首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A complex of human interferon-γ (IFN- γ) with the soluble extracellular domain of the IFN- γ receptor α-chain (IFN-γ-R) has been crystallised. Crystals of the complex were grown using PEG 4000 as the precipitating agent in the presence of β-octyl glucoside. The receptor-ligand complex crystallizes in a monoclinic space group and diffracts to about 3.0 Å resolution. Isomorphous crystals have been obtained with complex containing selenomethionine and cysteine mutants of IFN-γ, which may facilitate the ongoing X-ray structure determination. © 1995 Wiley-Liss, Inc.  相似文献   

2.
3.
The alteration in the biologic activity of the vitamin D3 molecule resulting from the replacement of a hydrogen atom with a fluorine atom is a subject of fundamental interest. To investigate this problem we synthesized 3 beta-fluorovitamin D3 6 and its hydrogen analog, 3-deoxyvitamin D3 7, and tested the biologic activity of each by in vitro and in vivo methods. Contrary to previous reports which showed that 3 beta-fluorovitamin D3 was as active as vitamin D3 in vivo, we found that the fluoro-analog was less active than vitamin D3. With regard to stimulation of intestinal calcium transport and bone calcium mobilization in the D-deficient hypocalcemic rat, 3 beta-fluorovitamin D3 showed significantly greater biologic activity than its hydrogen analog, 3-deoxyvitamin D3. In the organ-cultured, embryonic chick duodenum, 3 beta-fluorovitamin D3 was approx 1/1000th as active as the native hormone, 1,25-dihydroxyvitamin D3, while 3-deoxyvitamin D3 was inactive even at microM concentrations, in the induction of the vitamin D-dependent, calcium-binding protein. With regard to in vitro activity in displacing radiolabeled 25-hydroxyvitamin D3 from vitamin D binding protein and radiolabelled 1,25-dihydroxyvitamin D3 from a chick intestinal cytosol receptor, 3 beta-fluorovitamin D3 and 3 beta-deoxyvitamin D3 both showed very poor binding efficiencies when compared with vitamin D3. Our results show that the substitution of a fluorine atom for a hydrogen atom at the C-3 position of the vitamin D3 molecule results in a fluorovitamin 6 with significantly more biological activity than its hydrogen analog, 3-deoxyvitamin D3 7.  相似文献   

4.
5.
A mitogenic factor from 3T3 plasma membranes has been identified and partially characterized. The factor appears to be a peripheral membrane protein that can be released by mild trypsin, chymotrypsin, or plasmin treatment. This component is sensitive to heat and acid, and has a molecular weight in the range of 150,000–200,000 daltons as determined by gel filtration. A similar mitogenic activity has also been found on the membranes of both SV-40-transformed 3T3 cells and human fibroblasts. The factor appears to be distinct from all previously described mitogenic components.  相似文献   

6.
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σM, σW and σX all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge‐region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σM to nisin resistance is expression of ltaSa, encoding a stress‐activated lipoteichoic acid synthase, and σX functions primarily by activation of the dlt operon controlling d ‐alanylation of teichoic acids. Together, σM and σX regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σW is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σW contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.  相似文献   

7.
Binding of the Tn3 transposase to the inverted repeats of Tn3   总被引:4,自引:0,他引:4  
The transposase protein and the inverted repeat sequences of Tn3 are both essential for Tn3 cointegrate formation and transposition. We have developed two assays to detect site-specific binding of transposase to the inverted repeats: (1) a nitrocellulose filter binding assay in which transposase preferentially retains DNA fragments containing inverted repeat sequences, and (2) a DNase 1 protection assay in which transposase prevents digestion of the inverted repeats by DNase 1. Both assays show that transposase binds directly to linear, duplex DNA containing the inverted repeats. The right inverted repeat of Tn3 binds slightly more strongly than the left one. Site-specific binding requires magnesium but does not require a high energy cofactor.  相似文献   

8.
9.
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins.  相似文献   

10.
11.
12.
14-3-3 Proteins are found to bind to a growing number of eukaryotic proteins and evidence is accumulating that 14-3-3 proteins serve as modulators of enzyme activity. Several 14-3-3 protein recognition motifs have been identified and an increasing number of target proteins have been found to contain more than one binding site for a 14-3-3 protein. It is thus possible that 14-3-3 dimers function as clamps that simultaneously bind to two motifs within a single binding partner. Phosphorylation of a number of binding motifs has been shown to increase the affinity for 14-3-3 proteins but other mechanisms also regulate the association. It has recently been demonstrated that fusicoccin induces a tight association between 14-3-3 proteins and the plant plasma membrane H+-ATPase. Phorbol esters and other hydrophobic molecules may have a similar effect on the association between 14-3-3 proteins and specific binding partners.  相似文献   

13.
14.
The effect of phenobarbital upon the differentiation of two preadipocyte cell lines, 3T3 F442A and 3T3 L-1, was examined by measuring the synthesis and secretion of lipoprotein lipase. Extracellular enzyme was measured by treating intact cells with heparin, and the intracellular enzyme was subsequently assayed in cell homogenates. When confluent cultures of 3T3 F442A cells were treated with insulin, the cells underwent differentiation as indicated by increased activity of lipoprotein lipase within 6 days, followed in turn by increased levels of protein and triglyceride. Addition of phenobarbital with insulin enhanced total lipoprotein lipase, protein, and triglyceride content. The activity of lipoprotein lipase accumulated in the heparin-releasable fraction during differentiation was increased 2- to 3-fold and the intracellular enzyme was enhanced 15- to 20-fold by the addition of phenobarbital. The ability of phenobarbital to modulate differentiation was dependent upon the time of addition. When added early in the postconfluent period, there was a greater increase in lipoprotein lipase activity than when the drug was added at later times. Phenobarbital also stimulated lipoprotein lipase in differentiating 3T3 L-1 cells in the presence of insulin, although lipoprotein lipase activity was moderately enhanced by phenobarbital alone in these cells. These results suggest that phenobarbital may affect the conversion of adipoblasts into preadipocytes and thereby increase the proportion of cells susceptible to the differentiating stimulus.  相似文献   

