphene, tamoxifen, toremifene, raloxifene. These drugs have been used for infertility treatment and breast cancer prevention in high risk-women. However, some studies reported that especially tamoxifen is a genotoxic agent and is related with endometrial cancer. Our review indicate that clomiphene and tamoxifen were found as genotoxic agent in majority of the tests. However published reports showed that toremifene is a weakly genotoxic agent. The genotoxic effects of raloxifene are still poorly known. Further genotoxicity studies should be conducted especially for raloxifene.  相似文献   

19.
Mutant strains of yeast Saccharomyces cerevisiae lacking a functional F1-ATPase were found to grow very poorly under anaerobic conditions. A single amino acid replacement (K222 > E222) that locally disrupts the adenine nucleotide catalytic site in the beta-F1 subunit was sufficient to compromise anaerobic growth. This mutation also affected growth in aerated conditions when ethidium bromide (an intercalating agent impairing mtDNA propagation) or antimycin (an inhibitor of respiration) was included in the medium. F1-deficient cells forced to grow in oxygen-limited conditions were shown to lose their mtDNA completely and to accumulate Hsp60p mainly under its precursor form. Fluorescence microscopy analyses with a modified GFP containing a mitochondrial targeting presequence revealed that aerobically growing F1-deficient cells stopped importing the GFP when antimycin was added to the medium. Finally, after total inactivation of the catalytic alpha3beta3 subcomplex of F1, mitochondria could no longer be energized by externally added ATP because of either a block in assembly or local disruption of the adenine nucleotide processing site. Altogether these data strengthen the notion that in the absence of respiration, and whether the proton translocating domain (F0) of complex V is present or not, F1-catalysed hydrolysis of ATP is essential for the occurrence of vital cellular processes depending on the maintenance of an electrochemical potential across the mitochondrial inner membrane.  相似文献   

20.
In this study precision-cut liver slices have been used to evaluate the effects of the flavone tangeretin, the flavonoid glycoside naringin and the flavanone naringenin (the aglycone derived from naringin) on xenobiotic-induced genotoxicity. Liver slices were cultured for 24 h in medium containing [3H]thymidine and the test compounds and then processed for autoradiographic determination of unscheduled DNA synthesis (UDS). The cooked food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) markedly induced UDS in cultured human liver slices and both 2-acetylaminofluorene (2-AAF) and aflatoxin B1 (AFB1) induced UDS in cultured rat liver slices. Tangeretin (20 and 50 microM) was found to be a potent inhibitor of 5 and 50 microM PhIP-induced UDS in human liver slices, whereas 20 and 50 microM naringenin was ineffective and naringin only inhibited genotoxicity at a concentration of 1000 microM. In rat liver slices 50 microM tangeretin inhibited 10 and 50 microM 2-AAF-induced UDS, whereas 50 microM naringenin and 100 and 1000 microM naringin were ineffective. None of the three flavonoids examined inhibited 5 microM AFB1-induced UDS in rat liver slices. The inhibition of PhIP- and 2-AAF-induced UDS by tangeretin is probably attributable to the inhibition of the human and rat cytochrome P-450 isoforms which are responsible for the bioactivation of these two genotoxins. Although flavonoids can modulate xenobiotic-induced genotoxicity in human and rat liver slices, any protective effect is dependent on the particular combination of genotoxin and flavonoid examined. These results demonstrate that cultured precision-cut liver slices may be utilised as an in vitro model system to examine the modulation of xenobiotic-induced genotoxicity by flavonoids and other dietary components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号