15.
The epimerization of ecdysone to 3-epiecdysone has been investigated in a dialysed cytosolic enzyme preparation from midgut of sixth instar Spodoptera littoralis larvae, with particular emphasis on establishing the intermediacy of 3-dehydroecdysone. Incubation of ecdysone with the dialysed cytosolic preparation furnished 3-dehydroecdysone as the only detectable product, the reaction being oxygen-dependent. The enzyme preparation catalysed reduction of 3-dehydroecdysone to 3-epiecdysone and ecdysone in the presence of NADH or NADPH. Whereas formation of 3-epiecdysone greatly predominated over that of ecdysone in the presence of NADPH, the converse applied when the cofactor was NADH. 3-Epiecdysone incubated with the enzyme preparation in the presence of various cofactors was not metabolized, indicating the irreversibility of the reduction of 3-dehydroecdysone to 3-epiecdysone and, hence, of the 3-epimerization process. The foregoing results, together with comparison of the metabolism of 3-dehydro[3H]ecdysone and [3H]ecdysone by the enzyme preparation in the presence of unlabelled ecdysone and NADPH, support the intermediacy of 3-dehydroecdysone in the 3-epimerization of ecdysone.  相似文献   

16.
17.
The measurements of intralysosomal pH under the action of the number of amines earlier reported to block the process of the initiation of cell proliferation (Nikolsky et al., 1984) were made on Swiss 3T3 cells. The intralysosomal pH (pH1) value was estimated by parameters of fluorescence of fluorescein-labeled dextran in single intact cells. The pHl value was equal to 4.7 +/- 0.2 for both actively growing and quiescent cells. The pH gradient between lysosomes and the cytoplasm was completely destroyed by monensin and partially by carbonylcyamide-m-chlorophenylhydrasone. Methylamine and chloroquine rapidly enhanced the pHl, value to 6.4-7.0. Dansylcadaverine, 5-methoxytryptamine and dimethylurea did not affect pHl value. Intracellular accumulation of dansylcadaverine was shown to be due to the existence of acidic compartments into the cell and highly decreased in the presence of monensin. A conclusion is made that the inhibition of mitogenic signal by amines cannot be unequivocally accounted for by increasing the pH in organelles involved in the intracellular processing of growth factors.  相似文献   

18.
19.
Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity   总被引:2,自引:0,他引:2  
Neurons polarize to form elaborate multiple dendrites and one long axon. The establishment and maintenance of axon/dendrite polarity are fundamentally important for neurons. Recent studies have demonstrated that the polarity complex PAR-3-PAR-6-atypical protein kinase C (aPKC) is involved in polarity determination in many tissues and cells. The function of the PAR-3-PAR-6-aPKC protein complex depends on its subcellular localization in polarized cells. PAR-3 accumulates at the tip of growing axons in cultured rat hippocampal neurons, but the molecular mechanism of this localization remains unknown. Here we identify a direct interaction between PAR-3 and KIF3A, a plus-end-directed microtubule motor protein, and show that aPKC can associate with KIF3A through its interaction with PAR-3. The expression of dominant-negative PAR-3 and KIF3A fragments that disrupt PAR-3-KIF3A binding inhibited the accumulation of PAR-3 and aPKC at the tip of the neurites and abolished neuronal polarity. These results suggest that PAR-3 is transported to the distal tip of the axon by KIF3A and that the proper localization of PAR-3 is required to establish neuronal polarity.  相似文献   

20.
Murine interleukin-3 (mIL-3) stimulates the rapid and transient tyrosine phosphorylation of a number of proteins in mIL-3-dependent B6SUtA1 cells. Two of these proteins, p68 and p140, are maximally phosphorylated at tyrosine residues within 2 min of addition of mIL-3. Because 125I-mIL-3 can be cross-linked to both 70- and 140-kDa proteins on intact B6SUtA1 cells, we investigated whether the tyrosine phosphorylated p68 and p140 were these two mIL-3 receptor proteins. Addition of antiphosphotyrosine antibodies (alpha PTyr Abs) to cell lysates from B6SUtA1 cells, to which 125I-mIL-3 had been disuccinimidyl suberate-cross-linked, resulted in the immunoprecipitation of 125I-mIL-3 complexed to both 70- and 140-kDa proteins. To determine if the observed immunoprecipitation pattern was due to the direct interaction of alpha-PTyr Abs with these two mIL-3 receptor proteins or with tyrosine-phosphorylated proteins that were associated with the receptor proteins, cell lysates were treated with 2% sodium dodecyl sulfate, 5% 2-mercaptoethanol, and boiled for 1 min. After removal of sodium dodecyl sulfate and 2-mercaptoethanol, alpha PTyr Abs immunoprecipitated 125I-mIL-3 cross-linked to only the 140-kDa protein. To confirm this finding, 32P-labeled B6SUtA1 cells were treated with biotinylated or fluoresceinated mIL-3. Addition of immobilized streptavidin or antifluorescein antibodies, respectively, to cell lysates from these cells resulted in the enrichment of only a 140-kDa tyrosine phosphorylated protein. Taken together, these results strongly suggest that only the 140-kDa receptor protein is tyrosine phosphorylated upon mIL-3 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号